阿司匹林诱生型脂氧素A4对小鼠急性肺损伤的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分脂多糖诱导的小鼠急性肺损伤模型的构建
     目的:探索一种准确性高、创伤小、高效的经口气管内插管方法并滴定脂多糖建立小鼠急性肺损伤模型。
     方法:40只雄性BALB/C小鼠随机分为两组(n=20):脂多糖组(LPS组)和对照组(NS组)。气管内插管成功后分别滴定脂多糖(3mg/kg)和生理盐水(1.5ml/kg),记录气管内插管一次成功率、最终成功率、存活率;24h后,动脉血气分析测定血氧分压(Pa02)并计算氧合指数;肺组织烘干后计算湿/干重比值;在光学显微镜下观察肺组织病理学形态改变及计数肺泡灌洗液(BALF)中总细胞数,瑞氏染色后进行细胞分类计数;BCA法测定BALF中总蛋白浓度;ELISA法测定BALF中TNF-α和IL-6浓度。
     结果:插管一次成功率92.5%,最终成功率和存活率均为100%;与NS组比较,LPS组动脉血Pa02和氧合指数均明显降低(P<0.01);LPS组肺组织湿/干比值明显升高(P<0.001);在光学显微镜下看到LPS组有大量肺泡萎陷、肺泡壁变厚、肺间质和肺泡中有大量中性粒细胞和蛋白液浸润、肺水肿、出血和肺充血,但NS组小鼠肺组织未看到以上病理改变;LPS组BALF中总细胞数和多形核粒细胞数均明显增加(P<0.01),但是单个核细胞数无明显变化;BALF中总蛋白浓度、TNF-α和IL-6浓度均显著增加(P<0.01),差异有统计学意义。
     结论:小鼠颈透视下经口气管内插管成功率高、损伤小,且滴定LPS3mg/kg成功建立了急性肺损伤模型。
     第二部分阿司匹林诱生型脂氧素A4对脂多糖诱导的小鼠急性肺损伤炎症反应的影响
     目的:本实验旨在研究阿司匹林诱生型脂氧素A4(ATL)对脂多糖诱导的小鼠急性肺损伤炎症反应的影响,以便进一步探讨其作用机制。
     方法:80只雄性BALB/C小鼠随机平分为四组(n=20):对照组(control),急性肺损伤组(ALI),1微克ATL预处理组(ATL1μg-LPS)和5微克ATL预处理组(ATL5ng-LPS)。小鼠经气管内滴定脂多糖3mg/kg诱导急性肺损伤,滴定无菌生理盐水1.5ml/kg作为对照组,在滴定脂多糖前30min经小鼠尾静脉注射阿司匹林诱生型脂氧素A4。24h后,动脉血气分析计算氧合指数;肺组织烘干后计算湿/干重比值;在光学显微镜下观察各组肺组织病理学形态改变并进行肺组织损伤评分;在光学显微镜下计数支气管肺泡灌洗液(BALF)中总细胞数、多形核粒细胞数和单个核细胞数;BCA蛋白测定试剂盒测定BALF中总蛋白浓度;MPO试剂盒检测肺组织髓过氧化物酶(MPO)活性;ELISA法测定BALF中TNF-α、IL-6、 MCP-1和IL-10的浓度。
     结果:与对照组相比,ALI组小鼠动脉血氧合指数明显降低(P<0.01);肺组织湿/干比值增高(P<0.01);肺组织损伤评分明显升高(P<0.01);BALF中总细胞数、多形核粒细胞数、单个核细胞数和总蛋白浓度显著增加(P<0.01);肺组织MPO活性增强(P<0.01); BALF中促炎细胞因子(TNF-a、IL-6和MCP-1)表达显著上调(P<0.01),抗炎细胞因子IL-10水平明显下调(P<0.01)。与ALI组相比,小鼠静脉注射ATL后,动脉血氧合指数明显升高(P<0.01);肺组织湿/干比值下降(P<0.01); ATL极大地改善肺组织病理形态,引起肺组织损伤评分明显下降(P<0.01); ATL剂量依赖性地减少BALF中总细胞数、多形核粒细胞数和总蛋白浓度(P<0.05),对单个核细胞数没有影响;只有5微克ATL明显降低肺组织中MPO活性(P<0.05); ATL抑制BALF中促炎细胞因子TNF-a, IL-6和MCP-1表达(P<0.05),但是1微克ATL明显增加抗炎细胞因子IL-10水平(P<0.01)。
     结论:本研究提示外源性ATL改善小鼠肺氧合功能和肺组织形态,抑制肺组织MPO活性,减少白细胞浸润,抑制促炎细胞因子,促进抗炎细胞因子,从而减轻脂多糖诱导的小鼠急性肺损伤时肺部炎症反应,对其发挥保护作用,且大剂量ATL效果更明显。
     第三部分阿司匹林诱生型脂氧素A4对急性肺损伤MAPK/AP-1和NF-κB信号通路的影响
     目的:研究ATL对LPS诱导的小鼠ALI的保护作用是否通过抑制LPS激活的丝裂原激活蛋白激酶(mitogen-activated protein kinases, MAPKs)/激活蛋白-1(activator protein-1, AP-1)和核因子-κB (nuclear factor-kappaB, NF-κB)信号通路实现,以探讨ATL减轻LPS诱导的小鼠急性肺损伤炎症反应的机制。
     方法:30只雄性BALB/C小鼠随机平分为三组(n=10):对照组(control),急性肺损伤组(ALI)和5微克ATL预处理组(ATL5μg-LPS)。Western blotting测定肺组织总蛋白中p38、c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)和细胞外调节蛋白激酶(extracellular regulated protein kinasesl/2, ERK1/2)表达及其磷酸化水平,肺组织胞浆蛋白NF-κB p65和核因子κB抑制因子(inhibitor of kappaB, IicB-a)表达水平;凝胶电泳迁移实验(electrophoretic mobility shift assays, EMS A)检测肺组织中转录因子AP-1和NF-κB p65结合DNA的活性。
     结果:Western blotting结果显示:与对照组相比,ALI组小鼠肺组织中p38.JNK和ERKl/2蛋白表达没有差异,磷酸化的p38、JNK和ERKl/2蛋白表达水平明显增高(P<0.01),给予5微克ATL明显抑制其磷酸化水平(P<0.05);ALI组肺组织胞浆蛋白中NF-κB p65和IκB-α蛋白表达水平明显比对照组中低(P<0.05),5微克ATL预处理明显增强NF-κB p65和IκB-α在胞浆蛋白中的表达(P<0.05)。EMSA结果显示:与对照组相比,ALI组肺组织中AP-1和NF-κB p65DNA结合活性增强,5微克ATL处理减弱肺组织中AP-1和NF-κB p65的DNA结合活性。
