分布式发电与微网系统多目标优化设计与协调控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是人类生存和发展的重要物质基础,攸关国计民生和国家安全,亦是科技创新服务与应用的首要领域。但是,我国能源结构的不合理性以及偏低的能源利用效率带来了许多环境和社会问题。分布式发电技术,有助于推动清洁能源和可再生能源的利用,提高能源利用效率,改善能源供应结构,保障能源供应安全可靠。但大规模分布式电源的接入,将使电力系统运行面临许多新问题和挑战。微网是整合各种分布式能源优势、削弱分布式发电对电网的不利影响、充分挖掘分布式发电综合效益的有效方式,已成为分布式发电领域的研究热点和重要发展方向。本文主要围绕分布式发电与微网系统的多目标优化设计与协调控制开展研究工作,包括分布式电源的多目标规划、微网容量的多目标优化配置、微网的小信号建模分析与暂态仿真、微网协调控制及其优化方法、含非线性与不平衡负载的微网协调控制,具体研究内容概括如下:
     针对多分布式电源低渗透率并网的规划问题,构建了分布式电源投资和运行成本、系统有功网损和负荷节点电压偏移均最小的优化目标函数,提出了集成实数编码量子遗传算法和多目标优化策略的多目标混沌量子遗传算法,用于解决多分布式电源接入IEEE30节点电网系统的多目标规划问题。通过算法性能测试验证了多目标混沌量子遗传算法的先进性,并通过算例分析验证了所提出的分布式电源规划设计方法的有效性。基于相关研究成果开发了软件应用平台。
     微网作为分布式电源高渗透率并网的高效能量组织形式,其容量配置问题是微网运行控制的前提。在分析各种分布式电源功率外特性的基础上,考虑经济成本、供电可靠性和环保效益对微网容量进行多目标优化配置。结合混沌优化技术和多目标遗传算法,提出了混沌优化多目标遗传算法进行求解并通过算法性能测试验证了其先进性。算例分析表明,优化设计后的微网系统提高了供电可靠性,节省了经济成本,降低了环境污染。基于相关研究成果开发了软件应用平台。
     微网的稳定机理和运行机理研究是微网运行控制的基础。在建立包含分布式电源模型、电力网络模型和负荷模型的微网全阶小信号动态模型的基础上,基于特征值法分析了控制参数、线路阻抗和负荷对系统稳态和动态性能的影响,揭示了微网的分层控制结构原理,为微网的拓扑结构和控制参数优化设计奠定了理论基础。基于MATLAB/SIMULINK搭建了微网的时域暂态仿真模型,进行了多种运行模式及模式切换的仿真,揭示了微网的运行机理,验证了小信号建模分析的准确性。
     微网中分布式电源的协调控制问题是微网的核心关键问题之一。设计了微网的协调控制策略并基于微网的小信号动态模型,分析了影响微网运行特性的主要控制参数及其优化取值域。通过专业暂态仿真软件PSCAD/EMTDC搭建微网时域仿真模型并进行数据采集,精确构建了涉及微网多种运行模式及模式切换动态过程的优化控制目标函数。基于小生境遗传算法优化微网协调控制策略的主要参数,并通过算例分析证明了,所提出微网协调控制及其优化方法有效提高了微网在不同运行模式下以及模式切换过程中的稳态特性和动态性能。
     微网的电能质量直接关系到微网的稳定与经济运行。考虑微网中的非线性与不平衡负载的影响,基于比例积分谐振控制器设计了三种分布式电源本地控制策略:输出电压谐波控制策略、输出电流谐波控制策略和负载电流谐波控制策略,以实现不同的电能质量控制目标。根据不同运行模式下的电能质量要求,提出了含非线性和不平衡负载的微网协调控制策略,协调分布式电源采用相应的本地控制策略,既保证了微网母线以及注入大电网的电能质量,又确保了微网的经济运行和平滑切换。
     本论文的主要创新点突出体现在:
     (1)开发了多目标混沌量子遗传算法和混沌优化多目标遗传算法,解决了分布式电源多目标规划问题和微网容量的多目标配置问题,克服了单目标优化算法运行效率低和加权求解盲目性的缺陷,真正意义上实现了分布式发电与微网系统多目标优化设计。其中,微网的多目标优化设计还首次计及了冷热电联合供能系统的容量配置问题。
     (2)建立了具有普遍适用性、可任意扩展的微网全阶小信号动态模型,并分析了控制参数、线路阻抗和负荷对系统稳态和动态性能的影响,结合微网多种运行模式及模式切换的时域暂态仿真揭示了微网的稳定机理和运行机理。
     (3)改进了微网的协调控制策略,将小信号动态模型分析、时域暂态仿真、人工智能算法优化三者有机结合,为有效提高微网多种运行模式以及模式切换过程中的稳态特性和动态性能开辟了新的途径。
     (4)提出了含非线性和不平衡负载的微网新型协调控制策略,在基频段保证DG的有效出力,在高频段进行谐波治理,且二者相互解耦,既保证了微网母线以及注入大电网的电能质量满足IEEE标准要求,又确保了微网的经济运行和平滑切换。
Energy is an important material basis for human survival and development, concerning the national economy, people's livelihood and national security, which is also the primary area of scientific and technological innovation service and application. However, the irrationality of energy structure and low efficiency of energy utility in our country has brought a number of environmental and social issues. Distributed generation technologies help to promote the use of clean energy and renewable energy, improve energy efficiency and energy supply structure, ensure the safe and reliable energy supply. However, the access of large-scale distributed generation make power system operation face many new problems and challenges. Microgrid that is an effective way to integrate advantages of various distributed energy resources, weaken the adverse impact of distributed generation on the grid and fully tap the comprehensive benefits of distributed generation, has become a hot topic and an important development direction of distributed generation research field. This article focuses on multi-objective optimization design and coordination control of distributed generation and microgrid, including distributed generation multi-objective planning, microgrid capacity multi-objective allocation, microgrid small-signal modeling and transient simulation, microgrid coordination control and its optimization method as well as the coordination control of microgrid with non-linear and unbalanced loads. The detailed research contents are summarized as follows:
