IC反应器接种不同污泥处理纤维板废水运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过IC反应器接种不同污泥处理纤维板废水的启动运行,分析了IC反应器在新领域的运行效果、运行参数及颗粒污泥特性。
     接种污泥分别以城市污水处理厂的厌氧消化污泥和柠檬酸废水处理站厌氧颗粒污泥的1#、2#IC反应器启动过程中,采取不同的启动调试方案:1#IC反应器在进泥后先采用清水浸泡4-5d活化,再进2000mg/L低浓度废水,在反应器稳定运行一周左右,进水负荷在原基础上按20%稳步提高;2#IC反应器通过原水稀释厌氧颗粒污泥注入反应器,再采用出水闭路循环回流,强化罐体内泥水的混合效果,使产酸菌、产甲烷菌在最短时间内恢复活性,直至出水挥发酸(VFA)降低到400mg/L以下。然后以容积负荷为1.13 kgCODCr/(m3·d)进行启动,一段时间后,若出水VFA<400mg/L,pH>6.6, CODCr,去除率>80%,且产气量正常的条件下,进水负荷按阶段稳步提高1.70kgCODCr/(m3·d)。两反应器启动结束时,容积负荷可分别达到5.20kgCODCr/(m3·d)、7.30kgCODcr/(m3·d),CODCr,去除率均在85%以上。
     在启动过程中通过对进出水CODCr、进出水pH值、出水VFA、进水温度及罐体温度研究发现:在进水负荷稳步提高的情况下,出水CODCr、在整体上没有呈现与进水CODCr正相关关系,出水CODCr略有变化,但都趋于稳定;在进水pH值波动的条件下,1#、2#IC反应器出水pH值分别稳定在7.0、7.1左右,且出水VFA更能准确快速地反应出IC反应器内部环境的变化,出水pH值变化明显滞后VFA变化。随着微生物活性的增强,进水负荷的提高,罐体温度与进水温度的差值逐渐增大,1#、2#IC反应器的最大温差分别为4.5℃、5.5℃。在进水温度稍微变化的条件下,进水温度与罐体温度的相对变化关系为不确定关系。
     1#IC反应器在启动运行过程中,不断有污泥被洗出,这是污泥颗粒化进程中的正常现象。通过对洗出污泥和反应器内污泥VSS/SS的分析比较发现,洗出污泥VSS/SS在启动过程中先逐渐减小,且小于反应器内污泥的比值,在颗粒污泥出现期比值逐渐增大,其比值趋向于反应器内污泥VSS/SS值,且污泥整体沉降速率逐渐增大。2#IC反应器在启动过程中,虽有颗粒污泥被洗出,但其VSS/SS之比由0.803增加到0.838,微生物活性得到很大的提高。
In this study,the treatment of fibreboard wastewater by IC reactors inoculated different sludge during start-up,we can gain the results of IC reactors in the new field of operation,operating parameters and characteristics of granular sludge。
     The inoculated sludge of 1# and 2# IC reactors being from the anaerobic digestion tank of a municipal wastewater treatment plant and anaerobic granular sludge of a citric acid wastewater treatment station respectively,the different start-up programs are taken。After the slude being pumped into 1#IC reactor,the water is used for 4-5d to activate sludge,then re-entering 2000mg/L low concentration waste water。After the reactor is taken stable operation about a week or so,influent load is improved by 20% steadily。The granular sludge is pumped into 2#IC reactor through the raw water diluting,and then in order to strengthen water-slude mixed effect,acidogenic bacteria,methanogenic bacteria in the shortest possible time to resume activity, effluent of the reactor is returned by closed-circuit cycle。The recycle is done until the VFA was less than 400mg/L,And then capacity load of influent flow of the raw water is 1.13kgCODCr/(m3·d)。During the reactor running for some time,if it is that the effluent VFA<400mg/L,pH>6.6,the removal rate of CODCr above 80%,and gas production being normal,the capacity load of influent flow is increased by 1.70kgCODCr/(m3-d) during every stage steadily。At the end of the two reactors Start-up,the maximum capacity loads are 5.20kgCODcr/(m3·d),7.30kgCODCr/(m3·d) respectively,and the removal rate of CODCr is more than 85%。
