用户名: 密码: 验证码:
MgZnO异质结紫外光电探测器件的制备与内增益特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MgZnO薄膜具有带隙可调范围宽(3.3eV至7.8eV可调),外延生长温度低,抗辐射能力强及其它优良的紫外光电性能,近年来成为了紫外探测领域的研究热点之一。然而,目前高Mg组分MgZnO基紫外光电探测器面临着量子效率较低及缺少可控内增益过程的发展难题。本论文针对这一难题,在分析其物理原因基础之上,开展了高Mg组分立方MgZnO薄膜n型掺杂、Si(111)衬底单一立方相MgZnO薄膜外延生长、梯度带隙立方MgZnO/p-Si异质结紫外光电探测器件制备等工作,并对材料特点及器件性能进行了研究,主要研究工作如下:
     一、针对带隙处于日盲区的立方MgZnO薄膜电阻率过高而使得光生载流子在弱的内建电场强度下不易分离的难题,提出带隙展宽施主型缺陷能级深化,使得材料载流子浓度过低的推断,选用Ga作为n型掺杂源,成功获得电阻率相对较低的立方MgZnO薄膜。在此基础上制备了肖特基MSM型MgZnO日盲紫外探测器,并对器件的性能进行了测试和分析;
     二、利用低压金属有机气相沉积(LP-MOCVD),开展了Si(111)衬底外延生长单一立方相MgZnO薄膜的工作。MgZnO合金能带调节中导带及价带移动幅度差较大,可使得梯度带隙MgZnO中电子受到附加准电场,更易碰撞离化,结合这一物理思想,制备了光伏型单层梯度带隙n-MgZnO/p-Si异质结日盲紫外探测器,对器件光生载流子倍增的过程进行了研究;
     三、利用等离子体辅助的分子束外延(RFPAMBE)设备,通过周期性改变Zn源束流,获得了界面陡峭的多层梯度带隙MgZnO/p-Si异质结日盲紫外探测器,器件具有较好的日盲波段敏感性,响应峰值在250nm附近,响应度随偏压的增加呈现出由于载流子倍增而造成的非线性增长特点。
As a member of group II-VI wide-band-gap semiconductors, MgxZn1-xO alloysare generating considerable interest as they can provide, in principle, an accessibleband-gap range from around3.37eV (ZnO) to7.8eV (MgO). This makes thempromising candidates for deep ultraviolet (DUV) optoelectronic devices. In the pastdecade, a large number of experiments have been conducted, focusing on solar-blindphotodetection using MgZnO films, because of various important applications inmissile tracking, flame detection, ozone layer monitoring, and so on. To date,however, most of the solar-blind photodetectors based on MgZnO havelow-performance, especially in responsivity, which is one of the important figures ofmerit for DUV detectors to be commercially applied. Consequently, a controllableand high gain mechanism is required. This work foucs on the aforementionedproblem, the main results were obtained as follows:
     1. The gallium (Ga) doped cubic MgZnO films, which have been grown bymetal organic chemical vapor deposition, have been obtained. It wasdemonstrated that Ga doping improves the n-type conduction of the cubicMgZnO films. A two-orders of magnitude enhancement in lateral n-typeconduction have been achieved for the cubic MgZnO films. The responsivity of the cubic MgZnO-based photodetector has been also enhanced. Depletionregion electric field intensity enhanced model was adopted to explain theimprovement of quantum efficiency in Ga doped MgZnO-based detectors.
     2. For MgxZn1-xO alloys, due to the wide tunable bandgap and a larger ratio ofconduction-band offset to valence-band offset (ΔEC/ΔEV), it is very suitablefor photon detection by using graded-band-gap technique. Via constructingheterojunctions based on p-Si/i-MgO/Graded-Band-Gap-Cubic-MgZnO, asolar-blind photodetector with enhanced and tunable gain have beendemonstrated. The photodetector showed high performance, namely, highresponsivity (1160mA/W), quantum efficiency (600%), high sensitivity andselectivity towards the solar-blind spectrum, and fast response times (~15μs).
     3. A solar blind photodetector based on multilayers graded band gapcubic-MgZnO/i-MgO/p-Si has been demonstrated. The device exhibits ahigh responsivity wich is attributed to the photo-generated carriers impactionization. This device structure will be more valuable in the field oflow-noise solar-blind detection for its significant band alignment differentbetween the conduction band and valence band.
