用户名: 密码: 验证码:
微波平面周期结构及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文所研究的微波平面周期结构对象主要包括复合左/右手传输线(compositeright/left handed transmission line, CRLH TL)、电磁带隙(electromagnetic band-gap,EBG)结构以及零阶谐振器天线(zeroth-order resonator antenna, ZOR antenna)等。主要研究了这几种周期结构的理论、电磁特性、研究方法、仿真技术及工程应用。本文以CRLH理论为线索将所研究的这几种周期结构联系起来。具体研究内容包括:
     1.概述各种微波平面周期结构的发展、电磁特性及研究进展,并讨论了它们之间的关系。这些周期结构包括:频率选择表面(Frequency Selective Surface,FSS)、软/硬表面(Soft/Hard Surface)、左手媒质(Left-handed Materials,LHM)、复合左/右手传输线(Composite Right/Left Handed Transmission Line,CRLH TL)、缺陷地结构(Defected Ground Structures,DGS)、光子晶体(Photonic Bandgap,PBG)与电磁带隙(Electromagnetic Band-gap,EBG)结构。
     2.研究了复合左/右手传输线(CRLH TL)或说Metamaterial TL的理论、发展及应用。首先阐述了CRLH TL的几个概念,然后以简单而又清晰的方式介绍了普通复合左/右手传输线(C-CRLH TL)和对偶复合左/右手传输线(D-CRLH TL)的特性。然后提出并研究了混合C-CRLH和D-CRLH特性的新型复合左/右手传输线。应用该新传输线的独特性质设计了低通滤波器。该低通滤波器的3dB截止频率为2.38GHz,尺寸为16mm*16mm(0.13λg*0.13λg,λg为截止频率在自由空间中波长)。还应用复合左/右手传输线的概念设计小型、宽阻带的带通滤波器。该带通滤波器的3dB通带带宽为1.04-1.34GHz(即25.2%),尺寸为20mm*17mm,即0.080λg*0.068λg,λg为滤波器工作中频频率在自由空间中的波长。
     3.研究了电磁带隙(EBG)结构。首先讨论普通蘑菇型电磁带隙(conventionalmushroom-type EBG, CMT-EBG)结构的工作机理及其与CRLH TL的关系。讨论了EBG结构的三种常用仿真技术;然后提出一种基于CRLH及ZOR理论的CMT-EBG结构带隙频率的新评估方法。这种方法是依据带隙频段可由两个零阶谐振频率fsh和fse界定的结论;推导了这种方法所需的边界条件,并设计了两个基于微带线的模型来计算带隙频率。研究发现所提出方法具有准确性好、建模简单和制作方便且可测试的特点。依据电磁系统对小型化、多频带的要求,设计紧凑多频的EBG结构。其中一个是基于CSRR(complementary split ring resonator)的EBG结构,其尺寸比CMT-EBG结构减少了28%。所提出的另一种结构(DAU-EBG)更紧凑,其尺寸比CMT-EBG结构减少了74.1%,并在x方向和y方向分别有三个和两个带隙频段。
     4.研究EBG结构在UWB带阻天线上的应用。利用EBG结构与UWB天线的微带馈线耦合的方法设计和分析单阻带、双阻带及三阻带的UWB天线。研究发现基于这种方法设计的UWB带阻天线不但克服了阻带设计的两个主要问题:即高效多频设计和阻带宽度控制;而且EBG结构的引入对UWB天线通带的性能几乎没有影响。还通过群时延、波形变换、相关系数和波形展宽系数分析了这类UWB带阻天线的时域特性。研究发现所引入的EBG结构对天线时域特性的影响较小,所以这种阻带设计方法对于保持UWB天线的时域特性非常好。
     5.提出一种新型的零阶谐振器:MZR-EZR零阶谐振器,并研究了其应用。首先介绍以CRLH TL电路推导零阶谐振器(ZOR),并得到ZOR的分类:零磁导率谐振器(mu-zero resonator, MZR)和零介电常数谐振器(epsilon-zero resonator, EZR)。然后提出一种以简单电路模型推导两种不同ZOR所需的边界条件的方法。根据EZR和MZR所需边界条件及场分布,设计一种混合MZR和EZR特点的新型零阶谐振器:MZR-EZR谐振器。研究发现这种谐振器用作天线时,耦合馈电的方式更好得到阻抗匹配,且这种天线可取得较大半功率波瓣宽度(Half-power beam width, HPBW)的定向辐射。还研究了用MZR-EZR谐振器作为寄生谐振器来增强微带天线的带宽,且将微带天线的带宽从2.2%增大到5.1%。最后,研究发现MZR-EZR谐振器有两个互相正交的极化波且它们之间的相位差固定为900。利用这些特点,通过巧妙排列四个MZR-EZR谐振器成一圆周,使得两种极化的波都为全向辐射,从而得到全向圆极化天线。通过该圆极化天线的场分布发现,该天线在一定相位时等效为电偶极子,而在相差900时等效为磁偶极子。这样就得到了全向低剖面的圆极化天线。
In this dissertation, microwave planar periodic structures are researched. Theyinclude: composite right/left handed transmission lines (CRLH TLs), electromagneticband-gap (EBG) structures and zeroth-order resonator (ZOR) antennas, etc. The theories,research methodology, simulation techniques and engineering applications of theperiodic structures are investigated. Besides, a clue to link the researched periodicstructures is the CRLH theory. Specific research contents include:
     1. The development, electromagnetic characteristics and research progress ofdifferent kinds of microwave planar periodic structures are introduced, and theirrelations are discussed. These periodic structures include: frequency selective surface(FSS), soft/hard surface, left-handed material (LHM), composite right/left handedtransmission line (CRLH TL), defected ground structure (DGS), photonic band-gap(PBG) and electromagnetic band-gap (EBG) structure.