     During the start-up,by researching the CODCr,pH of the influent and effluent, VFA of effluent,water temperature and tank temperature,we can conclude some results as following。Under the influent load steady improvement,it does not take on positive correlation between effluent CODCr and influent CODCr during start-up。But effluent CODCr take a slight change,and more stable。Although the influent pH value fluctuated,the effluent pH values of 1#and 2# IC reactors are about at 7.0,7.1 stably。And also the effluent VFA more accurately reflect the rapid response of the changes in internal environment of IC reactor。The change of effluent pH value has lagged far behind changes of VFA。As with the enhancement of microbial activity,influent load increased,tenmerature difference of influent temperature and tank temperature is increasing gradually。The maximum tenmerature differences of 1# and 2# IC reactors are 4.5℃and 5.5℃。little change of influent temperature conditions can lead to uncertain relationship of influent temperature and tank temperature。
     The sludge are washed out constantly during 1# IC reactor start-up,which is a normal phenomenon of sludge granulation。By comparing VSS/SS values of washed out slude and the sludge in reactor,we can found that VSS/SS value of wash out sludge gradually reduce,which is less than the value of reactor。Once granular sludge formates,the VSS/SS value gradually increases into the value of the reactor,and also the whole sludge sedimentation rate increase gradually。Although the granular sludge was washed out during 2#IC reactor start-up,the VSS/SS value is increasing from 0.803 to 0.838。Moreover,the microbial activity has been greatly improved。
引文
[1]肖小兵.2006年度我国纤维板生产发展状况[J].林产工业,2007,34(4):3-4.
    [2]中国木业国际网,2007中国纤维板产业研究报告[EB/OL],www.chinawood. org/english/report/2007fiber.asp,2007-8-1.
    [3]彭文正,张金香.湿法生产硬质纤维板废水治理技术[J].林业科技情报,1996,(1):4-6.
    [4]刘华.中密度纤维板废水处理工艺的改进[J].工业用水与废水,2002,33(4):64-66.
    [5]武艳丽,何盛东.Fenton试剂在中密度纤维板废水处理中的试验研究[J].华北水利水电学院学报,2007,28(5):68-70.
    [6]罗锋,陈万志,熊忠等.ABR-SBR工艺处理高浓度纤维板有机有毒废水[J].环境污染治理技术与设备,2003,4(7):56-59.
    [7]李强,张忠东,李振红.ABR-生物接触氧化法处理纤维板生产废水[J].江苏环境科技,2005,18(4):12-13.
    [8]徐少昌,朱传友,李杰等.气浮/F-BF厌氧/接触氧化工艺处理中密度纤维板废水[J].全国生物质材料暨环保型人造板新技术发展研讨会,2007,297-300.
    [9]曹琳.中密度纤维板废水处理[J].化工设计通讯,2005,31(1):48-49.
    [10]王松林,杨建中.中密度纤维板废水处理的工程实例[J].科技论坛,2007,101-102.
    [11]陈汉榕,张素琴,熊远卿.固定化有效菌群处理纤维板废水研究[C].2001年全国工业用水与废水处理技术交流会论文汇编,2001:240-242.
    [12]王宗力,王玉华,谭柏奇等.由纤维板厂废水生产饲料酵母的研究[J].林产化学与工业,2000,20(2):65-70.
    [13]胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术(第一版)[M].北京:中国建筑工业出版社,2003,1-12.
    [14]迟文涛,赵雪娜,江翰等.厌氧反应器的发展历程与应用现状[J].城市管理与科技,2004,6(1):31-33.
    [15]赵立军,腾登用,刘金玲等.废水厌氧生物处理技术综述与研究进展[J].环境污染治理技术与设备,2001,2(5):58-66.