     For the planning problem of distributed generation integration to the grid with low penetration, three minimization optimization objective functions of investment and running costs, system active power loss in the network and load node voltage offset are built. Multi-objective chaotic quantum genetic algorithm (MCQGA) that integrates real-coded quantum genetic algorithm and multi-objective optimization strategy is proposed and its progressiveness is verified through algorithm performance tests. The multi-objective optimization problem that distributed generations integration to the IEEE30nodes power system is solved based on MCQGA. The effectiveness of the proposed algorithm is confirmed by example analysis and the corresponding software application platform is developed.
     As efficient energy organization form of distribution generation integration to the grid with high penetration, microgrid capacity allocation is the premise of the microgrid operation control. Based on the analysis of power external characteristic of various distributed generations in microgrid, microgrid capacity is configured considering economic cost, power supply reliability and environmental benefits. Combined with multi-objective genetic algorithm and chaotic optimization techniques, chaotic optimization multi-objective genetic algorithm (CMGA) is proposed and verified its advancements through algorithm performance tests. The example analysis shows that the allocated microgrid based on CMGA ensures the power supply reliability, saving the economic cost and reducing environmental pollution. The software application platform based on related research has been developed.
     Microgrid stability mechanism and operation mechanism is the basis of the micro-grid operation control. On the basis of the full-order small-signal dynamic model of microgrid including distributed generation model, network model and load model, the effectiveness of control parameters, line impedance and loads on the system steady-state and dynamic performance is analyzed based on eigenvalue and sensitivity. The microgrid hierarchical control structure principle is revealed, which lays the theoretical foundation for optimization design of microgrid topology and control parameters. The microgrid time domain transient simulation model is built based on MATLAB/SIMULINK and the simulation of various operating modes and mode switching is conducted, which reveals microgrid operation mechanism and verifies the accuracy of the small-signal modeling and analysis.
     Microgrid coordination control problem is one of the core issues. Microgrid coordinated control strategy is designed and the optimization value ranges of microgrid control parameters are analyzed based on small-signal dynamic model of microgrid. The precise optimization objective functions of microgrid control are built through time-domain transient simulation and data acquisition of microgrid in professional software PSCAD/EMTDC. The main parameters of coordination control strategy are optimized based on the niche genetic algorithm, improving the steady state and dynamic performance of microgrid in different operating modes and mode switching.