     结论:ATL抑制LPS诱导的p38、JNK和ERK1/2磷酸化,增强胞浆蛋白中IκB表达,减少胞浆蛋白中NF-κB p65核转位,降低转录因子AP-1和NF-κB p65的DNA结合活性。因此,研究显示ATL对LPS诱导的小鼠急性肺损伤的保护作用至少部分是通过抑制MAPK/AP-1和NF-κB信号转导通路实现的。
Part one
     The model of LPS-induced acute lung injury in mice
     Objective: To explore a reliable, minimally invasive and efficient method for endotracheal intubation, and instill lipopolysaccharide (LPS) to induce acute lung injury (ALI) in mice.
     Methods: Forty male BALB/C mice were randomly distributed into two groups (n=20/group):lipopolysaccharide group (LPS) and normal saline group (NS). After successfully endotracheal intubation, mice were instilled of LPS (3mg/kg) or NS (1.5ml/kg). Record the once success rate, final success rate of the endotracheal intubation and survival rate. At24hours after instillation, artery blood gas was tested. Wet/dry weight ratio (W/D ratio) was determined after the lung became dry. The histopathology of lung tissue was observed under a light microscope. Total cells in bronchoalveolar lavage fluid (BALF) were counted under a light microscope. The differential cells were counted after Wright-Geimsa stain. Total protein concentration in BALF was assayed with a BCA kit. Levels of tumor necrosis factor-alpha (TNF-a) and interleukin-6(IL-6) in BALF were quantified by ELISA.
     Results:The once success rate and final success rate of endotracheal intubation in mice were92.5%and100%, respectively. Survival rate of mice in the whole study was100%. PaO2of artery blood and Oxygenation index both decreased in LPS group in comparison to NS group (P<001). W/D ratio of lung tissue in LPS group was significantly elevated compared with NS group (P<0.001). Under a light microscope, it was observed that serious alveolar atelectasis, thickening of alveolar wells, significant neutrophil infiltration in the lung intersririal and alveoli, servere pulmonary interstitial edema, hemorrhage and alveolar congestion appeared in the lung tissues of LPS group mice. No pathological changes were presented in the lung tissue of NS group. Compared with NS group, the total cells and polymorphonulear leukocytes markedly increased (P<0.001), whereas there was no statistially significant difference of mononuclear leukocytes between the two groups. Total protein concentration, TNF-a level and IL-6level in BALF of LPS group were higher than these in BALF of NS group (P<0.05).
     Conclusion:Improved method for endotracheal intubation has high success rate and minimal injury, as well as instillation of LPS (3mg/kg) can induce ALI in mice successfully.
     Part two
     Effects of ATL on the inflammation responses in LPS-induced ALI in mice
     Objective: The study aimed to investigate whether ATL alleviates excessive inflammation responses in LPS-induced ALI in mice.
