非接触电能传输系统电能发射源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非接触电能传输(Contactless Power Transfer, CPT)技术是目前国内外学术界和工程界热点探索的一个新领域,其基于电磁感应原理或耦合谐振原理,综合利用现代电力电子、高频变换、磁场耦合等技术,借助现代控制理论和方法,通过初级回路和次级回路之间的高频电磁耦合,实现从静止电源系统向相对静止或移动的用电设备以非电气接触的方式进行供电。与传统的电能传输方式相比,非接触电能传输消除了裸露电线、机械磨损、接触松动、接触火花等由于物理接触而存在的各种安全隐患,具有安全性好、灵活性强等优点,在化工、矿井、水下、人体器官等特殊供电场合及航空航天、机器人、医疗器械、消费电子的无线充电、照明、交通运输等领域,具有广阔的应用前景和实用价值。
     本文首先介绍了非接触电能传输技术的研究背景和电磁感应式CPT技术的基本原理,并概述了目前国内外在非接触电能传输领域的研究现状和已有研究成果;接着对非接触电能传输涉及到的三大关键技术:高频变换技术、电磁耦合技术和谐振补偿技术作了详细的分析,探讨了高频变换器的常用拓扑,电磁耦合机构的不同形式及其互感等效模型,以及不同补偿拓扑的负载、功率特性分析等;随后对基于E类功率放大器的非接触电能传输系统展开研究,给出了E类放大器的工作原理,参数设计及实践中参数调整原则,通过仿真和实验,证明了E类放大器在大功率非接触电能传输中的高效性,并提出了一种基于最优负载的参数设计方法,对变化负载情况下的传输功率、传输效率进行了实验研究;本文的最后分析了一种基于电压型全桥结构的间接型AC/AC变换拓扑,并将其应用于长距离、大功率的非接触电能传输中,针对一个具体实例,给出了其参数设计的方法和实验结果,并对电压全桥电路的控制方式作了简要探讨。
Contactless Power Transfer (CPT) technology is a new field of research in academia and engineering at home and abroad. It is based on electromagnetic induction or coupling resonance principles, synthetically utilizing power electronics, high power high frequency convertion technique and electromagnetic coupling technique, combined with modern control theory and methods, to transfer electric energy from stationary power systems to relative rest or moving electrical equipments via EM coupling between primary and secondary loops, meanwhile with no electrical contact. Compared with traditional power transmission mode, CPT eliminates a variety of safety risks, which are caused by exposed wires, mechanical wear, contact spark and so on. CPT also has the advantages of high security and good flexibility, and so it has vast application prospects and high practical value use in chemical industry, mine, underwater, power supply of human organs and other special occasions like aerospace, robotics, medical instruments, wireless charging of consumer electronics, lighting, transportation and other fields.
     Firstly this paper introduces the research background of CPT, summarizes the research situation of the literatures and existing research achievements. Further on a brief description of the basic principle of contactless power transmission, this paper gives analysis in detail of three key techniques:high-frequency conversion technology, electromagnetic coupling and resonance compensation, including commonly used converter topologies, different coupling mechanism forms, mutual inductance model, and power transmission characteristics with different compensation networks and so on. And then the paper focuses on CPT system based on class-E power amplifier. The operating principle, parameters designing and adjustment methods are given. Through simulation and experiment, the class-E amplifier is demonstrated high-efficiency property in CPT system. A new method for parameter designing based optimal load is proposed, and the experimental analysis of transmission power and efficiency versus load are done. In the end, this paper has an analysis of indirect AC-AC conversion topology based on voltage-fed full-bridge structure, which is further applied in long-distance, high-power CPT system. Taking a specific case, the parameters and experimental results are given, and then added with a brief discussion about control mode for voltage-fed full-bridge circuit.
引文
[1]K. W. Klontz, D. W. Novotny. Contactless Power Delivery Sysytem for Mining Applications[J]. IEEE Trans. on Industry Applications,1995,31(1):27-36.
    [2]A. P. Hu. Selected Resonant Converters for IPT Power Supplies[D]. New Zealand:University of Auckland,2001.
    [3]武瑛.新型无接触供电系统的研究[D].北京:中国科学院研究生院(电工研究所),2004.
    [4]H. Chen, A. P. Hu, D. Budgett. Power Loss Analysis of a TET System for High Power Implantable Devices[C]. ICIEA'07, Harbin,2007.
    [5]阳天亮.经皮能量传输系统闭环控制方法的研究[D].上海:上海交通大学,2011.
    [6]曹玲玲,陈乾宏.电动汽车高效率无线供电技术的研究进展[C].中国电工技术学会电力电子学会第十二届学术年会论文集,哈尔滨,2010.
    [7]Sallan Jesus, J. L. Villa, A. Llombart, et al. Optimal design of ICPT systems applied to electric vehicle battery charge[J]. IEEE Trans. on Industrial Electronics,2009,56(6):2140-2149.
    [8]W. C. Brown. The history of power transmission by radio waves[J]. IEEE Trans. on Microwave Theory and Techniques,1984,(32):1230-1242.
    [9]任立涛.磁耦合谐振式无线能量传输功率特性研究[D].哈尔滨:哈尔滨工业大学,2009.
    [10]POWERCAST. RF Energy Harvesting and Wireless Power for Micro-Power Applications[Z/OL]. http://www.powercastco.com
    [11]P. GLASER. Power From the Sun, Its Future[J]. Science,1968,162(11):857-861.
