基于超磁致伸缩材料的谐波电机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土超磁致伸缩材料(GMM)是一种新型功能材料,具有磁致伸缩系数大、能量密度高、机电耦合系数大、响应速度快、输出力大等优点,可以实现电、磁能与机械能之间的转换,其机电转换性能非常优异,为此它的开发与应用得到世界各国学者的关注,产量及市场销量增长非常迅速。基于其正磁致伸缩效应制作的超磁致伸缩驱动器(GMA)具有广阔的应用前景,是一类很有潜力的新型微位移驱动器.
     针对传统超磁致伸缩电机由于采用摩擦传动,降低了电机的使用寿命、工作效率以及精度等问题,本文结合谐波齿轮传动的工作原理和超磁致伸缩材料的磁致伸缩性能,设计出了一种新型传动装置一超磁致伸缩谐波电机。其原理就是利用超磁致伸缩驱动器以取代谐波齿轮传动机构中的传统波发生器,并最终以谐波齿轮传动的方式输出力与力矩。由于谐波齿轮传动具有高性能、低噪声、大速比及体积小等特点,这种超磁致伸缩谐波电机较传统超磁致伸缩电机的工作性能和可控制性能更加优越。
     本文在以下几个方面开展了研究工作:
     (1)分析谐波齿轮传动的工作原理,较为充分地掌握了超磁致伸缩材料的基本性能。
     (2)研究设计了超磁致伸缩谐波电机的基本结构。本文结合谐波齿轮传动的工作原理和超磁致伸缩材料的性能,设计了超磁致伸缩谐波电机,包括电机工作原理分析、基本结构设计及超磁致伸缩驱动器的设计。
     (3)设计了超磁致伸缩谐波电机控制系统方案。主要包括控制原理分析和控制方案设计,并对超磁致伸缩驱动器的控制策略作了进一步说明。
     (4)对超磁致伸缩驱动器进行了实验研究。包括位移特性实验和输出力测定实验的分析,以验证超磁致伸缩驱动器设计的合理性以及将超磁致伸缩材料应用到谐波齿轮传动上的可行性。
The Giant Magnetostrictive Material (GMM) is a new type of function materials. Due to its giant magnetostrictive strain, high power density, high electromechanical coupling coefficient, high response speed and high force output, it can realize conversion among electricity, magnetism and mechanism, and its performance of electromechanical conversion is very excellent. Because of its excellent properties and promising application foreground, scientists all over the world are interested in it. The Giant Magnetostrictive Actuator (GMA) based on positive magnetostrictive effect has a broad application prospect.
     Because traditional giant magnetostrictive motors are driven by friction, which reduces the using life, work efficiency and precision of the motors, the paper presents a new type drive device—giant magnetostrictive harmonic motor. The harmonic motor combines principle of harmonic drive and magnetostrictive performance of GMM, and outputs force and displacement by harmonic drive. Because of some characteristics of harmonic drive, such as high performance, low yawp, big velocity ratio, small volume and so on. This harmonic motor based on GMM has much superiority on work performance and controllable performance comparing with traditional giant magnetostrictive motors.
     (1) Analysis of the working principle of harmonic drive, and a better known to the basic properties of GMM.
     (2) Basic structure of giant magnetostrictive harmonic motor is studied and designed. The paper combines principle of harmonic drive and magnetostrictive performance of GMM, and has designed the giant magnetostrictive harmonic motor, which mainly includes the analysis of the working principle, the design of basic structure and the design of GMA.
     (3) The control system of giant magnetostrictive harmonic motor is designed. It mainly includes the analysis of the control principle, the design of control program, and a further interpretation for control strategy.
     (4) The experimental study of GMA is carried on. The experiment includes displacement and force properties test for the actuator, in order to verify the rationality of the design of GMA and the feasibility of applying the GMM to the harmonic drive.
引文
[1]杨大智.智能材料与智能系统.天津:天津大学出版社,2000(12).
    [2]贺西平,李斌,周寿增.稀土超磁致伸缩材料及其高效应用方法.兵器材料科学与工程,1998(5):61-65.
    [3]Clark A E.Am Inst,Phys Conf Proc,1976,(29):192.
    [4]郭东明,杨兴,贾振元等。超磁致伸缩驱动器在机电工程中的应用研究现状.中国机械工程,2001,12(6):724-727.
    [5]杜挺,张洪平,邝马华.稀土-铁系超磁致伸缩材料的应用研究.金属功能材料,2004(4):176.
    [6]邓睿.超磁致伸缩驱动器微位移控制系统的研究:(硕士学位论文).大连理工大学,2006.
    [7]贾振元,武丹,杨兴等.薄膜型超磁致伸缩微执行器研究现状.压电与声光,2000,22(3):157-159.
    [8]王博文.超磁致伸缩材料制备与器件设计.北京:冶金工业出版社,2003.
    [9]邬义杰,项占琴.新功能材料在活塞异形销孔制造中的应用.制造技术与机床,1997(8):36-38.
    [10]F.Claeyssen,N.Lhermet,R.Le Letty.Actuators,transducers and motors based on giant magnetostrictive materials.J Alloys Comp.1997,(258):61-73.
    [11]L.M.Vranish,D.P.Naik,J.B.Restorff,J.P.Teter.Magnetostrictive Direct Drive Rotary Motor Development.IEEE Trans Magn,1991,27(6):5355-5357.