     Methods: Eighty male BALB/C mice were randomly divided into four groups (n=20/group):control group, ALI group, ATL1μg-LPS group and ATL5μg-LPS group. Mice were instilled intratracheally with LPS (3mg/kg body weight) to induce ALI and endotoxin-free saline (1.5ml/kg body weight) as a control. ATL (1μg or5μg) or vehicle was injected via tail-vein injection30min prior to LPS instillation. After24hours of instillation, artery blood gas was tested for oxygenation index. W/D ratio was determined after all lung lobes became dry. Under a microscope, the histology changes of lung tissue were observed and then lung injure scores were quantified. Total cells, polymorphonuclear and mononuclear leukocytes in BALF were counted under a light microscope. Total protein concentration in BALF was assayed by using a BCA kit. Pulmonary myeloperoxidase (MPO) activity was measured by a MPO kit. Levels of TNF-a, IL-6, monocyte chemoattractant protein-1(MCP-1) and interleukin-10(IL-10) in BALF were analysed by ELISA.
     Results:Compared with control group, mice in ALI group had lower oxygenation index (P<0.01), higher W/D ratio and lung injury score (P<0.01). Total cells counts, polymorphonuclear and mononuclear leukocytes all markedly increased in ALI group (P<0.01). Pulmonary MPO activity was enhanced in ALI group (P<0.01). Total protein concertration and levels of pro-inflammatory cytokines (TNF-a, IL-6and MCP-1) in BALF of ALI group were significantly upregulated (P<0.01), whereas anti-inflammatory cytokine IL-10was downregulated (P<0.01). In comparision with ALI group, mice with ATL adminiatration had higher oxygenation index and lower W/D ratio (P<0.05). ATL markedly improved the lung histopathology with a lower lung injury score in contrast to ALI group (P<0.01). ATL led to a dose-dependent decrement in LPS-induce total cells counts, polymorphonuclear leukocytes and total protein concentration (P<0.05), but had no effect on mononuclear leukocytes. Only5μg ATL significantly decreased MPO activity of lung tissue compared with ALI group (P><0.05). ATL significantly reduced LPS-induced TNF-a, IL-6, and MCP-1levels in BALF (P<0.05), whereas1μg ATL dramatically promoted IL-10expression (P<0.01).
     Conclusion: This study suggests that exogenous ATL attenuates LPS-induced ALI and inflammation reponses in mice by improving lung oxygenation and histology, enhancing IL-10production, inhibiting LPS-induced MPO activity, leukocytic infiltration, TNF-a, IL-6and MCP-1.
     Part three
     Effects of ATL on MAPK/AP-1and NF-κB signalling pathways following acute lung injury in mice
     Objective:In order to investigate whether ATL exerts protective effects in LPS-induce ALI in mice by inhibiting LPS-activated mitogen-activated protein kinases (MAPKs)/activator protein-1(AP-1) and nuclear factor-kappa B (NF-κB) signalling pathways.
     Methods: Thirty male BALB/C mice were randomly divided into three groups (n=10/group):control group, ALI group and ATL5μg-LPS group. Mice were intratracheally instilled with LPS (3mg/kg body weight) to induce ALI and endotoxin-free saline (1.5ml/kg body weight) as a control.5μg ATL or vehicle was injected via tail-vein injection30min before LPS instillation. After24hours of instillation, total and phosphorylations of p38, ERK1/2and JNK in the lung tissue were determined by Western blotting. NF-κB p65and inhibitor of κB-α (IκB-α) in the cytoplasmic protein fraction of lung tissue were also measured by Western blotting. DNA-binding activity of NF-κB p65and activator protein-1(AP-1) were assayed by electrophoretic mobility shift assay (EMSA).
     Results:Compared with control group, phosphorylations of p38MAPK, ERK1/2and JNK in the lung tissue were significanly enhanced in ALI group (P<0.01), whereas5μg ATL markedly inhibited LPS-induced phosphorylations of p38, ERK1/2and JNK (P<0.05). NF-κB p65and IκB-α in the cytoplasmic protein fraction of lung tissue were significant less than those in control group (P<0.05). Pretreatment with5μg ATL kept higher NF-κB p65and IκB-α expression in the cytoplasmic protein fraction of lung tissue in contrast to ALI group(P<0.05). Moreover, EMSA showed that DNA-binding activity of AP-1and NF-κB p65were increased in ALI group compared with control, whereas5μg ATL administration dramatically decreased LPS-induced DNA-binding activity of AP-1and NF-κB p65.
     Conclusion:ATL markedly inhibited LPS-induced phosphorylations of p38MAPK, ERK1/2and JNK, enhanced IκB-a expression in the cytoplasm, decreased the translocation of the NF-κB p65from the cytoplasm into the nucleus, blocked LPS-induced DNA-binding activity of AP-1and NF-κB p65. The current study illustrates that ATL exerts protective effects at least partly through blocking NF-κB and MAPKs/AP-1signaling transduction pathway in LPS-induced ALI in mice.