引文
[1] G. C. Righini, A. Tajani, A. Cutolo. An Introduction to Optoelectronic Sensors[M]. Singapore: World Scientific Publishers,2009.
    [2] M. Vazquez, A. Hanslmeier. Ultraviolet Radiation in the Solar System [M].Netherlands: Springer,2006.
    [3] R. H. Rieke. Detection of Light: From the Ultraviolet to the Submillimeter [M].United Kingdom: Cambridge,2003.
    [4] M. R. Hussein. Ultraviolet radiation and skin cancer: molecular mechanisms [J]. JCutan Pathol,2005,32:191–205.
    [5] T. Li, D. J. H. Lambert, M. M. Wong,C. J. Collins, B. Yang, A. L. Beck, U.Chowdhury, R. D. Dupuis, and J. C. Campbell. Low-noise back-illuminatedAlxGa1-xN-Based p-i-n solar-blind ultraviolet photodetectors [J]. IEEE J. QuantumElectron.2001,37(4):538–545.
    [6] H. Srour, J. P. Salvestrini, A. Ahaitouf, S. Gautier,T. Moudakir, B. Assouar, M.Abarkan, S. Hamady, and A. Ougazzaden. Solar blind metal-semiconductor-metalultraviolet photodetectors using quasi-alloy of BGaN/GaN superlattices [J]. Appl.Phys. Lett.2011,99(22):221101.
    [7] Y. Koide, M. Y. Liao, and J. Alvarez. Development of thermally stable,solar-blind deep-ultraviolet diamond photosensor [J]. Mater. Trans.2005,46(9):1965–1968.
    [8] A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, Y. M.Chong, Y. S. Zou, W. J. Zhang, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F.Hochedez.193nm deep-ultraviolet solar-blind cubic boron nitride basedphotodetectors [J]. Appl. Phys. Lett.2008,92(5):053501.
    [9] R. Suzuki, S. Nakagomi, and Y.Kokubun. Solar-blind photodiodes composedof aAu Schottky contact and a β-Ga2O3single crystal with a high resistivity cap layer [J].Appl. Phys. Lett.2011,98(13):131114.
    [10]K. J. Li, H. D. Liu, Q. G. Zhou, D. McIntosh, and J. C. Campbell. SiC avalanchephotodiode array with microlenses [J]. Opt. Express.2010,18(11):11713–11719.
    [11]P. Wang, Q. H. Zhen, Q. Tang, Y. T. Yang, L. X. Guo, K. Ding, and F. Huang.Steady-state characteristics and transient response of MgZnO-basedmetal-semiconductor-metal solar-blind ultraviolet photodetector with three types ofelectrode structures [J]. Opt. Express.2013,21(15):18387–18397.
    [12]H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z.Gu, R. C. Yu and X. L. Du. Interface engineering of high-Mg-content MgZnO/BeO/Sifor p-n heterojunction solar-blind ultraviolet photodetectors [J]. Appl. Phys. Lett.2011,98:221902.
    [13]S. Han, Z. Zhang, J. Zhang, L. Wang, J. Zheng, H. Zhao, Y. Zhang, M. Jiang, S.Wang, D. Zhao, C. X. Shan, B. Li, and D. Shen. Photoconductive gain in solar-blindultraviolet photodetector based on Mg0.52Zn0.48O thin film [J]. Appl. Phys. Lett.2011,99(24):242105.
    [14]K. Takahashi, A. Yoshikawa, A. Sandhu. Wide bandgap semiconductors:fundamental properties and modern photonic and electronic devices [M]. Berlin:Springer,2007.
    [15]E. Monroy, F. Omnès, F. Calle. Wide-bandgap semiconductor ultravioletphotodetectors [J]. Semicond. Sci. Technol.2002,18(4):R33.
    [16]J. L. Weyher. Characterization of wide-band-gap semiconductors (GaN, SiC) bydefect-selective etching and complementary methods Characterization [J].Superlattices and microstructures.2006,40:279-288.