     Power quality of microgrid is directly related to the stability and economic operation of microgrid. For the different types of local load in microgrid, the three local control strategies of DG:output voltage harmonic control strategy, the output current harmonics control strategy and load current harmonics control strategy are designed based on the proportional integral resonant controller, in order to achieve different power quality control goals. Under power quality requirements of the different operating modes, the coordination control strategy of microgrid with nonlinear and unbalanced loads is proposed, coordinating local control strategies of DG, not only to ensure the power quality of microgird bus and injected into the grid, but also to achieve the economic operation and smooth switching of microgrid.
     The main innovations of this thesis highlight:
     (1) The multi-objective chaotic quantum genetic algorithm and chaos optimization multi-objective genetic algorithm are developed to solve distribution generation multi-objective planning and microgrid capacity multi-objective allocation problems, overcoming low efficiency of the single objective optimization algorithm and the blindness of weighted solving, realizing the multi-objective optimization design of distributed generation and micorgrid in the true sense. Note that the capacity allocation of the combined with cooling, heating and power (CCHP) supply system is taken into account for the first time.
     (2) the full-order microgrid small signal dynamic model which has universal applicability and can be arbitrarily extended is established and the impacts of the control parameters, line impedance and the load on the steady-state and dynamic performance of microgrid are analyzed. Combined with time domain transient simulation of microgrid in various operating modes as well as switching mode, the stability mechanism and operation mechanism of microgrid are revealed.
     (3) the coordination control strategy of microgrid is designed and the steady state and dynamic performance of microgrid in various operating modes as well as switching mode has been effectively improved through the integration of the small-signal dynamic model analysis, time domain transient simulation and artificial intelligence algorithms for the first time.
     (4) The novel coordination control strategy of mcirogrid with non-linear and unbalanced loads is proposed, ensuring DG's effective output at the base frequency band and harmonics management at high frequency band. Moreover they are coupled between each other. The coordination control strategy not only ensures the power quality of microgird bus and injected into the grid, but also achieves the economic operation and smooth switching of microgrid.
引文
[1]中华人民共和国可再生能源法[M].北京.2005.
    [2]国家能源局.可再生能源发展“十二五”规划[R].北京.2012.
    [3]国家发展和改革委员会.节能减排“十二五”规划[R].北京.2012.
    [4]国家能源局.国家能源科技“十二五”规划[R].北京.2011.
    [5]苏玲.微网控制及小信号稳定性分析与能量管理策略[D].华北电力大学,2011.
    [6]Lasseter R. Distributed Generation[R]:PSERC.2003.
    [7]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [8]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化.2001,25(12):53-56.
    [9]杨占刚.微网实验系统研究[D].天津大学,2010.
    [10]IEEE 1547.1-2003. IEEE standard for interconnecting distributed resources with electric power systems[S].2003.
    [11]Lasseter R H. MicroGrids[C]. IEEE Power Engineering Society Winter Meeting, USA:New York,2002:305-308.
    [12]Hatziargyriou N D, Asano H, Iravani R M, et al. Microgrids[J]. IEEE Power and Energy Magazine,2007,5(4):78-94.
    [13]黄伟,孙昶辉,吴子平.含分布式发电系统的微网技术研究综述[J].电网技术,2009,33(9):14-18.
    [14]Edward J C, Johanna M A, Bas K, et al. Integration issues of distributed generation in distribution grid[J]. Proceedings of IEEE,2011,99(1):28-38.
    [15]张颖媛.微网系统的运行优化与能量管理研究[D].合肥工业大学,2011.
    [16]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,32(20):1-7.
    [17]刘杨华,吴政球,涂有庆,等.分布式发电及其并网技术综述[J].电网技术,2008,32(15):1-9.
    [18]苏玲,张建华,王利.微网相关问题及技术研究[J].电力系统保护与控制,2010,38(19):235-239.
    [19]Carrasco J M, Franquelo L G, Bialasiewicz J T,et al. Power-electronic systems for the grid integration of renewable energy sources:a survey[J]. IEEE Transaction on Industrial Electronics,2006,53(4):1002-1016.
    [20]Joan R, Alvaro L, Blaabjerg F, et al. Control of power converters in AC microgrid[J]. IEEE Transaction on Power Electronics,2012,27(11):4734-4748.
    [21]Josep M G, Juan C V, Jose M, et al. Control strategy for flexible microgrid based on parallel line-interactive UPS systems[J]. IEEE Transaction on Industrial Electronics,2009,56(3):726-735.