    [16]陈坚,卫功元.新型高效废水厌氧生物处理反应器研究进展[J].无锡轻工大学学报,2001,20(3):323-328.
    [17]何连生,朱迎波,席北斗等.高效厌氧生物反应器研究动态及趋势[J].环境工程,2004,22(1):7-11.
    [18]王凯军.厌氧工艺的发展和新型厌氧反应器[J].环境科学,1998,(1):94-96.
    [19]G.Lettinga,J.Field,J.van Lier,et al.Advanced anaerobic waste water treatment in the near future[J],Wat.Sci.Tech.,1997,35(10):5-12.
    [20]胡纪萃等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003,154-186.
    [21]胡纪萃.试论内循环厌氧反应器[J].中国沼气,1999,17(2):3-6.
    [22]吴允,张世江.啤酒生产废水处理新技术—内循环厌氧反应器[J].环境保护,1997,9:18-19.
    [23]李鹏,王爱杰,丁杰等.污水厌氧生物处理的新工艺—IC厌氧反应器[J].哈尔滨商业大学学报,2004,20(1):86-88.
    [24]L.H.A.Habets,A.J.H.H.Engelaar,N.Groeneveld.Anaerobic treatment of inuline effluent in an internal circulation reactor[J].Wat.Sci.Tech.,1997, 35(10):189-197.
    [25]W.Driessen,P.Yspeert.Anaerobic treatment of low,medium and high strength effluent in the agro-industry[J].Wat.Sci.Tech.,1999,40(8):221-225.
    [26]Tae Hyun Kim,Jun Seok Kim,Changshin Sunwoo.Pretreatment of corn stover by aqueows ammonia[J].Bioresource Technology,2003,90:39-47.
    [27]J.H.F.Pereboom,T.L.F.M.Vereijken.Methanogenic granule development in full scale internal circulation reactors[J].Wat.Sci.Tech.,1994,30(8): 9-21.
    [28]张中波,陈吕军,胡继翠.IC反应器技术的发展[J].环境污染与防治,2000,22(3):39-41.
    [29]邵希豪,喻俊,范国东等.内循环厌氧反应器(IC)探讨[J].中国沼气,2001,19(1):27-33.
    [30]M.Blazej,M.Kisa,J.Markos.Scale influence on the hydrodynamics of an internal loop airlift reactor[J].Chenmical Engnieering and Processing.2004, (43):1519-1527.
    [31]丁丽丽,任洪强,华兆哲等.内循环厌氧反应的运行特性[J].中国给水排水,2002,18(11):46-48.
    [32]阮文权.废水生物处理工程设计实例详解[M].北京:化学工业出版社,2006,181-182,188-200.
    [33]王凯军.厌氧内循环反应器(IC)的应用[J].给水排水,1996,22(11):54-56.
    [34]马三剑,吴建华,刘锋等.多级内循环(MIC)厌氧反应器的开发应用[J].中国沼气,2002,20(4):24-27.
    [35]贺延龄.废水处理技术的新进展—IC反应器在造纸工业上的应用[J].纸和造纸,2001(6):45-48.
    [36]王林山,吴允,张勇等.生产性IC反应器处理啤酒废水启动研究[J].环境导报,1998,(4):22-24.
    [37]邓良伟,陈铬铭.IC工艺处理猪场废水试验研究[J].中国沼气,2001,19(2):12-15.
    [38]张晓彦.IC厌氧工艺处理味淋酒废水的应用[J].酿酒科技,2002,(4):77-78.
    [39]王江全.柠檬酸废水处理工艺—IC厌氧反应器和好氧生化技术[J].江苏环境科技,2002,13(3):21-23.
    [40]张杰,刘亚纳,胡张保等.IC反应器处理猪粪废水的启动特性研究[J].农业环境科学学报,2004,23(4):777-781.
    [41]何晓娟.IC-CIRCOX工艺及其在啤酒废水处理中的应用[J].给水排水,1997,23(5):26-28.
    [42]L.W.Hulshoff Pol,G.Lettinga.New technologies for anaerobic wastewater treatment[J].Wat.Sci.Tech.,1996,18(12):99-108.