     2. The theory, development and applications of CRLH TL (or metamaterial TL) arestudied. First, several concepts related to CRLH TL are stated follow by the simple andclear introductions of characteristics of conventional CRLH TL (C-CRLH TL) and dualCRLH TL (D-CRLH TL). Then, a new TL that composite C-CRLH and D-CRLHcharacteristics is proposed and investigated. The new TL is utilized to design low-passfilter (LPF). The proposed LPF has a3dB cut-off frequency at2.38GHz, and its size is16mm*16mm (0.13λg*0.13λg,and λgis the free space wavelength of the cut-offfrequency). The concept of CRLH TL is also used to design compact wide-stop-bandband-pass filter (BPF). The3dB band-width of the proposed BPF ranges from1.04-1.34GHz (25.2%bandwidth), and its size is20mm*17mm (0.080λg*0.068λg,and λgis the free space wavelength of the center frequency).
     3. EBG structures are researched. First, the operational mechanism of conventionalmushroom-type EBG (CMT-EBG) structure and its relationship with CRLH TL isdiscussd. Three simulation techniques for EBG structures are discussed, then, a newsimulation approach for CMT-EBG structure's band-gap frequencies detection areproposed based on CRLH and ZOR theories. The new approach are proposed according to the conclusion that band-gap of CMT-EBG can be delimited by resonant frequenciesfshand fse. Boundary conditions for the new approach are deduced and two microstripline based models are designed to calculate the band-gap frequencies. Research foundthe proposed approach have the advantages of good accuracy, simple model, easyfabrication and measurement. According to electromagnetic system's requirements ofcompactness and multi-band, compact multi-band EBG structures are designed. OneEBG design is based on complementary split ring resonator (CSRR), and its size is28%smaller than the CMT-EBG structure. Another EBG design (DAU-EBG) is morecompact: its size is74.1%smaller than the CMT-EBG structure, and three and twoband-gaps are happened at x and y directions, respectively.
     4. The applications of EBG structures on ultra-wideband (UWB) antennas fornotches design are investigated. The approach of utilizing EBG structures couple tomicrostrip feeding ling of UWB antennas for single, double and triple band-gaps arestudied. Research found the proposed UWB band-notched design approach can conquerthe two main problems of notch design: high-efficiency multi-notches design and notchwidth control. Besides, the introduction of EBG structures has little effect on UWBantennas' pass-band characteristics. Time domain characteristics of the UWBband-notched antennas are researched by group delay, waveform response, correlationcoefficient, and pulse width stretch ratio (SR). Research found the introduction of EBGstructure have very small effect on the antennas' time domain characteristics, therefore,the proposed notch design approach is good for maintain UWB antennas' time domaincharacteristics.
     5. A new ZOR (the MZR-EZR resonator) is proposed, and its applications areinvestigated. First, conventional ZORs that deduced from CRLH TL are introduced, andthe classification of ZORs is derived: mu-zero resonator (MZR) and epsilon-zeroresonator (EZR). Then, an approach to deduce the boundary conditions of ZORs wasproposed by simple circuit model. According to the necessary boundary conditions andfields distributions of EZR and MZR, a new resonator, composite the characteristics ofMZR and EZR, is designed. The resonator is MZR-EZR resonator. Research foundcoupling feeding system would be a better way for impedance matching when theresonator used as antenna, and the antenna has a wide HPBW. The MZR-EZRresonators are also utilized as parasitic resonators to enhance microstrip antennas' bandwidth. Research found microstrip antennas' bandwidth can be increased from2.2%to5.1%. Research also found the proposed MZR-EZR resonator has two orthogonalpolarized fields, and the phase difference between the fields is fixed to be900. Thus,four MZR-EZR resonators are form in a circular way to make both the polarizationsradiate omni-directionally. From field distributions of the circular polarized antenna, itis found that the antenna acts like an electric dipole in certain phase, and acts like amagnetic dipole in a900phase difference. Then, a low-profile omni-directional circularpolarized antenna is obtained.