    [22]Josep M G, Mukul C, Tzunglin L, et al. Advanced control architectures for intelligent microgrid-part I:decentralized and hierarchical control[J]. IEEE Transaction on Power Electronics,2013,60(4):1254-1262.
    [23]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多换反馈控制策略[J].电工技术学报,2009,24(2):100-107.
    [24]Josep M G, Jose M, Luis G V, et al. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance[J]. IEEE Transaction on Industrial Electronics,2007,54(2):994-1004.
    [25]Wei Y, Min C, Jose M, et al. Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing[J]. IEEE Transaction on Industrial Electronics,2011,58(2):576-587.
    [26]杨向真.微网逆变器及其协调控制策略研究[D].合肥工业大学,2011.
    [27]Blaabjerg F, Chen Z. Power electronics as efficient interface in dispersed power generation systems[J]. IEEE Transaction on Power Electronics,2004,19(5): 1084-1094.
    [28]Josep M G, Mukul C, Tzunglin L, et al. Advanced control architectures for intelligent microgrid-part Ⅱ:power quality, energy storage and AC/DC microgrid[J]. IEEE Transaction on Industrial Electronics,2013,60(4):1263-1270.
    [29]章健,艾芊,王新刚.多代理系统在微网中的应用[J].电力系统自动化,2008,32(24):80-88.
    [30]Dimeas A L, Hatziargyriou N D. Operation of a multiagent system for microgrid Control[J]. IEEE Transaction on Power Systems,2005,20(3):1447-1455.
    [31]王守相,李晓静,肖朝霞,等.含分布式电源的配电网供电恢复的多代理方法[J].电力系统自动化,2008,32(24):80-88.
    [32]丁明,罗魁,毕锐.孤岛模式下基于多代理系统的微网能量协调控制策略[J].电力系统自动化,2012,36(24):1-9.
    [33]徐立中.微网能量优化管理若干问题研究[D].浙江大学,2011.
    [34]Aymen C, Rashad M K, Ridha A. Multiobjective intelligent energy management for a microgrid[J]. IEEE Transaction on Industrial Electronics,2013,60(4):1688-1675.
    [35]Handsellin E, Neise F, NeL H, et al. Optimal operation of dispersed generation under uncertainty using mathematical programming[J]. Electrical Power and Energy System,2006,34(28):54-65.
    [36]王新刚,艾芊,徐伟华.含分布式发电的微网能量管理多目标优化[J].电力系统保护与控制,2009,37(20):79-83.
    [37]丁明,张颖媛,茆美琴,等.集中控制式微网系统的稳态建模与运行优化[J].电力系统自动化,2009,33(24):78-82.
    [38]Katiraei F, Iravani R, Hatziargyriou N, et al. Microgrids management[J]. IEEE Power and Energy Magazine,2008,6(3):54-65.
    [39]石庆均,耿光超,江全元.独立运行模式下的微网实时能量优化调度[J].中国电机工程学报,2012,32(16):26-35.
    [40]Barlund E, Nagaraju P, Milan P, et al. Energy management in autonomous microgrid using stability-constrained droop control of inverters[J]. IEEE Transaction on Power Electronics,2008,23(5):2346-2352.
    [41]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.
    [42]曾杰.可再生能源发电与微网中储能系统的构建与控制研究[D].华中科技大学,2009.
    [43]刘昌金,胡长生,李霄,等.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化,2008,32(16):83-90.
    [44]李霄,胡长生,刘昌金,等.基于超级电容储能的风电场功率调节系统建模与控制[J].电力系统自动化,2009,33(9):86-92.
    [45]Jong Y K, Jin H J, Seul K, et al. Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanding operation[J]. IEEE Transaction on Power Electronics,2010,25(12):3037-3048.
    [46]张国驹,唐西胜,齐智平.平抑间歇式电源功率波动的混合储能系统设计[J].电 力系统自动化,2011,35(20):24-31.
    [47]张野,郭力,贾宏杰.基于平滑控制的混合储能系统能量管理方法[J].电力系统自动化,2012,36(16):36-42.
    [48]陈伟,石晶,任丽.微网中的多元复合储能技术[J].电力系统自动化,2010,34(1):112-120.
    [49]郭力,富晓鹏,李霞林,等.独立交流微网中电池储能与柴油发电机的协调控制[J].中国电机工程学报,2012,32(25):70-79.