    [17]A. Rostami, N. Ravanbaksh, S. Golmohammadi, K. Abedi. High-responsivityAlGaN-GaN multi-quantum well UV photodetector [J]. Int. J. Numer. Model El.2014,27:309-317.
    [18]E. Cicek, R. McClintock, C.Y. Cho, B. Rahnema, M. Razeghi. AlxGa1-xN-basedback-illuminated solar-blind photodetectors with external quantum efficiency of89%[J]. Appl. Phys. Lett.2013,103(19):191108.
    [19]M.E. Razeghi. Deep ultraviolet light-emitting diodes and photodetectors for UVcommunications [J]. Optoelectronic Integrated Circuits VII.2005,5729:30-40.
    [20]A. Vardi, G. Bahir, F. Guillot, C. Bougerol, E. Monroy, S.E. Schacham, M.Tchernycheva, F.H. Julien. Near infrared quantum cascade detector inGaN/AlGaN/AlN heterostructures [J]. Appl. Phys. Lett.2008,92(1):011112.
    [21]J. Li, Z. Y. Fan, R. Dahal, M. L Nakarmi, J. Y. Lin and H. X. Jiang.200nm deepultraviolet photodetectors based on AlN [J]. Appl. Phys. Lett.2006,89:213510.
    [22]Tut T, Yelboga T, Ulker E, et al. Solar-blind AlGaN-based p-i-n photodetectorswith high breakdown voltage and detectivity [J]. Appl. Phys. Lett.2008,92:103502.
    [23]J. S. Park, K. J. Chang. Site preference of Mg acceptors and improvement ofp-type doping efficiency in nitride alloys [J]. J. Phys-Condens. Mat.2013,25(24):245801.
    [24]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin,S. J. Cho, H. Morkoc. A comprehensive review of ZnO materials and devices [J]. J.Appl. Phys.2005,98:041301.
    [25]M. W. Williams, E. T. Arakawa. Optical Properties of Single-Crystal MagnesiumOxide [J]. J. Appl. Phys.1967,38:5272.
    [26]C. Coskun, D. C. Look, G. C. Farlow and J. R. Sizelove. Radiation hardness ofZnO at low temperatures [J]. Semicond. Sci. Technol.2004,19:752.
    [27]D.C. Look. Recent advances in ZnO materials and devices [J]. Materials Scienceand Engineering: B2001,80:383–387.
    [28]A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda and Y. Segawa.Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices [J]. Appl. Phys. Lett.1999,75:980.
    [29]Y. F. Li, B. Yao, Y. M. Lu, B. H. Li, Y. Q. Gai, C. X. Cong, Z. Z. Zhang, D. X.Zhao, J. Y. Zhang, D. Z. Shen and X. W. Fan. Valence-band offset of epitaxialZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy [J].Appl. Phys. Lett.2008,92:192116.
    [30]C. G. Van de Walle and J. Neugebauer. Universal alignment of hydrogen levels insemiconductors, insulators and solutions [J]. Nature2003,423:626.
    [31]Y. Z. Zhu, G. D. Chen, H. G. Ye, A. Walsh, C. Y. Moon and S. H. Wei. Electronicstructure and phase stability of MgO, ZnO, CdO, and related ternary alloys [J]. Phys.Rev. B2008,77:245209.
    [32]P. D. C. King, T. D. Veal, A. Schleife, J. Zuniga-Perez, B. Martel, P. H. Jefferson,F. Fuchs, V. Munoz-Sanjose, F. Bechstedt and C. F. McConville. Valence-bandelectronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopyand quasi-particle-corrected density-functional theory calculations. Phys. Rev. B2009,79:205205.
    [33]W. Yang, R.D. Vispute, S. Choopun, R.P. Sharma, T. Venkatesan, H. Shen.Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films [J]Appl. Phys. Lett.2001,78:2787-2789.
    [34]S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan and H. Shen.Realization of band gap above5.0eV in metastable cubic-phase MgxZn1-xO alloyfilms [J]. Appl. Phys. Lett.2002,80:1529.
    [35]W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, and T.Venkatesan. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) fordeep ultraviolet photodetectors [J]. Appl. Phys. Lett.2003,82:3424-3426.
    [36]M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame,High-Responsivity Photoconductive Ultraviolet Sensors Based on InsulatingSingle-Crystal GaN Epilayers [J]. Appl. Phys. Lett.1992,60:2917-2919.