    [43]国家化境保护总局等.水和废水水质监测分析方法[M].北京:中国环境科学出版社,2002,102-104,105-107,211-213,279-281.
    [44]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998,79-80,509-511.
    [45]于军.内循环上流式厌氧污泥床启动研究[J].环境工程,2000,18(4):16-18.
    [46]买文宁.厌氧复合床处理抗生素废水的生产性启动研究[J].环境科学研究,2002,15(4):40-42.
    [47]吴唯民.厌氧升流式污泥层(UASB)反应器的设计及启动运行要点[J].水处理技术,1986,12(3):177-182.
    [48]任南琪,王爱杰等.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004,28-30.
    [49]唐受印,戴友芝,王大翚等.废水处理工程[M].北京:化学工业出版社,2004,315-317.
    [50]Hulshoff Pol.L.W,J.J.M.van de Worp,G.Lettinga,et al.Physicalch-aracterization of anaerobic sludge,Processing of the NVA/EWPCA conference anaerobic treatment a grown-up technology,Netherland,1986.
    [51]Kosaric N.,Blaszcyk R.Microbial aggregates in anaerobic wastewater treatment[J].Adv.Biochem.Eng.Biotechnol.,1990,42:27-62.
    [52]Mahoney E M,VaranguL K,Cairns W L,et al.The effect of calcium on microbial aggregation during UASB reactor start-up[J].Wat.Sci.Tech.,1987, 19:249-260.
    [53]Schmidt J E,Ahring B K.Effects of magnesium on the rmophilicac etate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors[J].Enzy.Microbiol Technol.,1993,15:304-310.
    [54]Margan J M,Evison L M,Forster C F.Changesto the microbial ecology in anaerobic digesters treating ice cream wastewater during start-up[J].Water Res.,1991,25:639-653.
    [55]Rudd T,Sterrit R M,Laster J N.Complexation of heavy metals by extracellular polymers in the activated sludge process[J].Water Poll.Cont.Fed,1984,56: 1260-1268.
    [56]Brunetti A.Physico-chemical factors affecting start-upin UASB reactor. AWWI Proceeding of the European Symposiumon Anaerobic Wastewater Treatment, Netherlands,1983.
    [57]Verrier.D.,G.Albagnac.Adhesion of anaerobicb acteria from methanogenic sludge onto inert solid surface.The EEC-Conference Energy from Biomass, Italy,1985.
    [58]Guiot.S.R.,S.S.Gorur,K.J.Kennedy.Nutritional and environmental factors contributing to microbial aggregation during upflow anaerobic sludge bed filter (UBF) reactor start-up[J].In Granular Anaerobic Sludge: Microbiology and Technology,1988,6:187-194.
    [59]Versprille,A. L.Anaerobic treatment of the wastewater of a potato processing in dustry[J].DeIngenieur,1978,90:762-765.
    [60]Hulshoff Pol.L.W.The phenomenon of granulation of anaerobic sludge: [dissertation] [J].Netherlands:Wageningen Agricultural University,1989.
    [61]Grotenhuis J T C,van Lier J B,Plugge C,et al.Effect of ethylene glycol-bis(p-Aminoethyl ether)-N,N-tetraacetic acid (EGTA) on stability and activity of Methanogenic granular sludge[J].Appl.Microbiol.Biotechnol,1991,36: 109-114.
    [62]De Zeeuw W. J.Acclimatization of anaerobic sludge for UASB reactor start-up:[dissertation] [J].Netherlands:Wageningen Agriculture University, 1984.
    [63]Cail R.D.,Barford J. P.The development of granulationin an upflow floc digester and an upflow anaerobic sludge blanket digest treating cane juice stillage[J].Biotechnol.Let,1985,7:493-498.
    [64]Guiot S.R.,Gorur S.S.,Bourque D.,et al.Metal effect on microbial aggregation during upflow anaerobic sludge bed-filter(UBF) reactor start-up[J].Microbiology and Technology,1988,7:187-194.
