机电集成静电谐波传动系统控制理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机电集成静电谐波微型传动系统是一种微型广义复合传动系统,利用柔轮的波动变形实现运动传递和运动转换。控制系统是机电集成静电谐波传动系统的重要组成部分,控制着该传动系统的启动、停机、调速和定位等功能。和传统的传动系统相比,机电集成静电谐波传动更依赖于控制系统,因为该微型传动要求更精确的位置定位和更快的速度响应。因此,控制理论和控制方法的研究对机电集成静电谐波传动的设计、分析和性能控制具有重要的现实意义和应用价值。
     本文深入研究了机电集成静电谐波传动系统的工作原理,在此基础上建立了机电集成静电谐波传动系统的动力学模型,得出了传动系统的开环控制模型。
     建立了机电集成静电谐波传动系统的PID控制理论,在经典PID控制系统参数设计的基础上,以单纯形法为手段进行了PID控制参数的二次寻优,并运用Matlab/Simulink软件比较了寻优前后的系统控制性能。
     计算了机电集成静电谐波传动系统在单相单极和三相单极两种驱动系统下柔轮产生的力矩,比较了两种驱动系统下的力矩特性,讨论了控制系统对力矩波动的电压补偿控制。
     介绍了以非线性跟踪—微分器和非线性PID为基本单元组成的非线性PID调节器的基本原理,研究了机电集成静电谐波传动的非线性控制,并进行了Matlab/Simulink仿真验证,结果表明,采用非线性PID控制系统后,可以有效改善系统的静态和暂态稳定性、提高控制系统的鲁棒性,取得良好的控制效果。
Electromechanical integrated electrostatic harmonic drive system is a sort of micro generalized compound drive system. The harmonic deformation of flexible ring leads to the transfer and transform of motion. As an important component of the drive, the control system dominates the starting, stop, speed regulation, precision positioning, and so on. Compared to the traditional drive system, electromechanical integrated electrostatic harmonic drive is more dependent on control system in that more precision positioning and speed response are required. Therefore, the investigation of the control method and control theory for the drive is useful to the design, analysis and performance control.
     In this paper, operating principle of the electromechanical integrated electrostatic harmonic micro drive system is studied. Then, dynamic equations for the drive system are established and the open-loop control model of drive system is presented accordingly.
     PID control theory for electromechanical integrated electrostatic harmonic drive is presented. On the basis of classical PID control system designing, parameters of PID control system are optimized by the simplex method. Using Matlab/Simulink,performance comparison is completed for the system before and after optimization.
     The torques applied to the flexible ring are calculated for single phase and single pole pair electric field and three phase and single pole pair electric field, respectively. The torque characteristics are compared for the two drive modes. The voltage compensation control is discussed for torque fluctuations.
     The basic principle of nonlinear PID regulator made up of nonlinear tracking-differentiator and nonlinear PID is analyzed and applied in the control system of electromechanical integrated electrostatic harmonic micro drive. The Matlab/Simulink simulation results show that it can improve the static and transient stability effectively and increase the robustness of the control system, the good performance is obtained.
引文
1 Ernst Thielicke, Ernst Obermeier. Microactuators and their Technologies. Mechatronics,2000, 10(4-5): 431~455
    2 J. W. Judy. Microelectromechanical Systems (MEMS): Fabrication, Design and Applications. Smart Materials and Structures,2001, 10(6): 1115~1134
    3童志义,赵晓东.国内外MEMS器件现状及发展趋势.电子工业专用设备,2002, 31(4): 200~206
    4戴晓光.制备MEMS器件的微细加工技术:研究现状与展望.湖北职业技术学院学报,2006, 9(3): 94~98
    5黄志奇,杜平安,卢凉.微机电系统科学与技术的现状研究.机械设计,2003, 20(11): 4~7
    6 Giustino A. Inteferometric GPS/Micro-Mechanical Gym Attitude Determination System: A Study into the Integration Issues. [PH. D. Thesis of Massachusetts Institute of Technology]. 1998: 24~27
    7温诗铸,丁建宁.微型机械设计基础研究.机械工程学报,2000, 36(7): 39~42
    8徐泰然. MEMS和微系统设计与制造.北京:机械工业出版社, 2004: 4~5
    9莫锦秋,梁庆华,汪国宝.微机电系统设计与制造.北京:化学工业出版社, 2004: 81~83
    10高世桥,曲大成.微机电系统(MEMS)技术的研究与应用.科技导报, 2004, 4: 17~20
    11赵运才,曾纪杰.微机电系统的机械学特性研究.润滑与密封,2005, 3: 147~149