引文
[1]Nathan C. Points of control in inflammation. Nature,2002,420(6917):846-852.
    [2]Medzhitov R. Origin and physiological roles of inflammation. Nature,2008, 454(7203):428-435.
    [3]Serhan CN, Savill J. Resolution of inflammation:the beginning programs the end. Nat Immunol,2005,6(12):1191-1197.
    [4]Eickmeier O, Seki H, Haworth O, et al. Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury. Mucosal Immunol,2012,6(2):256-266.
    [5]Wang B, Gong X, Wan JY, et al. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulm Pharmacol Ther,2011,24(4):434-441.
    [6]Seki H, Fukunaga K, Arita M, et al. The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J Immunol,2010,184(2):836-843.
    [7]Morita M, Kuba K, Ichikawa A, et al. The lipid mediator protectin dl inhibits influenza virus replication and improves severe influenza. Cell,2013, 153(1):112-125.
    [8]Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-betal secretion and the resolution of inflammation. J Clin Invest,2002,109(1):41-50.
    [9]Lee HN, Na HK, Surh YJ. Resolution of inflammation as a novel chemopreventive strategy. Semin Immunopathol,2013,35(2):151-161.
    [10]Brodsky IE, Medzhitov R. Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol,2009,11(5):521-526.
    [11]Walkey AJ, Summer R, Ho V, Alkana P. Acute respiratory distress syndrome: epidemiology and management approaches. Clin Epidemiol,2012,4:159-169.
    [12]Dushianthan A, Grocott MP, Postle AD, et al. Acute respiratory distress syndrome and acute lung injury. Postgrad Med J,2011,87(1031):612-622.
    [13]Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med,2005,353(16):1685-1693.
    [14]Herridge MS, Tansey CM, Matte A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med,2011,364(14):1293-1304.
    [15]Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased overtime. Chest,2008,133(5):1120-1127.
    [16]Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med,2000, 342(18):1301-1308.
    [17]Von Dossow-Hanfstingl V. Advances in therapy for acute lung injury. Anesthesiol Clin,2012,30(4):629-639.
    [18]Johnson ER, Matthay MA. Acute lung injury:epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv,2010,23(4):243-252.
    [19]Akashi-Takamura S, Miyake K. TLR accessory molecules. Curr Opin Immunol, 2008,20(4):420-425.
    [20]Park BS, Song DH, Kim HM, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature,2009,458(7242):1191-1195.
    [21]Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol,2010, 11(5):373-384.
    [22]Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol,2004, 4(7):499-511.
    [23]Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation:a 10-year update. Physiol Rev,2012, 92(2):689-737.
    [24]Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature,2004,430(6996):257-263.
    [25]O'Grady NP, Preas HL, Pugin J, et al. Local inflammatory responses following bronchial endotoxin instillation in humans. Am J Respir Crit Care Med,2001, 163(7):1591-1598.
    [26]Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol,2008,295(3):L379-399.
    [27]Maderna P, Godson C. Lipoxins:resolutionary road. Br J Pharmacol,2009, 158(4):947-959.
    [28]Liu S, Wu P, Ye D, et al. Effects of lipoxin A(4) on CoCl(2)-induced angiogenesis and its possible mechanisms in human umbilical vein endothelial cells. Pharmacology,2009,84(1):17-23.
    [29]Baker N, O'Meara SJ, Scannell M, et al. Lipoxin A4:anti-inflammatory and anti-angiogenic impact on endothelial cells. J Immunol,2009,182(6):3819-3826.
    [30]Bonnans C, Fukunaga K, Levy MA, et al. Lipoxin A(4) regulates bronchial epithelial cell responses to acid injury. Am J Pathol,2006,168(4):1064-1072.
    [31]Luo CL, Li QQ, Chen XP, et al. Lipoxin A4 attenuates brain damage and downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Res,2013,1502:1-10.
    [32]Ye XH, Wu Y, Guo PP, et al. Lipoxin A4 analogue protects brain and reduces inflammation in a rat model of focal cerebral ischemia reperfusion. Brain Res, 2010,1323:174-183.
    [33]Zhou M, Chen B, Sun H, et al. The protective effects of Lipoxin A(4) during the early phase of severe acute pancreatitis in rats. Scand J Gastroenterol,2010.
    [34]Kakazu A, He J, Kenchegowda S, et al. Lipoxin A(4) inhibits platelet-activating factor inflammatory response and stimulates corneal wound healing of injuries that compromise the stroma. Exp Eye Res,2012,103:9-16.
    [35]Jin H, Li YH, Xu JS, et al. Lipoxin A(4) analog attenuates morphine antinociceptive tolerance, withdrawal-induced hyperalgesia, and glial reaction and cytokine expression in the spinal cord of rat. Neuroscience,2012,208:1-10.