    [65]Thiele J.H.,Wu W.M.,Jain M.K.,et al.Ecoengineering high rate biomethanation system:design of syntrophic biomethanation catalysts[J].Biotechnol.Bioeng.,1990,33:406-414.
    [66]Kugelmanl.J.,K.K.Chin.Toxicity, synergisms and antagonism in anaerobic waste treatment process[J].Adv.Chem.Ser.,1971,105:55-87.
    [67]Wu.W.,J.Hu,X.Gu,et al.Cultivation of anaerobic granular sludge in UASB reactor with aerobic activated sludge as seed[J].Water Research,1987,21(7): 789-799.
    [68]Pereboom. J.Behavior and effect of calcium in anaerobic wastewater treatment:[dissertation] [J].Netherlands:Wageningen Agricultural University, 1984.
    [69]Tschersich J.,R.J.Zoeremeijer.Betriebserfaluungen and Beschreibung von funf Anaerob-Reaktoren-Das[J].Biothane-Verfahr Zuckerind.,1984,109:129-133.
    [70]Grotenhuis.J.T.C.,Jvan Lier,et al.Effect of calciumre movalon size and strength of methanogenic granules.Poster-papers of the fifth international symposium on anaerobic digestion (A.Tilche and A.Rozzi,eds.),1988.
    [71]刘敏,任南琪等.UASB反应器酸化后的状态及恢复研究[J].中国沼气,2003,21(2):7-8.
    [72]Macleod,et al.Layered structure of bacterial aggregates produced in an UASB and filter reactor[J].Appl.Environ.Microbiol.,1990.56:1598-1607.
    [73]陈坚,李春生,伦世仪.厌氧颗粒污泥的形成机制[J].中国环境科学,1993,13(5):334-339.
    [74]H.H.P.Fang.Micobial distrbution in UASB granules and its resulting effects[J].Wat.Sci.tech.,2000,42(12):201--208.
    [75]H.H.P.Fang,T.Chen,Y.Y.Li,et al.Degradation of phenolin wastewater in an up-flow anaerobic sludge blanket reactor[J].Wat.Res.,1996,30(6): 1353-1360.
    [76]Y.sekignchi,et al.Fluore science in situ hybridization using 16 rRNA-targeted oligonucleotides reveals localization of methanogensand seleted uncultured bac-teria in mesophilil and theromophilic sludge granules[J].Apll.Environ.Mic-robiol,1999,65(3):1280-1291.
    [77]Grotenhuis J.T.C,Smit M.Bacteriological composition and structure of granular sludge adapted to different substrates[J].Applied and Environmental Microbiology,1991,57(7):1942-1949.
    [78]赵一章,张辉,唐一等.高活性厌氧颗粒污泥微生物特性和形成机理的研究[J].微生物学报,1994,34(1):48.
    [79]Harada H,Endo G,T ohya Y,et al.High rate performance and its related characteristics of granulate sludges of UASB reactors treating various wstewaters.In:Proceedings on the fifth international symposium of anaerobic d igestion.Bologna:Tilche A and Rozzi A,1988,1011-1020.
    [80]Macleod F.A,Cuiot S.R,Costerton J.W.Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor[J].Appl.Environ.Microbiol.,1990,56(6):1598.
    [81]Chui H.K,Fang H.H.P.Histological analysis of m icrostructure of UASB granules[J].Environ.Engng.,1994,120(5,6):1322.
    [82]Quarmby J,Forster C.F.A Examination of the structure of UASB granules[J].Wat.Res.,1995,29(11):2449.
    [83]竺建荣.颗粒污泥的产甲烷细菌及结构模型初探[J].微生物学报,1993,33(4):304.
    [84]Hulshoff Pol,L.W,et al.Anaerobic sludge granulation-mechanisim and structure[C].Papers of the farewell seminar of Hulshoff Pol,Netherlands,2002: 1-5.
    [85]张自杰.排水工程[M].北京:中国建筑工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700