    12 Ren Tian-Ling. Novel MEMS Devices for Information Systems. 2004 Asia-Pacific Radio Science Conference, Qingdao, China, 2004. Institute of Electrical and Electronics Engineers Inc, New York, NY 10016-5997, United States: 44~46
    13王亚珍,朱文坚.微机电系统技术及发展趋势.机械设计与研究, 2004, 20(1): 10~13
    14邓昭,饶文琦,任天辉.微机电系统的微观摩擦学研究进展.摩擦学学报,2001, 21(6): 494~498
    15钟先信,李建蜀,肖沙里.微系统集成技术研究的动向.光学精密工程,1998, 6(4): 1~6
    16 P. Greiff, B. Boxenhorn, T. King, et al. Silicon Monolithic Micromechanical Gyroscope. 1991 International Conference on Solid-State Sensors and Actuators, San Francisco, CA, USA, 1991. IEEE, Piscataway, NJ, USA: 966~968
    17 Paul Greiff, Bernard Antkowiak, James Campbell, et al. Vibrating Wheel Micromechanical Gyro. Proceedings of the 1996 IEEE Position Location and Navigation Symposium, PLANS, Atlanta, GA, USA, 1996. IEEE, Piscataway, NJ, USA: 31~37
    18 Dr. Frank. Application of MEMS in Turbo Machinery Environment. Symposium on Novel Vehicle Concepts and Emerging Vehicle Technologies, Belgium, 2003: 5~12
    19 Stephane Dussy, Dick Durrant, Tony Moy, et al. MEMS Gyro for Space Applications Overview of European Activities. AIAA Guidance, Navigation, and Control Conference 2005, San Francisco, CA, United States, 2005. American Institute of Aeronautics and Astronautics Inc, Reston, VA 20191, United States: 6232~6243
    20 John M. Elwell. Micromechanical Inertial Sensors for Commercial and Military Applications. Proceedings of the 50th Annual Meeting, Colorado Springs, CO, USA, 1994. Inst of Navigation, Alexandria, VA, USA: 381~386
    21 A. Manz, N. Graber, H. M. Widmer. Miniaturized Total Chemical Analysis Systems. A Novel Concept for Chemical Sensing. Sensors and Actuators, B: Chemical. 1990, B1(1-6): 244~248
    22 Jager E. W. H., Inganas O., Lundstrom I. Micro Robots for Micrometer Size Objects in Aqueousmedia: Potential Tools for Single Cell Manipulation. Science,2000, 288(5475): 2335~2338
    23 Craighead H. G. Nano electro mechanical systems.Science,2000,290(5496): 1532~1535
    24 Soong R. K., Bachand G. D., Neves H. P., et al. Powering an Inoganic Nanodevicewith a Biomolecularmotor. Science,2000, 290(5496): 1555~1558
    25 C. Gonzalez, S. D. Collins. Micromachined 1 X n Fiber-Optic Switch. IEEE Photonics Technology Letters,1997, 9(5): 616~618
    26 Tsukasa Matsuura, Tatsuya Fukami, Martial Chabloz, et al. Silicon Micro Optical Switching Device with an Electromagnetically Operated Cantilever. Sensors and Actuators, 2000, 83(1): 220~224
    27 Wolfgang Ehrfeld, Ursula Ehrfeld. Progress and Profit through Micro Technologies. Commercial Applications of MEMS/MOEMS. Micromachine and Microfabrication Process Technology VII, San Francisco, CA, United States, 2001: 1~10
    28 Anon. MEMS go Getters. European Semiconductor,2005, 27(7): 26
    29 Wen H. Ko. Trends and Frontiers of MEMS. Sensors and Actuators,2007, 136(1): 62~67
    30张文明,孟光,周健斌.静电微电机及其可靠性分析.机械强度, 2005, 27(1): 50~56
    31崔天宏,王立鼎,吕琼莹.压电微马达的动力学仿真及实验研究.光学精密工程, 1996, 4(4): 34~39
    32崔天宏,王立鼎,吕琼莹.微机械的动力源——微型电机.光机电世界, 1993, 10(2): 20~22
    33张文明,孟光.静电微电机微转子接触动力学特性分析.力学学报, 2005, 37(6): 756~763
    34 Sergej Fatikow, Airat Faizullin, Jorg Seyfried. Planning of a Microassembly Task in a Flexible Microrobot Cell. ICRA 2000: IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 2000. Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA: 1121~1126
    35 D. J. Laser, J. G. Santiago. A Review of Micropumps. Journal of Micromechanics and Microengineering,2004, 14(6): 35~64
    36 Thomas Weisener, Gerald Voegele, Mark Widmann, et al. Development and Fabrication of a Rotary Micropump and its Industrial and Medical Applications. Micromachined Devices and Components II, Austin, TX, USA, 1996. 218~225