引文
[1] B. A. Munk. Frequency selective surfaces theory and design[M]. New York: John Wiley&SonsInc.,2005,1-77
    [2] P. S. Kildal. The hat feed a dual-mode rear-radiating waveguide antenna having low crosspolarization[J]. IEEE Trans. Antennas Propag.,1987,35(9):1010-1016
    [3] P. S. Kildal. Definition of artificially soft and hard surfaces for electromagnetic wave[J].Electron. Lett.,1988,24(3):168-170
    [4] E.Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys.Rev. Lett.,1987,58(20):2059-2062
    [5] S.John. Strong localization of Photons in certain disordered dielectric super-lattices[J]. Phys.Rev. Lett.,1987,58(20):2486-249
    [6] D. Sievenpiper. High-impedance electromagnetic surface[D]. Los Angeles, CA: Dep. E lect. Eng.Univ California at Los Angeles,1999,35-86
    [7] D. Sievenpiper, L. J. Zhang, R. F. J. Broas, et al. High-impedance electromagnetic surfaces witha forbidden frequency band[J]. IEEE Trans. Microw. Theory Tech.,1999,47(11):2059-2074
    [8] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negativepermeability and permittivity[J]. Phys. Rev. Lett.,2000,84(18):4184-4187
    [9] G. V. Eleftheriades, A. K. Iyer, P. C. Kremer. Planar negative refractive index media usingperiodically L-C loaded transmission lines[J]. IEEE Trans. Microw. Theory Tech.,2002,50(12):2702-2012
    [10] C. Caloz, T. Itho. Electromagnetic metamaterials: transmission line theory and microwaveapplications.(The Engineering Approach)[M]. New York: John Wiley&Sons Inc.,2006,59-310
    [11] Y. X. Qian, V. Radisic, T. Itoh. Simulation and experiment of photonic band-gap structures formicrostrip circuits[C]. Asia-Pacific Microwave Conference Proceedings, Hong Kong,1997,585-588
    [12] J. S. Lim, C. S. Kim, D. Ahn, et al. Design of low-pass filters using defected groundstructure[J]. IEEE Trans. Microw. Theory Tech.,2005,53(8):2539-2545
    [13] Y. Rahmat-Samii, H. Mosallaei. Electromagnetic band-gap structures classification,characterization, and applications[C]. Eleventh International Conferences on Antennas andPropagation, Manchester,2001,560-564
    [14] Z. C. Ge, W. X. Zhang, Z. G. Liu, et al. Broadband and high-gain printed antennas constructedfrom fabry-perot resonator structure using EBG or FSS cover[J]. Microw. Opt. Technol. Lett.,2006,48(7):1272-1274
    [15] A. Pirhadi, F. Keshmiri, M. Hakkak, et al. Analysis and design of dual band high directivityEBG resonator antenna using square loop FSS as superstrate layer[J]. Prog. Electromagn. Res.,2007,70:1-20
    [16] E. Rajo-Iglesias, O. Quevedo-Teruel, L. Inclan-sanchez. planar soft surfaces and theirapplication to mutual coupling reduction[J]. IEEE Trans. Antennas Propag.,2009,57(12):3852-3859
    [17] L. Li, B. Li, H. X. Liu, et al. Locally resonant cavity cell model for electromagnetic band gapstructures[J]. IEEE Trans. Antennas Propag.,2006,54(1):90-100
    [18] V. G. Veselago. Properties of materials having simultaneously negative values of dielectric εand the magnetic μ susceptibilities[J]. Sov. Phys. Solid State,1967,8:2854-2856
    [19] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely low frequency plasmons in metallicmesostructures[J]. Phys. Rev. Lett.,1996,76(25):4773-4773
    [20] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Low frequency plasmas in thin-wirestructures[J]. J. Phys. C.,1998,10:4785-4808
    [21] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhancednonlinear phenomena[J]. IEEE Trans. Microw. Theory Tech.,1999,47(11):2705-2084
    [22] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index ofrefraction[J]. Science,2001,292:77-79
    [23] L. Qiang, H. M. Lu, W. Zhao, et al. Simplified extended composite right/left-handedtransmission line structure for dual-band application[J]. Prog. Electromagn. Res. Lett.,2010,15:137-144
    [24] C. Caloz, T. Itoh. Novel microwave devices and structures based on the transmission lineapproach of meta-materials[C]. IEEE MTT-S Int. Microw. Symp. Digit., Philadelphia,2003,195-198
    [25] A. Hirota, Y. Tahara, N. A Yoneda. Compact forward coupler using coupled compositeright/left-handed transmission lines[J]. IEEE Trans. Microw. Theory Tech.,2009,57(12):3127-3133
    [26] A. Lai, T. Itoh, C. Caloz. Composite right/left-handed transmission line metamaterials[J]. IEEEMicrow. Mag.,2004,5(3):34-50
    [27] V. Radisic, Y. Qian, R. Coccioli, et al. Novel2-D photonic bandgap structure for microstriplines[J]. IEEE Microw. Guided Wave Lette.,[see also IEEE Microw. Wireless Compon. Lett.],1998,8(2):69-71