    [12]W. BROWN. Status of the Microwave Power Transmission Components for the Solar Power Satellite[J]. IEEE Trans. on Microwave Theory and Techniques,1981,29(12):1319-1327
    [13]A. Kurs, A. Karalis, R. Moffatt. Wireless Power Transfer via Strongly Coupled Magnetic Resonances[J]. Science,2007,7(317):83-86.
    [14]唐春森.非接触电能传输系统软开关工作点研究及应用[D].重庆:重庆大学,2009.
    [15]A. W. Green, J. T. Boys.10kHz inductively coupled power transfer-concept and control[C]. Fifth International Conference on Power Electronics and Variable Speed Drives,1994:694-699.
    [16]CHwei Sen Wang, Grant A. Covic, Oskar H. Stielau.Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems[J]. IEEE Trans. on Industrial Electronics,2004,51(1):148-157.
    [17]G. A. Covic, J. T. Boys, M. L. Kissin, et al. A three-phase inductive power transfer system for roadway-powered vehicles[J]. IEEE Trans. on Industrial Electronics,2007,54(6):3370-3378.
    [18]J. T. Boys, G. A. Elliott, G. A. Covic. An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups[J]. IEEE Trans. on Power Electronics,2007,22(1):333-335.
    [19]Byungcho C, Jaehyun N, Honnyong C, et al. Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[J]. IEEE Trans. on Industrial Electronics,2004,51(1):140-147.
    [20]Byeong-Mun S, Kratz R, Gurol S. Contactless inductive power pickup system for maglev applications[C].37th IAS Annual Meeting Conference Record of the Industry Applications Conference,2002:1586-1591.
    [21]K. Hatanaka, F. Sato, H. Matsuki, et al. Power transmission of a desk with a cord-free power supply[J]. IEEE Trans. on Magnetics,2002,38(5):3329-3331.
    [22]毛赛君.非接触感应电能传输系统关键技术研究[D].南京:南京航天航空大学,2006.
    [23]常书惠.无线电能传输技术与Qi标准[J].电子商务,2011,(4):73-74.
    [24]李宏.感应电能传输一电力电子及电气自动化的新领域.电气传动.2001,(2):62-64.
    [25]孙跃,王智慧,戴欣等.非接触电能传输系统的频率稳定性研究[J].电工技术学报,2005,20,(11):56-59.
    [26]王智慧.基于包络线调制的非接触电能传输模式研究[D].重庆:重庆大学,2009.
    [27]戴欣,孙跃,苏玉刚等.非接触电能双向推送模式研究[J].中国电机工程学报,2010,30(18):55-61.
    [28]Y. G. Su, C. S. Tang, S. P. Wu, et al. Research of LCL resonant inverter in wireless power transfer system[C]. International Conference on Power System Technology, Chongqing,2006:794-799.
    [29]C. S. Tang, Y. Sun, Y. G. Su, et al. Determining multiple steady-state ZCS operating points of a switch-mode contactless power transfer system [J]. IEEE Trans. on Power Electronics,2009,24(2): 416-425.
    [30]周雯琪,马皓,何湘宁.基于动态方程的电流源感应耦合电能传输电路的频率分析[J].中国电机工程学报,2008,28(3):119-124.
    [31]周雯琪.感应耦合电能传输系统的特性与设计研究[D].杭州:浙江大学,2008.
    [32]陈敏,周邓燕,徐德鸿.注入高次谐波电流的磁悬浮列车非接触供电方法[J].中国电机工程学报,2005,25(6):104-108.
    [33]武瑛,严陆光,徐善刚.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报,2004,24(5):63-66.
    [34]刘建.基于松耦合变压器的全桥谐振变换器的研究[D].南京:南京航空航天大学,2008.
    [35]陆芬,王慧贞.基于频率跟踪控制的串联谐振变换器研究[J].电力电子技术,2010,44(3):63-65.
    [36]张峰,王慧贞.非接触感应能量传输系统中松耦合变压器的研究[J].电源技术应用,2007,10(4):54-59.
    [37]张巍,陈乾宏,曹玲玲.新型非接触变压器的磁路模型及其优化[J].中国电机工程学报,2010,30(27):108-117.
    [38]李泽松.基于电磁感应原理的水下非接触式电能传输技术研究[D].杭州:浙江大学,2010.
    [39]王兆安,黄俊.电力电子技术[M].北京:机械_工业出版社,2000.
    [40]刘胜利.现代高频开关电源实用技术[M].北京:电子工业出版社,2001.
    [41]夏晨阳.感应耦合电能传输系统能效特性的分析与优化研究[D].重庆:重庆大学,2010.
    [42]Chang-Gyun Kim, Dong-Hyun Seo, Jung-Sik You, et al. Design of a contactless battery charger for cellular Phone[J]. IEEE Trans. on Industrial Electronics,2001,48(6):1238-1247.
    [43]N. Sokal, A. Sokal. Class E A New Class of High-Effciency Tuned Single-Ended Switching Power Amplifiers. IEEE J. Solid-State Circuits,1975, SSC-10(3):168-176.
    [44]梁俊睿.E类放大器原理及其在经皮能量传输应用中的研究[D].上海:上海交通大学,2007.
    [45]F. H. Raab.Idealized Operation of the Class E Tuned Power Amplifier[J]. IEEE Trans. Circuits Syst., 1977, CAS-24(12):725-735.
    [46]Z. N. Low, R. A. Chinga, R. Tseng. Design and Test of A High-Power High-Effciency Loosely Coupled Planar Wireless Power Transfer System. IEEE Trans. on Industrial Electronics,2009,56(5): 1801-1812.
    [47]F. Raab.Effects of Circuit Variations on The Class E Tuned Power Amplifier.IEEE J. Solid-State Circuits,1978, SSC-13(2):239-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700