    [50]Haihua Z, Tanmoy B, Duong T, et al. Composite energy storage system involving battery and ultra capacitor with dynamic energy management in microgrid applications[J]. IEEE Transaction on Power Electronics,2011,26(3):923-931.
    [51]郑竞宏,王燕廷,李兴旺,等.微网平滑切换控制方法及策略[J].电力系统自动化,2011,35(18):17-22.
    [52]Chien L C, Yubin W, Jihsheng L. Design of parallel inverters for smooth mode transfer microgrid applications[J]. IEEE Transaction on Power Electronics,2010, 25(1):6-15.
    [53]唐西胜,邓卫,齐智平.基于储能的微网并网/离网无缝切换技术[J].电工技术学报,2011,26(s1):270-289.
    [54]刘志文,夏文波,刘明波.基于复合储能的微网运行模式平滑切换控制[J].电网技术,2012,36(1):1-7.
    [55]赵上林,吴在军,胡敏强,等.关于分布式发电保护与微网保护的思考[J].电力系统自动化,2010,34(1):73-79.
    [56]Sortomme E, Venkata S, Mitra J. Microgrid protection using communication-assisted digital relays[J]. IEEE Transaction on Power Delivery,2010,25(4): 2789-2796.
    [57]Ustun T, Ozansoy C, Zayegh A. Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420[J]. IEEE Trans on Power Systems,2012,27(3):1560-1567.
    [58]Nasseri H, Redfem M A, Li F. A voltage based protection for micro-grids containing power electronic converters[C]. IEEE Power Engineering Society General Meeting, Canada:Alberta,2006:1-7.
    [59]吴在军,赵上林,胡敏,等.交流微网边方向变化量保护[J].中国电机工程学 报,2012,32(25):158-165
    [60]Laaksonen H J. Protection principles for future microgrids[J]. IEEE Trans on Power Electronics,2010,25(12):2910-2918.
    [61]Dugan R C, Mcdermott T E, Bal G J. Planning for distributed generation[J]. IEEE Industry Applications Magazine,2001,7(2):80-88.
    [62]邱晓燕,夏莉丽,李兴源.智能电网建设中分布式电源的规划[J].电网技术,2010,34(4):7-10.
    [63]裴玮,盛鹃,孔力,等.分布式电源对配网供电电压质量的影响与改善[J].中国电机工程学报,2008,28(13):152-157.
    [64]余昆,曹一家,陈星莺,等.含分布式电源的地区电网动态概率潮流计算[J].中国电机工程学报,2011,31(1):20-25.
    [65]康云龙,郭红霞,吴捷,等.分布式电源及其接入电力系统时若干研究课题综述[J].电网技术,2010,34(11):43-47.
    [66]Singh D, Verma K S. Multiobjective optimization for DG planning with load models[J]. IEEE Transaction on Power Systems,2009,24(1):427-436.
    [67]Chiradeja P, Ramakumar R. An approach to quantify the technical benefits of distribution generation[J]. IEEE Transaction on Energy Conversion,2004,19(4): 764-773.
    [68]Chowdhury A A, Sudhir K A, Don O K. Reliability modeling of distributed generation in conventional distribution systems planning and analysis[J]. IEEE Transaction on Industry Application,2003,39(5):1493-1498.
    [69]王守相,王慧,蔡声霞.分布式发电优化配置研究综述[J].电力系统自动化,2009,33(18):110-115.
    [70]Nara K, Hayashi Y, Ikeda K, et al. Application of Tabu search to optimal placement of distributed generators[C]. IEEE Conference on Power Engineering Society Winter Meeting, USA:Ohio,2001,918-923.
    [71]刘波,张焰,杨娜.改进的粒子群优化算法在分布式电源选址和定容中的应用[J].电工技术学报,2008,23(2):103-108.
    [72]Gandomkar M, Vakilian M, Ehsan M. A genetic based Tabu search algorithm for optimal DG allocation in distribution networks[J]. Electric Power Components and Systems,2005,33(12):1351-1362.
    [73]Khattam W, Bhattacharya K, Hegazy Y, et al. Optimal investment planning for distributed generation in a competitive electricity market[J]. IEEE Transaction on Power Systems,2004,19(3):1674-1684.
    [74]徐玉琴,李雪冬.基于改进免疫克隆选择算法的含分布式电源配电网规划方法[J].电网技术,2010,34(8):97-101.