    [36]Wang Q, Li R, Ting BY, et al. Lipoxin A4 Activates Alveolar Epithelial ENaC, Na,K-ATPase and Increases Alveolar Fluid Clearance. Am J Respir Cell Mol Biol, 2013.
    [37]Tahan F,Saraymen R, Gumus H. The role of lipoxin A4 in exercise-induced bronchoconstriction in asthma. J Asthma,2008,45(2):161-164.
    [38]Balode L, Strazda G, Jurka N, et al. Lipoxygenase-derived arachidonic acid metabolites in chronic obstructive pulmonary disease. Medicina (Kaunas),2012, 48(6):292-298.
    [39]Planaguma A, Kazani S, Marigowda G, et al. Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am J Respir Crit Care Med,2008,178(6):574-582.
    [40]Claria J, Serhan CN. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A,1995,92(21):9475-9479.
    [41]Perretti M, Chiang N, La M, et al. Endogenous lipid-and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med,2002,8(11):1296-1302.
    [42]Scalia R, Gefen J, Petasis NA, et al. Lipoxin A4 stable analogs inhibit leukocyte rolling and adherence in the rat mesenteric microvasculature:role of P-selectin. Proc Natl Acad Sci U S A,1997,94(18):9967-9972.
    [43]Wu SH, Chen XQ, Liu B, et al. Efficacy and safety of 15(R/S)-methyl-lipoxin A(4) in topical treatment of infantile eczema. Br J Dermatol,2013, 168(1):172-178.
    [44]Medeiros R, Kitazawa M, Passos GF, et al. Aspirin-Triggered Lipoxin A Stimulates Alternative Activation of Microglia and Reduces Alzheimer Disease-Like Pathology in Mice. Am J Pathol,2013.
    [45]He J, Kakazu AH, Bazan NG, et al. Aspirin-triggered lipoxin A4 (15-epi-LXA4) increases the endothelial viability of human corneas storage in Optisol-GS. J Ocul Pharmacol Ther,2011,27(3):235-241.
    [46]Wang YP, Wu Y, Li LY, et al. Aspirin-triggered lipoxin A4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-kappaB and MAPKs in BV-2 microglial cells. J Neuroinflammation,2011,8:95.
    [47]El Kebir D, Jozsef L, Pan W, et al.15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am J Respir Crit Care Med,2009,180(4):311-319.
    [48]Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature,2001, 410(6824):37-40.
    [49]Song Y, Dou H, Gong W, et al. Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur J Pharmacol,2013.
    [50]Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol,2002,2(10):725-734.
    [51]Hayden MS, Ghosh S. NF-kappaB in immunobiology. Cell Res,2011, 21(2):223-244.
    [1]Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome:a clinical review. Lancet,2007,369(9572):1553-1564.
    [2]Zambon M, Vincent JL. Mortality rates for patients with acute lung'injuFy/ARDS have decreased over time. Chest,2008,133(5):1120-1127.
    [3]Erickson SE, Martin GS, Davis JL, et al. Recent trends in acute lung injury mortality:1996-2005. Crit Care Med,2009,37(5):1574-1579.
    [4]赵晓辉,吴楠,黄岚,等.PTCA导丝逆行引导小鼠气管插管术.中国比较医学杂志,2006,16(6):365-366.
    [5]Liu L, Gao Z, Xia C, et al. Comparative study of trans-oral and trans-tracheal intratracheal instillations in a murine model of acute lung injury. Anat Rec (Hoboken),2012,295(9):1513-1519.
    [6]徐尤年,马璞,张曌,等.直视下小鼠气管插管方法的比较.中国医师杂志,2010,12(6):740-742.
    [7]Ni YF, Tian F, Lu ZF, et al. Protective effect of nicotine on lipopolysaccharide-induced acute lung injury in mice. Respiration,2011, 81(1):39-46.
    [8]Xu YN, Zhang Z, Ma P, et al. Adenovirus-delivered angiopoietin 1 accelerates the resolution of inflammation of acute endotoxic lung injury in mice. Anesth Analg, 2011,112(6):1403-1410.
    [9]Patel BV, Wilson MR, Takata M. Resolution of acute lung injury and inflammation:a translational mouse model. Eur Respir J,2012,39(5):1162-1170.
    [10]曾因明,邓小明,李文志,等.危重病医学(第二版).人民卫生出版社,2006:211-220
    [11]Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol,2008,295(3):L379-399.
    [12]Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol,2012,91(6-7):590-601.
    [13]Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol,2010,11(5):373-384.
    [14]Wang B, Gong X, Wan JY, et al. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulm Pharmacol Ther,2011,24(4):434-441.
    [15]焦光宇,聂志伟,刘春利,等.小剂量脂多糖气管内滴注制备急性肺损伤动物模型的探究.中国实验动物学报,2007,15:292-295.