    [28] N. C. Karmakar, S. M. Roy, I. Balbin. Quasi-static modeling of defected ground structure[J].IEEE Trans. Microw. Theory Tech.,2006,54(5):2160-2168
    [29] A. Boutejdar, A. Elsherbini, A.S. Omar. Method for widening the reject-band inlow-pass/band-pass filters by employing coupled C-shaped defected ground structure[J]. IETMicrow. Antennas Propag.,2008,2(8):759-765
    [30] D. Ahn, J. S. Park, C. S. Kim, et al. A design of the low-pass filter using the novel microstripdefected ground structure[J]. IEEE Trans. Microw. Theory Tech.,2001,49(1):86-93
    [31] X. H. Wang, B. Z. Wang, H. L. Zhang, et al. A tunable bandstop resonator based on a compactslotted ground structure[J]. IEEE Trans. Microw. Theory Tech.,2007,55(9):1912-1918
    [32] S. G. Jeong, D. K. Hwang, Y. C. Jeong, et al. Amplifier design using λ/4high impedance biasline with defect ground structure (DGS)[C]. IEEE MTT-S Int. Microw. Symp. Digit., Seattle,2002,1161-1164
    [33] S. G. Jeong, D. K. Hwang, Y. P. Kwon, et al. Harmonic reduction amplifier using λ/4highimpedance bias line with defected ground structure (DGS)[C].32nd European MicrowaveConference, Milan,2002,1-4
    [34] Y. K. Chung, S. S. Jeon, D. Ahn, et al. High isolation dual-polarized patch antenna usingintegrated defected ground structure[J]. IEEE Microw. Wireless Compon. Lett.,2004,14(1):4-6
    [35] C. Kumar, D. Guha. Nature of cross-polarized radiations from probe-fed circular microstripantennas and their suppression using different geometries of defected ground structure(DGS)[J]. IEEE Trans. Antennas Propag.,2012,60(1):92-101
    [36] F. Falcone, T. Lopetegi, J. D. Baena, et al. Effective negative-ε stopband microstrip lines basedon complementary split ring resonators[J]. IEEE Microw. Wireless Compon. Lett.,2004,14(6):280-282
    [37] J. D. Baena, J. Bonache, F. Martin, et al. Equivalent-circuit models for split-ring resonators andcomplementary split-ring resonators coupled to planar transmission lines[J]. IEEE Trans.Microw. Theory Tech.,2005,53(4):1451-1461
    [38] J. Bonache, I. Gil, J. Garcia-Garcia, et al. Complementary split ring resonators for microstripdiplexer design[J]. Electron. Lett.,2005,41(14):810-811
    [39] M. Gil, J. Bonache, J. Garcia-Garcia, et al. Composite right/left-handed metamaterialtransmission lines based on complementary split-rings resonators and their applications to verywideband and compact filter design[J]. IEEE Trans. Microw. Theory Tech.,2007,55(6):1296-1304
    [40] J. Bonache, G. Siso, M. Gil, et al. Application of composite right/left handed (CRLH)transmission lines based on complementary split ring resonators (CSRRs) to the design ofdual-band microwave components[J]. IEEE Microw. Wireless Compon. Lett.,2008,18(8):524-526
    [41] H. M. Kim, B. Lee. Bandgap and slow/fast-wave characteristics of defected ground structures(DGSs) including left-handed features[J]. IEEE Trans. Microw. Theory Tech.,2006,54(7):3113-3120
    [42] J. H. Park, Y. H. Ryu, J. G. Lee, et al. A novel via-free composite right-and left-handedtransmission line using defected ground structure[J]. Microw. Opt. Technol. Lett.,2007,49(8):1989-1993
    [43] Y. H. Ryu, J. H. Park, J. H. Lee, et al. A novel planar left-handed transmission line usingdefected ground structure with inter-digital gap[C]. IEEE Int. Symp. on Antennas andPropagation, Honolulu,2007,4991-4994
    [44] Y. H. Ryu, J. H. Park, J. H. Lee, et al. DGS dual composite right/lefthanded transmission line[J].IEEE Microw. Wireless Compon. Lett.,2008,18(7):434-436
    [45] Y. J. Lee, J. H. Yeo, R. Mittra, et al. Application of electromagnetic bandgap (EBG)superstrates with controllable defects for a class of patch antennas as spatial angular filters[J].IEEE Trans. Antennas Propag.,2005,53(1):224-235
    [46] X. Dardenne, C. Craeye. Method of moments simulation of infinitely periodic structurescombining metal with connected dielectric objects[J]. IEEE Trans. Antennas Propag.,2008,56(8):2372-2380
    [47] F. R.Yang, K. P. Ma, Y. X. Qian, et al. A uniplanar compact photonic-bandgap (UC-PBG)structure and its applications for microwave circuit[J]. IEEE Trans. Microw. Theory Tech.,1999,47(8):1509-1514
    [48] F. Yang, Y. Rahmat-Samii. Reflection phase characterizations of the EBG ground plane for lowprofile wire antenna applications[J]. IEEE Trans. Antennas Propag.,2003,51(10):2691-2703
    [49] R. Baggen, M. Martinez-Vazquez, J. Leiss, et al. Low profile GALILEO antenna using EBGtechnology[J]. IEEE Trans. Antennas Propag.,2008,56(3):667-674