    [75]Kazemi A, Sadeghi M. Distributed generation allocation for loss reduction and voltage improvement[C]. IEEE Conference on Power and Energy Engineering, China:Wuhan,2009,518-524.
    [76]李鹏,廉超,李波涛.分布式电源并网优化配置的图解方法[J].中国电机工程学报,2009,29(4):91-96.
    [77]刘学平,刘天琪,王剑.基于小生境的配电网多目标分布式电源规划[J].电网技术,2010,34(10):126-130.
    [78]郑漳华,艾芊,顾承红,等.考虑环境因素的分布式发电多目标优化配置[J].中国电机工程学报,2009,29(13):23-28.
    [79]陈海焱,段献忠,陈金富.计及配网静态电压稳定约束的分布式发电规划模型与算法[J].电网技术,2006,30(21):11-14.
    [80]Naderi Ehsan, Seifi H, Sepasian M S. A dynamic approach for distribution system planning considering distributed generation[J]. IEEE Transaction on Power Delivery,2012,27(3):1313-1322.
    [81]麻秀范,崔换君.改进遗传算法在含分布式电源的配电网规划中的应用[J].电工技术学报,2011,26(3):175-180.
    [82]孙力娟,王汝传.量子计算与遗传算法的融合及其在计算机通信网优化中的应用[J].电子与信息学报,2007,29(4):920-923.
    [83]高辉,徐光辉,王哲人.改进量子进化算法及其在物流配送路径优化问题中的应用[J].控制理论与应用,2007,24(6):969-972.
    [84]Shuanfeng Z, Guanghua X, Tangfei T. Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks[J]. Computers and Mathematics with Applications,2009,15(11):2009-2015.
    [85]覃朝勇,郑建国,朱佳俊.一种实数编码量子进化算法及其收敛性[J].控制与决策,2009,24(6):854-863.
    [86]冯士刚,艾芊.带精英策略的快速非支配排序遗传算法在多目标无功优化中的 应用[J].电工技术学报,2007,22(12):146-151.
    [87]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithms:NSGA-Ⅱ[J]. IEEE Transaction on Evolutionary Computation,2002, 6(2):182-197.
    [88]王凌,吴昊,唐芳,等.混合量子遗传算法及其性能分析[J].控制与决策,2005,20(2):156-159.
    [89]Coello C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transaction on Evolutionary Computation,2004, 8(3):256-279.
    [90]Zitzler E, Deb K, Thiele L. Comparison of multi-objective evolutionary algorithms: Empirical results [J]. Evolutionary Computation,2000,8(2):173-195.
    [91]Deb K, Thiele L, Zitzler R E. Scalable multiobjective optimization test problems[C]. International Conference on Evolutionary Computation, USA:Piscataway,2002, 825-830.
    [92]罗华飞MATLAB GUI设计学习手记[M].北京航空航天大学出版社,2009.
    [93]Qiang F, Montoya L F, Solanki F, et al. Microgrid generation capacity design with renewable and energy storage addressing power quality and surety[J]. IEEE Transaction on Smart Grid,2012,3(4):2019-2027.
    [94]刘梦璇,郭力,王成山,等.风光柴储孤立微网系统协调运行控制策略设计[J].电力系统自动化,2012,36(15):19-25.
    [95]周林,黄勇,郭珂.微网储能技术研究综述[J].电力系统保护与控制,2011,39(7):147-152.
    [96]Fusheng P, Shyhjier H. Design and operation of power converter for microturbine powered distributed generator with capacity expansion capability [J]. IEEE Transaction on Energy Conversion,2008,23(1):110-118.
    [97]舒杰,张先勇,沈玉梁,等.可再生能源分布式微网电源规划方法及应用[J].控制理论与应用,2010,27(5):675-680.
    [98]Borges C, Falcao D. Optimal distributed generation allocation for reliability, losses and voltage improvement[J]. Electrical Power and Energy Systems,2006,8(6): 413-420.
    [99]Abido M A. Environmental/economic power dispatch using multiobjective evolutionary algorithms[J]. IEEE Transaction on Power Systems,2003,18(4): 1529-1537.
    [100]崔明勇.微网多目标优化运行及控制策略研究[D].华北电力大学,2011.
    [101]刘梦璇,王成山,郭力.基于多目标的独立微网优化设计方法[J].电力系统自动化,2012,36(17):34-41.