    [16]刘利辉,叶玲玉,谭渊明,等.一种简捷可靠的小鼠气管插管新方法.中国医师杂志,2006,8(8):1019-1020.
    [1]Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet,1967,2(7511):319-323.
    [2]Johnson ER, Matthay MA. Acute lung injury:epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv,2010,23(4):243-252.
    [3]Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest,2008,133(5):1120-1127.
    [4]Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome:the Berlin Definition. JAMA,2012,307(23):2526-2533.
    [5]Buckley CD, Gilroy DW, Serhan CN, et al. The resolution of inflammation. Nat Rev Immunol,2013,13(1):59-66.
    [6]Maderna P, Godson C. Lipoxins:resolutionary road. Br J Pharmacol,2009, 158(4):947-959.
    [7]Planaguma A, Kazani S, Marigowda G, et al. Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am J Respir Grit Care Med,2008,178(6):574-582.
    [8]Balode L, Strazda G, Jurka N, et al. Lipoxygenase-derived arachidonic acid metabolites in chronic obstructive pulmonary disease. Medicina (Kaunas),2012, 48(6):292-298.
    [9]Sobrado M, Pereira MP, Ballesteros I, et al. Synthesis of lipoxin A4 by 5-lipoxygenase mediates PPARgamma-dependent, neuroprotective effects of rosiglitazone in experimental stroke. J Neurosci,2009,29(12):3875-3884.
    [10]李波刘,尚游,武庆平,等.小鼠急性肺损伤时内源性脂氧素A_4的变化.pdf.中华麻醉学杂志,2010,30:256.
    [11]Claria J, Serhan CN. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A,1995,92(21):9475-9479.
    [12]Maddox JF, Hachicha M, Takano T, et al. Lipoxin A4 stable analogs are potent
    [13]mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem,1997,272(11):6972-6978.
    [14]Xu YN, Zhang Z, Ma P, et al. Adenovirus-delivered angiopoietin 1 accelerates the resolution of inflammation of acute endotoxic lung injury in mice. Anesth Analg,2011,112(6):1403-1410.
    [15]Ni YF, Tian F, Lu ZF, et al. Protective effect of nicotine on lipopolysaccharide-induced acute lung injury in mice. Respiration,2011,81(1): 39-46.
    [16]Peng X, Hassoun PM, Sammani S, et al. Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med,2004,169(11):1245-1251.
    [17]Gong J, Guo S, Li HB, et al. BML-111, a lipoxin receptor agonist, protects haemorrhagic shock-induced acute lung injury in rats. Resuscitation,2012,83(7): 907-912.
    [18]Lee HN, Na HK, Surh YJ. Resolution of inflammation as a novel chemopreventive strategy. Semin Immunopathol,2013,35(2):151-161.
    [19]Brodsky IE, Medzhitov R. Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol,2009,11(5):521-526.
    [20]Perretti M, Chiang N, La M, Fierro IM, Marullo S, Getting SJ, et al. Endogenous lipid-and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med,2002,8(11):1296-1302.
    [21]Wu SH, Chen XQ, Liu B, et al. Efficacy and safety of 15(R/S)-methyl-lipoxin A(4) in topical treatment of infantile eczema. Br J Dermatol,2013,168(1): 172-178.
    [22]El Kebir D, Jozsef L, Pan W, et al.15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am J Respir Crit Care Med,2009,180(4):311-319.
    [23]Chen QH, Zhou WD, Pu DM, et al.15-Epi-lipoxin A(4) inhibits the progression of endometriosis in a murine model. Fertil Steril,2010,93(5):1440-1447.
    [24]Martins V, Valenca SS, Farias-Filho FA, et al. ATLa, an aspirin-triggered lipoxin A4 synthetic analog, prevents, the inflammatory and fibrotic effects of bleomycin-induced pulmonary fibrosis. J Immmunol,2009,182(9):5374-5381.
    [25]Dushianthan A, Grocott MP, Postle AD, et al. Acute respiratory distress syndrome and acute lung injury. Postgrad Med J,2011,87(1031):612-622.
    [26]Zemans RL, Colgan SP, Downey GP. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol, 2009,40(5):519-535.
    [27]Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol,2010, 11(5):373-384.
    [28]Pugin J, Verghese G, Widmer MC, et al. The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med,1999,27(2):304-312.
    [29]Jin SW, Zhang L, Lian QQ, et al. Posttreatment with aspirin-triggered lipoxin A4 analog attenuates lipopolysaccharide-induced acute lung injury in mice:the role of heme oxygenase-1. Anesth Analg,2007,104(2):369-377.
    [30]Matute-Bello G, Downey G, Moore BB, et al. An official American Thoracic Society workshop report:features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol,2011,44(5):725-738.
    [31]Klebanoff SJ. Myeloperoxidase:friend and foe. J Leukoc Biol,2005,77(5): 598-625.