    [50] A. Sanada, M. Kimura, I. Awai, et al. A planar zeroth-order resonator antenna using aleft-handed transmission line[C].34th European Microwave Conference, Amsterdam,2004,1341-1344
    [51] A. Lai, K.M.K.H. Leong, T. Itoh. Infinite wavelength resonant antennas with monopolarradiation pattern based on periodic structures[J]. IEEE Trans. Antennas Propag.,2007,55(3):868-876
    [52] S. M. Pyo, S. M. Han, J. W. Baik, et al. A slot-loaded composite right/left-handed transmissionline for a zeroth-order resonant antenna with improved efficiency[J]. IEEE Trans. Microw.Theory Tech.,2009,57(11):2775-2782
    [53] C. C. Liu, P. L. Chi, Y. D. Lin. Compact zeroth-order resonant antenna based on dual-armspiral configuration[J]. IEEE Antennas Wireless Propag. Lett.,2012,11:318-321
    [54] T. G. Kim, B. Lee. Metamaterial-based compact zeroth-order resonant antenna[J]. Electron.Lett.,2009,45(1):12-13
    [55] C. Gao, Z. N. Chen, Y. Y. Wang, et al. Investigation on relationship of electromagnetic bandgapstructures and left/right handed structures[C]. IEEE International Workshop on AntennaTechnology: Small Antennas and Novel Metamaterials, Beijing,2005,387-390
    [56] A. Sanada, C. Caloz, T. Itoh. Planar distributed structures with negative refractive index[J].IEEE Trans. Microw. Theory Tech.,2004,52(4):1252-1263
    [57] A. Alu, N. Engheta. Pairing an epsilon-negative slab with a mu-negative slab: resonance,tunneling and transparency[J]. IEEE Trans. Antennas Propag.,2003,51(10):2558-2571
    [58] A. Alu, F. Bilotti, L. Vegni. Analysis of L-L transmission line metamaterials with coupledinductances[J]. Microw. Opt. Technol. Lett.,2006,49(1):94-97
    [59] A. Sanada, C. Caloz, T. Itoh. Characteristics of the composite right/left-handed transmissionlines[J]. IEEE Microw. Wireless Compon. Lett.,2004,14(2):68-70
    [60] C. Caloz, H. Okabe, T. Iwai, et al. Transmission line approach of left-handed (LH) materials[C].USNC/URSI National Radio Science Meeting, San Antonio, TX,2002,39
    [61] C. Caloz, T. Itoh. Novel microwave devices and structures based on the transmission lineapproach of meta-materials[C]. IEEE MTT-S Int. Microw. Symp. Digit., Philadelphia,2003,195-198.
    [62] C. Caloz. Dual Composite Right/Left-Handed (D-CRLH) Transmission Line Metamaterial[J].IEEE Microw. Wireless Compon. Lett.,2006,16(11):585-587
    [63] C. Caloz, H. V. Nguyen. Novel broadband conventional-and dual-composite right/left-handed(C/D-CRLH) metamaterials: Properties, implementation and double-band coupler application[J]. Appl. Phys. A Mater. Sci. Process.,2007,87(2):309-316
    [64] H.V. Nguyen, S. Abielmona, C. Caloz. Performance-enhanced and symmetric full-spacescanning end-switched CRLH LWA[J]. IEEE Antennas Wireless Propag. Lett.,2011,10:709-712
    [65] J. S. Gomez-Diaz, A. álvarez-Melcon, T. Bertuch. A modal-based iterative circuit model forthe analysis of CRLH leaky-wave antennas comprising periodically loaded PPW[J]. IEEETrans. Antennas Propag.,2011,59(4):1101-1112
    [66] S. Abielmona, S. Gupta, C. Caloz. Compressive receiver using a CRLH-based dispersive delayline for analog signal processing[J]. IEEE Trans. Microw. Theory Tech.,2009,57(11):2617-2626
    [67] J. H. Choi, T. Itoh. Dual-band composite right/left-handed (CRLH) phased-array antenna[J].IEEE Antennas Wireless Propag. Lett.,2012,11:732-735
    [68] J. K. Ji, G. H. Kim, W. M. Seong. Bandwidth enhancement of metamaterial antennas based oncomposite right/left-handed transmission line[J]. IEEE Antennas Wireless Propag. Lett.,2010,9:36-39
    [69] G. V. Eleftheriades. A generalized negative-refractive-index transmission-line (NRI–TL)metamaterial for dual-band and quad-band applications[J]. IEEE Microw. Wireless Compon.Lett.,2007,17(6):415-417
    [70] M. Studniberg, G. V. Eleftheriades. A dual-band bandpass filter based on generalizednegative-refractive-index transmission-lines[J]. IEEE Microw. Wireless Compon. Lett.,2009,19(1):18-20
    [71] G. Siso, M. Gil, J. Bonache, et al. Generalized model for multiband metamaterial transmissionlines[J]. IEEE Microw. Wireless Compon. Lett.,2008,18(11):728-730
    [72] A. Rennings, S. Otto, J. Mosig, et al. Extended composite right/left-handed (E-CRLH)metamaterial and its application as quadband quarter-wavelength transmission line[C].Asia-Pacific Microwave Conference Proceedings, Yokohama,2006,1405-1408