    [102]杨琦,张建华,刘自发,等.风光互补混合供电系统多目标优化设计[J].电力系统自动化,2009,33(17):86-90.
    [103]Arabali A, Ghofrani M, Etezadi A M. Genetic-Algorithm-Based Optimization Approach for Energy Management[J]. IEEE Transaction on Power Delivery,2013, 28(1):162-170.
    [104]孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(4):41-47.
    [105]Borowy B S, Salameh Z M. Methodology for optimally sizing the combination of a battery bank and PV array in A wind/PV hybrid system[J]. IEEE Transaction on Energy Conversion,1996,11(2):367-375.
    [106]郭力,许东,王成山,等.冷电联供分布式供能系统能量优化管理[J].电力系统自动化,2009,33(19):96-99.
    [107]Saha A K, Chowdhury S P, Crossley P A. Modeling and performance analysis of a microturbine as a distributed energy resource[J]. IEEE Transaction on Energy Conversion,2009,24(2):529-538.
    [108]徐大明,康龙云,曹秉刚.基于NSGA-Ⅱ的风光互补独立供电系统多目标优化[J].太阳能学报,2006,27(6):593-598.
    [109]钱科军,袁越,石晓丹,等.分布式发电的环境效益分析[J].中国电机工程学报,2008,28(29):11-15.
    [110]张彤,王宏伟,王子才.变尺度混沌优化方法及其应用[J].控制与决策,1999,14(3):285-288.
    [111]Corne D W, Jerram N R, Knowles J D. PESA-Ⅱ:Region-based selection in evolutionary multiobjective optimization[C]. the Genetic and Evolutionary Computing Conference, USA:San Francisco,2001:283-290.
    [112]Zitzler E, Thiele L. Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach[J]. IEEE Transaction on Evolutionary Computation,1999,3(4):257-271.
    [113]Coello C A C, Lechuga M. MOPSO:A proposal for multiple objective particle swarm optimization[C]. IEEE Congress on Evolutionary Computation, USA: Hawaii,2002:1051-1056.
    [114]陆垚光.精通MATLAB GUI设计[M].电子工业出版社,2008.
    [115]Blaabjerg F, Teodorescu R E, Liserre M, et al. Overview of control and grid synchronization for distributed power generation systems[J]. IEEE Transaction on Industrial Electronics,2006,53(5):1398-1409.
    [116]肖朝霞.微网控制及运行特性分析[D].天津大学,2008.
    [117]Iyer S V, Belur M N, Chandorkar M C. A generalized computational method to determine stability of a multi-inverter microgrid[J]. IEEE Transaction on Power Electronics,2010,25(9):2420-2432.
    [118]Katiraei F, Iravani M R. Power management strategies for a microgrid with multiple distributed generation units[J]. IEEE Transaction on Power Systems,2006,21(4): 1821-1831.
    [119]张建华,苏玲,刘若曦,等.逆变型分布式电源微网小信号稳定性动态建模分析[J].电力系统自动化,2010,34(22):97-102.
    [120]张建华,苏玲,刘若曦,等.逆变型分布式电源微网并网小信号稳定性分析[J].电力系统自动化,2011,35(6):76-80.
    [121]Nagaraju P, Milan P, Timothy C G. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE Transaction on Power Electronics,2007,22(2):613-625.
    [122]张明锐,黎娜,杜志超,等.基于小信号模型的微网控制参数选择与稳定性分析[J].中国电机工程学报,2012,32(4):9-19.
    [123]Oleg O. Stability of microgrid and inverter-dominated grids with high share of decentralized sources[D]. Germany:Kassel University,2005:25-73.
    [124]郑竞宏,李兴旺,王燕廷,等.微网切换至孤岛运行时的小信号稳定性分析[J].电力系统自动化,2012,36(15):25-34.
    [125]李鹏.分布式发电微网系统暂态仿真方法研究[D].天津大学,2010.
    [126]李鹏,王成山,黄碧斌.分布式发电微网系统暂态时域仿真方法研究-(一)基本框架与仿真算法[J].电力自动化设备,2013,33(2):33-40.
    [127]Probha Kundu. Power system stability and control[M]. McGraw-Hill,1994.
    [128]王康,金宇清,甘德强,等.电力系统小信号稳定性分析与控制综述[J].电力自动化设备,2009,29(5):10-19.
    [129]王锡凡,方万良,杜正春.现代电力系统分析[M].北京.科学出版社,2003.