    [37]I. Takeuchi, W. Yang, K.-S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute,L. A. Bendersky. Monolithic multichannel ultraviolet detector arrays and continuousphase evolution in MgxZn1-xO composition spreads [J]. J. Appl. Phys.2003,94:7336-7340.
    [38]T. Takagi, H. Tanaka, S. Fujita, S. Fujita. Molecular beam epitaxy of highmagnesium content single-phase wurzite MgxZn1-xO alloys (x similar or equal to0.5)and their application to solar-blind region photodetectors [J]. Jpn J. Appl. Phys.2003,2(42):L401-L403.
    [39]H.Y. Lee, M.Y. Wang, K.J. Chang, W.J. Lin. Ultraviolet Photodetector Based onMgxZn1-xO Thin Films Deposited by Radio Frequency Magnetron Sputtering [J]. IeeePhotonic Tech. L.2008,20:2108-2110.
    [40]H. Tanaka, S. Fujita, S. Fujita. Fabrication of wide-band-gap MgxZn1-xOquasi-ternary alloys by molecular-beam epitaxy [J]. Appl. Phys. Lett.2005,86:192911.
    [41]A. Nakamura, T. Aoshima, T. Hayashi, S. Gangil, J. Temmyo, A. Navarro, J.Pereiro, E. Munoz. Growth of Nitrogen-Doped MgxZn1-xO for Use in VisibleRejection Photodetectors [J]. J. Korean Phys. Soc.2008,53:2909-2912.
    [42]L. K. Wang, Z. G. Ju, J. Y. Zhang, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z.Zhang, B. H. Li, and C. X. Shan. Single-crystalline cubic MgZnO films and theirapplication in deep-ultraviolet optoelectronic devices [J]. Appl. Phys. Lett.2009,95(13):131113.
    [43]Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, andX. W. Fan. MgxZn1-xO based photodetectors covering the whole solar-blind spectrumrange [J]. Appl. Phys. Lett.2008,93(17):173505.
    [44]Z.L. Liu, Z.X. Mei, T.C. Zhang, Y.P. Liu, Y. Guo, X.L. Du, A. Hallen, J.J. Zhu,A.Yu. Kuznetsov. Solar-blind4.55eV band gap Mg0.55Zn0.45O components fabricatedusing quasi-homo buffers [J]. Journal of Crystal Growth2009,311:4356–4359.
    [45]Y. Hou, Z. Mei, Z. Liu, T. Zhang, and X. Du. Mg0.55Zn0.45O solar-blindultraviolet detector with high photoresponse performance and large internal gain [J].Appl. Phys. Lett.2011,98(10):103506.
    [46]Qinghong Zheng, Feng Huang, Kai Ding, Jin Huang, Dagui Chen, Zhibing Zhanand Zhang Lin. MgZnO-based metal-semiconductor-metal solar-blind photodetectorson ZnO substrates [J]. Appl. Phys. Lett.2011,98:221112.
    [47]P. Wang, Q.H. Zheng, Q. Tang, Y.T. Yang, L.X. Guo, F. Huang, Z.J. Song, Z.Y.Zhang. Dark current suppression of MgZnO metal-semiconductor-metal solar-blindultraviolet photodetector by asymmetric electrode structures [J]. Opt. Lett.2014,39:375-378.
    [48]X. H. Chen, J. Y. Kang. The structural properties of wurtzite and rocksaltMgxZn1-xO [J]. Semicond. Sci. Tech.2008,23:025008.
    [49]J. Chen, W.Z. Shen, N.B. Chen, D.J. Qiu, H.Z. Wu. The study of compositionnon-uniformity in ternary MgxZn1-xO thin films [J] J. Phys-Condens. Mat.2003,15:L475-L482.
    [50]C.Y. Zhao, X.H. Wang, J.Y. Zhang, Z.G. Ju, C.X. Shan, B. Yao, D.X. Zhao, D.Z.Shen, X.W. Fan. Ultraviolet photodetector fabricated from metal-organic chemicalvapor deposited MgZnO [J]. Thin Solid Films2011,519:1976-1979.