    [73] L. Qiang, H. M. Lu, W. Zhao, et al. Simplified extended composite right/left-handedtransmission line structure for dual-band application[J]. Prog. Electromagn. Res. Lett.,2010,15:137-144
    [74] D. M. Pozar. Microwave engineerng[M]. New York: John Wiley&Sons Inc.,2005,20-267
    [75] M. A. Aziz, A. M. E. Safwat, F. Podevin, et al. Coplanar waveguide filters based onmultibehavior etched-ground stubs[J]. IEEE Trans. Compon. Packag. Tech.,2009,32(4):816-824
    [76] L. Li, Z. F. Li, J. F. Mao. Compact lowpass filters with sharp and expanded stopband usingstepped impedance hairpin units[J]. IEEE Microw. Wireless Compon. Lett.,2010,20(6):310-312
    [77] K. X. Ma, K. S. Yeo. New ultra-wide stopband low-pass filter using transformed radial stubs[J].IEEE Trans. Microw. Theory Tech.,2011,59(3):604-611
    [78] S. Sun, L. Zhu. Stopband-enhanced and size-miniaturized low-pass filters usinghigh-impedance property of offset finite-ground microstrip line[J]. IEEE Trans. Microw.Theory Tech.,2005,53(9):2844-2850
    [79] S. T. Kahng, J. H. Ju. Design of the UWB bandpass filter based on the1cell of microstripCRLH-TL[C]. International Conference on Microwave and Millimeter Wave Technology,Nanjing,2008,69-72
    [80] J. S. Li. Novel filter using composite right/left-handed transmission line[J]. Microw. Opt.Technol. Lett.,2006,48(10):2013-2015
    [81] S. G. Mao, M. S. Wu, Y. Z. Chueh. Design of composite right/left-handed coplanar-waveguidebandpass and dual-passband filters[J]. IEEE Trans. Microw. Theory Tech.,2006,54(9):3543-3549
    [82] F. Yang, Y. Rahmat-Samii. Electromagnetic band-gap structures in antenna engineering[M].Cambridge, U.K.: Cambridge Univ. Press,2008,59-151
    [83] F. Yang, Y. Rahmat-Samii. Microstrip antennas integrated with electromagnetic band-gap (EBG)structures: a low mutual coupling design for array applications[J]. IEEE Trans. AntennasPropag.,2003,51(10):2936-2946
    [84] R. M kinen, V. Pyntt ri, J. Heikkinen, et al. Improvement of antenna isolation in hand-helddevices using miniaturized electromagnetic band-gap structures[J]. Microw. Opt. Technol. Lett.,2007,49(10):2508,-2513
    [85] C, L. Wang, G. H. Shiue, W. D. Guo, et al. A systematic design to suppress wideband groundbounce noise in high-speed circuits by electromagnetic-bandgap-enhanced split powers[J].IEEE Trans. Microw. Theory Tech.,2006,54(12):4209-4217
    [86] H. Nakano, K. Kikkawa, N. Kondo, et al. Low-profile equiangular spiral antenna backed by anEBG reflector[J]. IEEE Trans. Antennas Propag.,2009,57(5):1309-1318.
    [87] J. M. Bell, M. F. Iskander, J. J. Lee. Ultrawideband hybrid EBG/ferrite ground plane forlow-profile array antennas[J]. IEEE Trans. Antennas Propag.,2007,55(1):4-12
    [88] A. Sanada, C. Caloz, T. Itoh. Planar distributed structures with negative refractive index[J].IEEE Trans. Microw. Theory Tech.,2004,52(4):1252-1263
    [89] R. Remski. Analysis of PBG surfaces using Ansoft HFSS[J]. Microw. J.,2000,43(9):190-198
    [90] L. Yang, M. Y. Fan, F. L. Chen, et al. A novel compact electromagnetic-bandgap (EBG)structure and its applications for microwave circuits[J]. IEEE Trans. Microw. Theory Tech.,2005,53(1):183-190
    [91] D. E. Schaub, D. R. Oliver. Rapid simulation of linear PBG microstrip structures using therayleign multipole method[J]. IEEE Trans. Microw. Theory Tech.,2008,56(1):49-55
    [92] J. H. Park, Y. H. Ryu, J. G. Lee, et al. Epsilon negative zeroth-order resonator antenna[J]. IEEETrans. Antennas Propag.,2007,55(12):3710-3712
    [93] J. H. Park, Y. H. Ryu, J. H. Lee. Mu-zero resonance antenna[J]. IEEE Trans. Antennas Propag.,2010,58(6):1865-1875
    [94] E. Rajo-Iglesias, L. Inclan-Sanchez, J. L. Vazquez-Roy, et al. Size reduction of mushroom-typeEBG surfaces by using edge-located vias[J]. IEEE Microw. Wireless Compon. Lett.,2007,17(9):670-672
    [95] Y. Fu, N. Yuan, G. Zhang. Compact high-impedance surfaces incorporated with interdigitalstructure[J]. Electron. Lett.,2004,40(5):310-311
    [96] M. Hosseinipanah, Q. Wu. Miniaturised high-impedance surface with high angular stability ofresonant frequency[J]. Electron. Lett.,2009,45(24):1204-1206
    [97] R. Marques, F. Martin, M. Sorolla. Metamaterials with negative parameters: theory, design, andmicrowave applications[M]. New York: John Wiley&Sons Inc.,2008,119-260
    [98] Computer Simulation Technology Company. CST MWS[OL]. www.cst.com,2008
    [99] X. L. Bao, G. Ruvio, M. J. Ammann. Low-profile dual-frequency GPS patch antenna enhancedwith dual-band EBG structure[J]. Microw. Opt. Technol. Lett.,2007,49(11):2630-2634