    37 Chong H. Ahn, Mark G. Allen. Fluid Micropumps based on Rotary Magnetic Actuators. Proceedings of the 1995 IEEE Micro Electro Mechanical Systems Conference, Amsterdam, Neth, 1995. IEEE, Piscataway, NJ, USA: 408~412
    38 M. Barbic, J. J. Mock, A. P. Gray, et al. Electromagnetic Micromotor for Microfluidics Applications. Applied Physics Letters,2001, 79(9): 1399
    39 L. M. Gao, Y. Chen, L. M. Lin, et al. Micro Motor based a new type of Endoscope. Proceedings of the 1998 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Part 4 (of 6), Hong Kong, China, 1998. IEEE, Piscataway, NJ, USA: 1822~1825
    40 D. Polla, A. Erdman, D. Peichel, et al. Precision Micromotor for Surgery. Proceedings of 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Lyon, France, 2000. 180~183
    41 Wang Xinli, Cui Shumei, Cheng Shukang. Advantages of Electrostatic Micromotor and its Application to Medical Instruments. Pittsburgh, PA, United States, 2002. Institute of Electrical and Electronics Engineers Inc: 2466~2468
    42 Richard Yeh, Seth Hollar, Kristofer S. J. Pister. Design of Low-Power Silicon Articulated Microrobots. Journal of Micromechatronics,2004, 1(3): 191~203
    43 Richard Yeh, Ezekiel J. J. Kruglick, Kristofer S. J. Pister. Surface-Micromachined Components for Articulated Microrobots. Journal of Microelectromechanical Systems,1996, 5(1): 10~17
    44 W. Trimmer, R. Jebens. Harmonic Electrostatic Motors. Sensors and Actuators,1989, 20(1-2): 17~24
    45 Wenming Zhang,Guang Meng,Hongguang Li.Electrostatic micromotor and its reliability.Microelectronics Reliability,2005,45:1230~1242
    46 Y. Lefevre, M.Lajoie-Mazenc, E. Sarraute, H, Camon. First Steps towards Design, Simulation, Modeling and Fabrication of Electrostatic Micromotors. Sensors and Actuators A, 1995, 46:645~648
    47 Carrozza M C,Dario P,Meciassia A,et al.Manipulation Biological and Mechanical Micro Objects using LIGA-Microfabricated End-Effectors[C]. Proc. of 1998 IEEEInt.Conf on Robotics and Automation, 1998, 2: 1811~1816
    48江泽民,徐德,王麟昆.微操作机器人的研究现状与发展趋势[J].机器人, 2003, 25(6): 554~559
    49 Grahamk Taylor. Mechanics and Aerodynamics of Inselect Flight Control[J].Biol Rev Camb Philos Soc, 2001, 76(4): 449~471
    50符冰,方宗德,侯宇.微型扑翼飞行器控制系统的研究现状.飞行力学, 2005, 23(2): 15~19
    51 W arsop C. AEROMEMS-an Investigation into the Viability of MEMS Technology for Boundary Layer Control[J]. AIAA 1999, A(99): 334-336
    52易亮,欧毅,陈大鹏. MEMS技术在流体控制中的应用.电子工业专业设备, 2007, 144: 21~30
    53 Dai X H, Zhao X L, Ding G F. Electromagnetic MEMS Eight-Channel Variable Optical Attenuator Array.Proceeding of SPIE, 2004, 5641: 1~8
    54邵国成,戴旭涵,杨昊宇.一种闭环控制的错位型MEMS可调光衰减器.光子学报, 2006, 12: 1888~1890
    55王宏.压电驱动器控制系统的研究. [电子科技大学硕士论文]. 2004: 35~40
    56倪林.压电谐波电机控制系统的研究. [北京工商大学硕士论文]. 2005: 1~6
    57 Tony Sarros, Eng C. Chew, Simon Crase, Boon K. Tay, Wen L. Soong.Investigation of Cylindrical and Conical Electrostatic Wobble Micromotors. Microelectronics Journal, 2002, 33: 129~140
    58秦磊,许立忠.机电集成静电谐波传动原理.机械设计与研究, 2007, 23(1): 58~60
    59赫伯特H.伍德逊,詹姆士R.麦尔泽.机电动力学.华中工学院电机教研室.北京:机械工业出版社, 1982: 80~83
    60黄真棠.机械控制工程.广州:华南理工大学出版社, 1994: 25~28
    61张丽珂,原新.动态系统的反馈控制.北京:电子工业出版社, 2004: 148~200
    62陈在平.控制系统计算机仿真与CAD: MATLAB语言应用.天津:天津工业出版社, 2001: 201~206
    63姚俊,马松辉. Simulink建模与仿真.西安:西安电子科技大学出版社, 2002:80~86
    64上官右黎.电路分析基础.北京:北京邮电大学出版社, 2003: 92~99
    65韩京清.非线性PID控制器.自动化学报, 1994, 20(4): 487~490
    66韩京清,王伟.非线性跟踪—微分器.系统科学与数学, 1994, 14(2): 177~183
    67朱发国,陈学允.同步发电机的串级非线性PID励磁控制器.电力系统自动化, 1999, 23(5): 21~24
    68 B.G.Hu, George Kim, G.G.Raymond. New Methodogy for Analytical and Optional Design of Fuzzy PID Control. IEEE Transactions on Fuzzy System, 1999, 7(5): 521~539
    69王凌,郑大钟,李清生.混沌优化方法的研究进展.计算技术与自动化, 2001, 20(1): 1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700