    [51]L.K. Wang, Z.G. Ju, C.X. Shan, J. Zheng, D.Z. Shen, B. Yao, D.X. Zhao, Z.Z.Zhang, B.H. Li, J.Y. Zhang. MgZnO metal-semiconductor-metal structured solar-blindphotodetector with fast response [J]. Solid State Commun.2009,149:2021-2023.
    [52]Y.M. Zhao, J.Y. Zhang, D.Y. Jiang, C.X. Shan, Z.Z. Zhang, B. Yao, D.X. Zhao,D.Z. Shen. Ultraviolet Photodetector Based on a MgZnO Film Grown byRadio-Frequency Magnetron Sputtering [J]. Acs Appl. Mater. Inter.2009,1:2428-2430.
    [53]G. Cheng, X.H. Wu, B. Liu, B. Li, X.T. Zhang, Z.L. Du. ZnO nanowire Schottkybarrier ultraviolet photodetector with high sensitivity and fast recovery speed [J]. Appl.Phys. Lett.2011,99:203105.
    [54]D.C. Kim, B.O. Jung, J.H. Lee, H.K. Cho, J.Y. Lee, J.H. Lee. Dramaticallyenhanced ultraviolet photosensing mechanism in a n-ZnO nanowires/i-MgO/n-Sistructure with highly dense nanowires and ultrathin MgO layers [J]. Nanotechnology2011,22:265506.
    [55]Y.N. Hou, Z.X. Mei, H.L. Liang, D.Q. Ye, S. Liang, C.Z. Gu, X.L. Du.Comparative study of n-MgZnO/p-Si ultraviolet-B photodetector performance withdifferent device structures [J]. Appl. Phys. Lett.2011,98:263501.
    [56]S. M. Sze, K. K. Ng. Physics of Semiconductor Devices [M]. Hoboken NewJersey: John Wiley&Sons; ed.3,2007.
    [57]M. Razeghi and A. Rogalski. Semiconductor ultraviolet detectors [J]. J. Appl.Phys.1996,79(10):7433–7473.
    [58]A. Rose. Concepts in Photoconductivity and Allied Problems [M]. Huntington,NY: Krieger,1978.
    [59]J. Piotrowski, edited by A. Rogalski. Infrared Photon Detectors [M]. Bellingham,WA: SPIE Optical Engineering Press,1995. Chap.11.
    [60]P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan. Elements of InfraredTechnology [M]. New York: Wiley,1962.
    [61]P. W. Kruse, edited by R. J. Keyes. Optical and Infrared Detectors [M]. Berlin:Springer,1977.5-69.
    [62]W. Vanroosbroeck. Theory of the Flow of Electrons and Holes in Germanium andOther Semiconductors [J]. At&T. Tech. J.1950,29:560-607.
    [63]X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler, M. Razeghi.Photovoltaic effects in GaN structures with p-n junctions [J]. Appl. Phys. Lett.1995,67:2028.
    [64]R. A. Smith. Semiconductors [M]. Cambridge, England: Cambridge UniversityPress,1978.
    [65]C. T. Elliott, edited by C. Hilsum. Handbook on Semiconductors [M].NorthHolland: Amsterdam,1993. Vol.4,841-936.
    [66]A. Van der Ziel. Fluctuation Phenomena in Semiconductors [M]. London:Butterworths,1959.
    [67]F.N. Hooge.1/F Noise in the Conductance of Ions in Aqueous Solutions [J]. Phys.Lett. A.1970, A33:169.
    [68]R. D. Nelson. Infrared charge transfer devices-The silicon approach [J]. Opt.Eng.1977,16:275-283.
    [69]V. Gopal. Surface recombination in photoconductors [J].1985,25(4):615-618.
    [70]H. J. Hovel, edited by R. K. Willardson, A. C. Berr. Semiconductors andSemimetals [M]. New York: Academic,1975.
    [71]T. S. Moss, G. J. Burrel, and B. Ellis. Semiconductor Optoelectronics [M].London: Butterworths,1973.
    [72]K. G. McKay. Avalanche Breakdown in Silicon [J]. Phys. Rev.1954,94:877.
    [73]G.E. Stillman, C.M. Wolfe, Edited by R.K. Willardson and Albert C. Beer.Avalanche photodiodes [M]. Semiconductors and semimetals.1977,12:291-393.