    [12]金妥更,刘湘林,蒋志红.稀土超磁致伸缩器件的设计与应用.稀土,1992,13(1):39-44.
    [13]M.Anjanappa.A Theoretical and Experimental Study of Mgnetostrictive MiniActuator.Smart Motor,1994,2.
    [14]Ohmata K,Zaike M,Koh T.A three-link arm Type vibration Control Device Using Magnetostrictive Actuators.J Alloys Comp,1997,258(8):74-78.
    [15]顾仲权,朱金才,彭福军等.磁致伸缩材料作动器在振动主动控制中的应用研究.振动工程学报,1998,11(4):381-388.
    [16]盖玉先,滕燕,董申.超精密机床磁致伸缩作动器隔振系统.制造技术与机床,2001(1):29-30.
    [17]祝向荣等.大磁致伸缩执行器.金属功能材料,1998,(4):53-55.
    [18]Chung R et al.精密工学会志,1991,3:57.
    [19]董孝义,赵启大等.光纤布喇格光栅电流传感器研究.红外与毫米波学报,2001,20(4):241-243.
    [20]司光晨,范又功,林祖南.谐波齿轮传动.北京:国防工业出版社,1978.
    [21]A.E.Clark.Ferromagnetic Material.North-Holland Publish Company,1980,1.
    [22]H.T.Savage,A.E.Clark,J.M.Powers.Mangnetomechanical coupling and △E effect in highly rare earth-Fe Compounds.IEEE Transactions on Magnetics,1975,11(5):1355-1357.
    [23]A.E.Clark,J.P.Savage.Giant Magnetically Induced Changes in the Elastic Moduli in Tb_(0.3)Dy_(0.7)Fe_2.IEEE Transactions on Sonics and Ultrasonics,1975,1(22).
    [24]范又功,曹炳和.谐波齿轮传动技术手册.北京:国防工业出版社,1995:75-88.
    [25]沈允文,叶庆泰.谐波齿轮传动的理论和设计.北京:机械工业出版社,1985:239-241.
    [26]Steven Ashley.Magnetostrictive Actuators.Mechanicaf Engineering,1998,120(6):68-69.
    [27]夏春林,丁凡,路雨样.超磁致伸缩电-机械转换器模型分析.中国机械工程,2000,11(11):1288-1291.
    [28]邬义杰,刘楚辉.超磁致伸缩驱动器设计方法的研究.浙江大学学报,2004,38(6):747-750.
    [29]万德安,刘春节,汲长志.压电驱动微位移放大机构的分析与实验.机床与液压,2005,2:12-13.
    [30]辛洪兵,郑伟智.压电谐波电机位移放大机构的设计.压电与声光,2003,25(5):370-372.
    [31]朱金才,顾仲权.磁致伸缩作动器的设计及其动态特性研究.南京航空航天大学学报,1998,30(8):413-418.
    [32]贾振元,杨兴,郭东明等.超磁致伸缩材料微位移执行器的设计理论及方法.机械工程学报,2001,37(11):46-99.
    [33]唐蓉城,陆玉.机械设计(机械类).机械工业出版社,1993.5.
    [34]欧阳光耀,施引.磁致伸缩材料及其作动器设计.海军工程学院学报,1998(1):44-47.
    [35]朱金才.磁致伸缩作动器及其在振动主动控制中的应用研究:(硕士学位论文).南京航空航天大学,1997.
    [36]林其壬,赵佑民磁路设计原理.机械工业出版社,1987.
    [37]王宝龄.电磁电器设计基础.国防工业出版社,1989.
    [38]彭友元.电机绕组手册.辽宁科学技术出版社,1992.
    [39]武丹.超磁致伸缩驱动器及其控制技术研究:(硕士学位论文).大连理工大学,2000.
    [40]梁久来,何玉贤.温控相变材料及在医药工业中的应用.长春中医学院学报,1996,12(58):62.
    [41]严自力,王宏升.相变温控材料中国个体防护装备,2001:23-24.
    [42]孙永人.相变温控实验及在航天器上应用.国外导弹与航天运载器,1991,(8):62-66.
    [43]唐照民.机械设计手册.高等教育出版社,1995.
    [44]贾振元,王福吉,张永顺等.超磁致伸缩材料驱动微型马达的原理与应用.中国机械工程,2003,13:1161-1164.
    [45]W.Kennedy,P.Desai.Modeling and Control of the Mitsubishi PA-10 Robot Arm Harmonic Drive System.IEEE Trans.Magn,2005,10(3):263-274.
    [46]吴红星.电机驱动与控制专用集成电路及应用.北京:中国电力出版社,2006.
    [47]李国平,林君焕,潘晓彬.超磁致伸缩驱动器的驱动电路及接口设计.航空精密制造技术,2007,43(4):32-33.
    [48]刘楚辉.基于超磁致伸缩材料的微位移致动器设计与研究:(硕士学位论文).浙江大学,2004.
    [49]王锦标,方崇智.过程计算机控制.清华大学出版社,1992,2.
    [50]张文修,梁广锡.模糊控制与系统.西安交通大学出版社,1998,3.
    [51]王磊,王为民.模糊控制理论及应用.北京:国防工业出版社,1997,3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700