    [32]O'Grady NP, Preas HL, Pugin J, Fiuza C, Tropea M, Reda D, Banks SM, Suffredini AF, et al. Local inflammatory responses following bronchial endotoxin instillation in humans. Am J Respir Crit Care Med,2001,163(7):1591-1598.
    [33]Song Y, Dou H, Gong W, et al. Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur J Pharmacol,2013.
    [34]Wang B, Gong X, Wan JY, et al. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulm Pharmacol Ther,2011,24(4):434-441.
    [35]van Zoelen MA, Verstege MI, Draing C, et al. Endogenous MCP-1 promotes lung inflammation induced by LPS and LTA. Mol Immunol,2011,48(12-13): 1468-1476.
    [36]Ogawa Y, Duru EA, Ameredes BT. Role of IL-10 in the resolution of airway inflammation. Curr Mol Med,2008,8(5):437-445.
    [1]Park BS, Song DH, Kim HM, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature,2009,458(7242):1191-1195.
    [2]Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol,2010, 11(5):373-384.
    [3]Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature,2004,430(6996):257-263.
    [4]O'Grady NP, Preas HL, Pugin J, et al. Local inflammatory responses following bronchial endotoxin instillation in humans. Am J Respir Crit Care Med,2001, 163(7):1591-1598.
    [5]Wang B, Gong X, Wan JY, et al. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulm Pharmacol Ther,2011,24(4):434-441.
    [6]Kawamoto T, Ii M, Kitazaki T, et al. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur J Pharmacol,2008, 584(1):40-48.
    [7]Datla P, Kalluri MD, Basha K, et al 9,10-dihydro-2,5-dimethoxyphenanthr-ene-1,7-diol, from Eulophia ochreata, inhibits inflammatory signalling mediated by Toll-like receptors. Br J Pharmacol,2010,160(5):1158-1170.
    [8]Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature,2001, 410(6824):37-40.
    [9]Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation:a 10-year update. Physiol Rev,2012, 92(2):689-737.
    [10]Song Y, Dou H, Gong W, et al. Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur J Pharmacol,2013.
    [11]Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science,2002,298(5600):1911-1912.
    [12]方向明,谢俊然,陈惠香,等.p38MAPK在机械通气所致肺损伤中的作用.中华麻醉学杂志,2002,22:546-550.
    [13]王月兰,姚尚龙.丝裂原蛋白激酶信号转导通路在机械通气相关性肺损伤中的作用.中华实验外科杂志,2006,23:331-333.
    [14]Zhan J, Liu Y, Zhang Z, et al. Effect of penehyclidine hydrochloride on expressions of MAPK in mice with CLP-induced acute lung injury. Mol Biol Rep, 2010.
    [15]Li HB, Wang GZ, Gong J et al. BML-111 attenuates hemorrhagic shock-induced acute lung injury through inhibiting activation of mitogen-activated protein kinase pathway in rats. J Surg Res,2013.
    [16]Wu S.H et al. Signal pathway involved in inhibition by lipoxin A(4) of production of interleukins induced in endothelial cells by lipopolysaccharide. Inflamm Res,2008,57(9):p.430-437.
    [17]Wang YP, Wu Y, Li LY, et al. Aspirin-triggered lipoxin A4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-kappaB and MAPKs in BV-2 microglial cells. J Neuroinflammation,2011,8:95.
    [18]Hayden MS, Ghosh S. NF-kappaB in immunobiology. Cell Res,2011, 21(2):223-244.
    [19]Kure I, Nishiumi S, Nishitani Y et al. Lipoxin A(4) reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor-kappaB activation. J Pharmacol Exp Ther,2010, 332(2):541-548.
    [1]Medzhitov R. Origin and physiological roles of inflammation. Nature,2008, 454(7203):428-435.
    [2]Maderna P, Godson C. Lipoxins:resolutionary road. Br J Pharmacol,2009, 158(4):947-959.
    [3]Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators:a new pharmacologic genus. Br J Pharmacol,2008,153 Suppl 1: S200-215.
    [4]Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res,2011,50(1):35-51.
    [5]Brezinski ME, Serhan CN. Selective incorporation of (15S)-hydroxyeicosatetr-aenoic acid in phosphatidylinositol of human neutrophils:agonist-induced deacylation and transformation of stored hydroxyeicosanoids. Proc Natl Acad Sci USA,1990,87(16):6248-6252.
    [6]Sobrado M, Pereira MP, Ballesteros I, et al. Synthesis of Lipoxin A4 by 5-Lipoxygenase Mediates PPAR-Dependent, Neuroprotective Effects of Rosiglitazone in Experimental Stroke. Journal of Neuroscience,2009,29(12): 3875-3884.
    [7]Gronert K, Maheshwari N, Khan N, et al. A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. J Biol Chem,2005,280(15):15267-15278.