    [74]R. J. McIntyre. Multiplication noise in uniform avalanche diodes [J]. IEEE Trans.Electron Devices.1966,13(1):164-168.
    [75]W. W. Gartner. Depletion-Layer Photoeffects in Semiconductors [J]. Phys. Rev.1959,116:84.
    [76]J. Bardeen. Surface States and Rectification at a Metal Semi-Conductor Contact[J]. Phys. Rev.1947,71:717-727.
    [77]A. M. Cowley and S. M. Sze. Surface States and Barrier Height ofMetal-Semiconductor Systems [J]. J. Appl. Phys.1965,36:3212.
    [78]E.H. Rhoderick. Metal-Semiconductor Contacts [J]. Iee Proc-I.1982,129:1-14.
    [79]W. Schottky and E. Spenke. Quantitative Treatment of the Space-ChargeBoundary-Layer Theory of the Crystal Rectifiers [J]. Wiss. Veroff. Siemens-Werken.1939,18:225.
    [80]E. Spenke. Electronic Semiconductors [M]. New York: McGraw-Hill,1958.
    [81]H. A. Bethe, MIT Radiation Laboratory Report No.43-12,1942.
    [82]C.R. Crowell, S.M. Sze. Current Transport in Metal-Semiconductor Barriers [J].Solid State Electron.1966,9:1035-1048.
    [83]G. Ottaviani, K. N. Tu, and J. W. Mayer. Interfacial Reaction and Schottky Barrierin Metal-Silicon Systems [J]. Phys. Rev. Lett.1980,44:284.
    [84]G. B. Stringfellow. Organometallic Vapor-Phase Epitaxy: Theory and Practice [M].San Diego, California: Academic Press,1999.
    [85]A.Y. Cho, J.R. Arthur. Molecular beam epitaxy [J]. Progress in Solid StateChemistry1975,10:157-191.
    [86]J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L. Lambrecht, K.F. Brennan.High field electron transport properties of bulk ZnO [J]. J. Appl. Phys.1999,86:6864-6867.
    [87]J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation madesimple [J]. Phys. Rev. Lett.1996,77:3865-3868.
    [88]A. Janotti and C. G. Van de Walle. Native point defects in ZnO [J]. Phys. Rev. B2007,76:165202.
    [89]J.M. Recio, R. Franco, A.M. Pendas, M.A. Blanco, L. Pueyo. Theoreticalexplanation of the uniform compressibility behavior observed in oxide spinels [J].Phys. Rev. B.2001,63:184101.
    [90]Z. G. Ju, C. X. Shan, C. L. Yang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen andX. W. Fan. Phase stability of cubic Mg0.55Zn0.45O thin film studied by continuousthermal annealing method [J]. Appl. Phys. Lett.2009,94:101902.
    [91]N.B. Chen, C.H. Sui. Recent progress in research on MgxZn1-xO alloys [J].Materials Science and Engineering: B.2006,126(1):16-21.
    [92]A. R. Denton and N. W. Ashcroft. Vegard’s law [J]. Phys. Rev. A1991,43:3161.
    [93]S.M. Sze, D.J. Coleman, Jr., A. Loya. Current transport inmetal-semiconductor-metal (MSM) structures [J]. Solid-State Electronics1971,14:1209-1218.
    [94]V. I. Shashkin and N. V. Vostokov, Competition between the barrier and injectionmechanisms of nonlinearity of the current-voltage characteristic in Mott-barrierdetector diodes [J]. J. Appl. Phys.2009,106:043702.
    [95]X. N. Wang, Y. Wang, Z. X. Mei, J. Dong, Z. Q. Zeng, H. T. Yuan, T. C. Zhang, X.L. Du, J. F. Jia, Q. K. Xue, X. N. Zhang, Z. Zhang, Z. F. Li and W. Lu.Low-temperature interface engineering for high-quality ZnO epitaxy on Si(111)substrate [J]. Appl. Phys. Lett.2007,90:151912.
    [96]M. Ning, Y.Y. Mi, C.K. Ong, P.C. Lim and S.J. Wang. Growth studies of (220),(200) and (111) oriented MgO films on Si (001) without buffer layer [J].J. Phys. D:