    [100] X. Chen, L. Li, C. H. Liang, et al. Locally resonant cavity cell model for meandering slottedelectromagnetic band gap structure[J]. IEEE Antennas Wireless Propag. Lett.,2010,9:3-7
    [101] T. Kamgaing, O. M. Ramahi. Multiband electromagnetic-bandgap structures for applicationsin small form-factor multichip module packages[J]. IEEE Trans. Microw. Theory Tech.,2008,56(10):2293-2300
    [102] D. J. Kern, D. H. Werner, A. Monorchio, et al. The design synthesis of multiband artificialmagnetic conductors using high impedance frequency selective surfaces[J]. IEEE Trans.Antennas Propag.,2005,53(1):8-17
    [103] H. J. Lee, K. L. Ford, R. J. Langley. Dual band tunable EBG[J]. Electron. Lett.,2008,44(6):392-393
    [104] L. Peng, C. L. Ruan, Z. Q. Li. A novel compact and polarization-dependent mushroom-typeEBG using CSRR for dual/triple-band applications[J]. IEEE Microw. Wireless Compon. Lett.,2010,20(9):489-491
    [105] E. Rajo-Iglesias, M. Caiazzo, L. Inclán-Sánchez, et al. Comparison of bandgaps ofmushroom-type EBG surface and corrugated and strip-type soft surfaces[J]. IET Microw.,Antennas Propag.,2007,1(1):184–189
    [106] Q. R. Zheng, Y. Q. Fu, N. C. Yuan. A Novel compact spiral electromagnetic band-gap (EBG)structure[J]. IEEE Trans. Antennas Propag.,2008,56(6):1656-1660
    [107] Y. J. Ren, K. Chang. Ultra-wideband planar elliptical ring antenna[J]. Electron. Lett.,2006,42(8):447-449
    [108] Z. N. Chen, T. S. P. See, X. M. Qing. Small printed ultrawideband antenna with reducedground plane effect[J]. IEEE Trans. Antennas Propag.,2007,55(2):383-388
    [109] C. Y. D. Sim, W. T. Chung, C. H. Lee. Compact slot antenna for UWB applications[J]. IEEEAntennas Wireless Propag. Lett.,2010,9:63-66
    [110] A. M. Abbosh, M. E. Bialkowski. Design of ultrawideband planar monopole antennas ofcircular and elliptical shape[J]. IEEE Trans. Antennas Propag.,2008,56(1):17-23
    [111] J. X. Liang, C. C. Chiau, X. D. Chen, et al. Study of a printed circular disc monopole antennafor UWB systems[J]. IEEE Trans. Antennas Propag.,2005,53(11):3500-3504
    [112] C. Y. Huang, W. C. Hsia. Planar elliptical antenna for ultra-wideband communications[J].Electron. Lett.,2005,41(6):296-297
    [113] N. P. Agrawall, G. Kumar, K. P. Ray. Wide-band planar monopole antennas[J]. IEEE Trans.Antennas Propag.,1998,46(2):294-295.
    [114] K. L. Wong, Y. W. Chi, C. M. Su, et al. Band-notched ultra-wideband circular-disk monopoleantenna with an arc-shaped slot[J]. Microw. Opt. Technol. Lett.,2005,45(3):188-191
    [115] Y. J. Cho, K. H. Kim, D. H. Choi, et al. A miniature uwb planar monopole antenna with5-ghzband-rejection filter and the time-domain characteristics[J]. IEEE Trans. Antennas Propag.,2006,54(5):1453-1460
    [116] Q. X. Chu, Y. Y. Yang. A compact ultrawideband antenna with3.4/5.5GHz dual band-notchedcharacteristics[J]. IEEE Trans. Antennas Propag.,2008,56(12):3637-3644
    [117] L. Peng, C. L. Ruan, X. C. Yin. Analysis of the small slot-loaded elliptical patch antenna witha band-notched for UWB applications[J]. Microw. Opt. Technol. Lett.,2009,51(4):973-976
    [118] Y. D. Dong, W. Hong, Z. Q. Kuai, et al. Analysis of planar ultrawideband antennas withon-ground slot band-notched structures[J]. IEEE Trans. Antennas Propag.,2009,57(7):1886-1893
    [119] K. H. Kim, S. O. Park. Analysis of the small band-rejected antenna with the parasitic strip forUWB[J]. IEEE Trans. Antennas Propag.,2006,54(6):1688-1692
    [120] A. M. Abbosh, M. E. Bialkowski. Design of UWB planar band-notched antenna usingparasitic elements[J]. IEEE Trans. Antennas Propag.,2009,57(3):796-799
    [121] L. Peng, C. L. Ruan, Y. L. Chen, et al. A novel band-notched elliptical ring monopole antennawith a coplanar parasitic elliptical patch for UWB applications[J]. J. Electromagn. WavesAppl.,2008,22(4):517-528
    [122] K. S. Ryu, A. A. Kishk. UWB antenna with single or dual band-notches for lower WLANband and upper WLAN band[J]. IEEE Trans. Antennas Propag.,2009,57(12):3942-3950
    [123] S. W. Qu, J. L. Li, Q. Xue. A band-notched ultrawideband printed monopole antenna[J]. IEEEAntennas Wireless Propag. Lett.,2006,5:495-498
    [124] W. J. Lui, C. H. Cheng, Y. Cheng, et al. Frequency notched ultra-wideband microstrip slotantenna with fractal tuning stub[J]. Electron. Lett.,2005,41(6):294-296
    [125][125] K.G. Thomas, M. A. Sreenivasan: A simple ultrawideband planar rectangular printedantenna with band dispensation[J]. IEEE Trans. Antennas Propag.,2010,58(1):27-34