    [8]Kucharzik T, Gewirtz AT, Merlin D, et al. Lateral membrane LXA4 receptors mediate LXA4's anti-inflammatory actions on intestinal epithelium. Am J Physiol Cell Physiol,2003,284(4):C888-896.
    [9]Bonnans C, Fukunaga K, Levy MA, et al. Lipoxin A(4) regulates bronchial epithelial cell responses to acid injury. Am J Pathol,2006,168(4):1064-1072.
    [10]Baker N, O'Meara SJ, Scannell M, et al. Lipoxin A4:anti-inflammatory and anti-angiogenic impact on endothelial cells. J Immunol,2009,182(6):3819-3826.
    [11]Takano T, Fiore S, Maddox JF, et al. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation:evidence for anti-inflammatory receptors. J Exp Med,1997,185(9):1693-1704.
    [12]Chiang N, Takano T, Arita M, et al. A novel rat lipoxin A4 receptor that is conserved in structure and function. Br J Pharmacol,2003,139(1):89-98.
    [13]Bonnans C, Gras D, Chavis C, et al. Synthesis and anti-inflammatory effect of lipoxins in human airway epithelial cells. Biomed Pharmacother,2007,61(5): 261-267.
    [14]Planaguma A, Kazani S, Marigowda G, et al. Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am J Respir Crit Care Med,2008,178(6):574-582.
    [15]Karp CL, Flick LM, Park KW, et al. Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat Immunol,2004,5(4): 388-392.
    [16]Grumbach Y, Quynh NY, Chiron R, et al. LXA4 stimulates ZO-1 expression and transepithelial electrical resistance in human airway epithelial (16HBE14o-) cells. Am J Physiol Lung Cell Mol Physiol,2009,296(1):L101-108.
    [17]Verriere V, Higgins G, Al-Alawi M, et al. Lipoxin a(4) stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia. PLoS One,2012,7(5):e37746.
    [18]Gronert K. Lipoxins in the eye and their role in wound healing. Prostaglandins Leukot Essent Fatty Acids,2005,73(3-4):221-229.
    [19]Wang SB, Hu KM, Seamon KJ, et al. Estrogen negatively regulates epithelial wound healing and protective lipid mediator circuits in the cornea. FASEB J, 2012,26(4):1506-1516.
    [20]Kenchegowda S, Bazan NG, Bazan HE. EGF stimulates lipoxin A4 synthesis and modulates repair in corneal epithelial cells through ERK and p38 activation. Invest Ophthalmol Vis Sci,2011,52(5):2240-2249.
    [21]Canny G, Levy O, Furuta GT, et al. Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci U S A,2002,99(6):3902-3907.
    [22]Kure I, Nishiumi S, Nishitani Y, et al. Lipoxin A(4) reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor-kappaB activation. J Pharmacol Exp Ther,2010,332(2):541-548.
    [23]陶慧娴,吴升华,等.脂氧素A4抑制结缔组织生长因子诱导的肾小管上皮细胞表达整合素连接激酶.南京医科大学学报(自然科学版),2010,30(5):586-590.
    [24]张永梅,吴升华,陆超,等.脂氧素A4拮抗CTGF所致的人肾小管上皮细胞转分化.南京医科大学学报(自然科学版),2009,29(7):925-929.
    [25]Rodgers K, McMahon B, Mitchell D, et al. Lipoxin A4 modifies platelet-derived growth factor-induced pro-fibrotic gene expression in human renal mesangial cells. Am J Pathol,2005,167(3):683-694.
    [26]Cezar-de-Mello PF, Vieira AM, Nascimento-Silva V, et al. ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. Br J Pharmacol, 2008,153(5):956-965.
    [27]Pang HY, Huang YP, Liu ZJ, et al. Effect of lipoxin A(4) on lipopolysaccharide-induced endothelial hyperpermeability in human umbilical vein endothelial cell. Zhonghua Fu Chan Ke Za Zhi,2011,46(3):199-204.
    [28]Chinthamam S, Odusanwo O, Mondal N, et al.Lipoxin A4 inhibits immune cell binding to salivary epithelium and vascular endothelium. Am J Physiol Cell Physiol,2012,302(7):C968-978.
    [29]Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, V et al. Novel lipid mediator aspirin-triggered lipoxin A4 induces heme oxygenase-1 in endothelial cells. Am J Physiol Cell Physiol,2005,289(3):C557-563.
    [30]Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, et al. Aspirin-triggered lipoxin A4 blocks reactive oxygen species generation in endothelial cells:a novel antioxidative mechanism. Thromb Haemost,2007,97(1):88-98.
    [31]Wu SH, Liao PY, Dong L, et al. Signal pathway involved in inhibition by lipoxin A(4) of production of interleukins induced in endothelial cells by lipopolysaccharide. Inflamm Res,2008,57(9):430-437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700