    [130]Josep M G, Juan C V, Jose M, et al. Hierarchical control of droop-controlled AC and DC microgrid-a general approach toward standardization[J]. IEEE Transaction on Industrial Electronics,2011,58(1):158-171.
    [131]Yunwei L, Chingnan K. An accurate power control strategy for power-electronics-Interfaced distributed generation units operating in a low-voltage multibus microgrid[J]. IEEE Transaction on Power Electronics,2009,24(12):2977-2989.
    [132]李鹏,张玲,王伟.微网技术应用与分析[J].电力系统自动化,2009,33(20):109-115.
    [133]Lopes J P, Moreira C L, Madureira A G. Defining control strategies for microgrids islanded operation[J]. IEEE Transaction on Power Systems,2006,21(2):916-924.
    [134]牟晓春,毕大强,任先文.低压微网综合控制策略设计[J].电力系统自动化,2011,34(19):91-99.
    [135]Yunwei L, Vilathgamuwa M M, Loh P C. Design, analysis, and real-time testing of a controller for multibus microgrid system[J]. IEEE Transaction on Power Electronics,2004,19(5):1195-1204.
    [136]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008,32(7):98-105.
    [137]姚玮,陈敏,牟善科,等.基于改进下垂法的微网逆变器并联控制技术[J].电力系统自动化,2009,33(6):77-80.
    [138]Hassan M A, Abido M A. Optimal design of microgrids in autonomous and grid-connected modes using particle swarm optimization [J]. IEEE Transaction on Power Electronics,2011,26(3):755-762.
    [139]Yunwei L. Control and resonance damping of voltage-source and current-source converters with LC filters[J]. IEEE Transaction on Industrial Electronics,2009, 56(5):1511-1521.
    [140]Chung I Y, Liu W X, Cartes D A, et al. Control method of inverter-interfaced distributed generators in a microgrid system[J]. IEEE Transaction on Industry Applications,2010,46(3):1078-1088.
    [141]向铁元,周青山,李富鹏,等.小生境遗传算法在无功优化中的应用研究[J].中国电机工程学报,2005,25(17):48-51.
    [142]王瑞琪,李珂,张承慧.基于混沌多目标遗传算法的微网系统容量优化[J].电力系统保护与控制,2011,39(22):16-22.
    [143]IEEE 1547.4-2011. IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power System[S].2011
    [144]曾正,赵荣祥,杨欢,等.多功能并网逆变器及其在微网电能质量定制中的应用[J].电网技术,2012,36(5):58-67.
    [145]Yunwei L, Vilathgamuwa D M, Loh PC. Microgrid power quality enhancement using a three-phase four-wire grid interfacing compensator[J]. IEEE Transaction on Industry Applications,2005,41(6):1707-1709.
    [146]Yunwei L, Vilathgamuwa D M, Loh PC. A grid interfacing power quality enhancement compensator for three-phase three-wire microgrid application [J]. IEEE Transaction on Power Electronics,2006,21(4):1021-1031.
    [147]Jiabin H, Yikang H, Lie X, et al. Improved control of DFIG systems during network unbalance using PI-R current regulators [J]. IEEE Transaction Industrial Electronics,2009,56(2):439-451.
    [148]Wu T F, Nien H S, Shen C L, et al. A single-phase inverter system for PV power injection and active power filtering with nonlinear inductor consideration[J]. IEEE Transaction on Industry Applications,2005,41(4):1075-1083.
    [149]Han B, Bae B, Kim H, et al. Combined operation of unified power-quality conditioner with distributed generation[J]. IEEE Transaction on Power Delivery, 2006,21(1):330-337.
    [150]周念成,池源,王强钢.含非线性及不平衡负荷的微网控制策略[J].电力系统自动化,2011,35(9):61-65.
    [151]Phan V T, Lee H H. Control strategy for harmonic elimination in stand-alone DFIG applications with nonlinear loads[J]. IEEE Transaction on Power Electronics,2011, 26(9):2662-2674.
    [152]Jinwei H, Yunwei Li. Hybrid voltage and current control approach for DG-Grid Interfacing converters with LCL filter [J]. IEEE Transaction on Industrial Electronics,2013,60(5):1797-1809.
    [153]Rodriguez P, Luna A, Candela I, et al. Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions[J]. IEEE Transaction on Industrial Electronics,2011,58(1):127-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700