    [126] Y. Gao, B. L. Ooi, A. P. Popov. Band-notched ultra-wideband ring-monopole antenna[J].Microw. Opt. Technol. Lett.,2006,48(1):125-126
    [127] J. W. Jang, H. Y. Hwang. An improved band-rejection UWB antenna with resonant patchesand a slot[J]. IEEE Antennas Wireless Propag. Lett.,2009,8:299-302
    [128] Y. Zhang, W. Hong, C. Yu, et al. Planar ultrawideband antennas with multiple notched bandsbased on etched slots on the patch and/or split ring resonators on the feed line[J]. IEEE Trans.Antennas Propag.,2008,56(9):3063-3068
    [129] Ansys Corp. Ansoft HFSS[OL]. www.ansoft.com,2011
    [130] D. H. Kwon. Effect of antenna gain and group delay variations on pulse-preservingcapabilities of ultrawideband antennas[J]. IEEE Trans. Antennas Propag.,2006,54(8):2208–2215
    [131] Y. Y. Yang, Q. X. Chu, Z. A. Zheng. Time domain characteristics of band-notchedultrawideband antenna[J]. IEEE Trans. Antennas Propag.,2009,57(10):3426-3430
    [132] Z. A. Zheng, Q. X. Chu, Z. H. Tu. Compact band-rejected ultrawideband slot antennasinserting with λ/2and λ/4resonators[J]. IEEE Trans. Antennas Propag.,2011,59(2):390–397
    [133] N. Telzhensky, Y. Leviatan. Novel method of UWB antenna optimization for specified inputsignal forms by means of genetic algorithm[J]. IEEE Trans. Antennas Propag.,2006,54(8):2216–2225
    [134] A. Sanada, C. Caloz, T. Itoh. Zeroth order resonance in composite right/left-handedtransmission line resonators[C]. Asia-Pacific Microwave Conference Proceedings, Seoul,2003,1588–1592
    [135] S. M. Pyo, S. M. Han, J. W. Baik, et al. A slot-loaded composite right/left-handedtransmission line for a zeroth-order resonant antenna with improved efficiency[J]. IEEE Trans.Microw. Theory Tech.,2009,57(11):2775-2782
    [136] C. C. Liu, P. L. Chi, Y. D. Lin. Compact zeroth-order resonant antenna based on dual-armspiral configuration[J]. IEEE Antennas Wireless Propag. Lett.,2012,11:318-321
    [137] S. Baek, S. Lim. Miniaturised zeroth-order antenna on spiral slotted ground plane[J]. Electron.Lett.,2009,45(20):1012-1014
    [138] T. G. Kim, B. Lee. Metamaterial-based compact zeroth-order resonant antenna[J]. Electron.Lett.,2009,45(1):12-13
    [139] B. C. Park, J. H. Lee. Omnidirectional circularly polarized antenna utilizing zeroth-orderresonance of epsilon negative transmission line[J]. IEEE Trans. Antennas Propag.,2011,59(7):2717-2721
    [140] L. I. Basilio, J. T. Williams, D. R. Jackson, et al, A comparative study of a new GPSreduced-surface-wave antenna[J]. IEEE Antennas Wireless Propag. Lett.,2005,4:233-236
    [141] Y. F. Lin, Y. K. Wang, H. M. Chen, et al. Circularly polarized crossed dipole antenna withphase delay lines for RFID handheld reader[J]. IEEE Trans. Antennas Propag.,2012,60(3):1221-1227
    [142] Nasimuddin, X. M. Qing, Z. N. Chen. Compact asymmetric-slit microstrip antennas forcircular polarization[J]. IEEE Trans. Antennas Propag.,2011,59(1):285-288
    [143] Nasimuddin, Z. N. Chen, X. M. Qing. A compact circularly polarized cross-shaped slottedmicrostrip antenna[J]. IEEE Trans. Antennas Propag.,2012,60(3):1584-1588
    [144] Y. D. Dong, H. Toyao, T. Itoh. Compact circularly-polarized patch antenna loaded withmetamaterial structures[J]. IEEE Trans. Antennas Propag.,59(11):4329-4333
    [145] S.D. Targonski, D. M. Pozar. Design of wideband circularly polarized aperture-coupledmicrostrip antennas[J]. IEEE Trans. Antennas Propag.,1993,41(2):214-220
    [146] J. S. Row, C. Y. D. Sim, K. W. Lin. Broadband printed ring-slot array with circularpolarisation[J]. Electron. Lett.,2005,41(3):110-112
    [147] K. Sakaguchi, N. Hasebe. A circularly polarized omnidirectional small helical antenna[C].Ninth International Conference on Antennas and Propagation, Eindhoven,1995,492-495
    [148] I. Nakayama, T. Kawano, H. Nakano. A conformal spiral array antenna radiating anomnidirectional circularly-polarized wave[C]. IEEE Antennas and Propagation SocietyInternational Symposium, Orlando,1999,894-897
    [149] A. Ghobadi, M. Dehmollaian. A printed circularly polarized y-shaped monopole antenna[J].IEEE Antennas Wireless Propag. Lett.,2012,11:22-25
    [150] H. Iwasaki, N. Chiba. Circularly polarised back-to-back microstrip antenna with anomnidirectional pattern[J]. IET Microw. Antennas Propag.,1999,146(4):277-281
    [151] A. Narbudowicz, X. Bao, M. Ammann. Dual-band omnidirectional circularly polarizedantenna[J]. IEEE Trans. Antennas Propag.,2013,61(1):77-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700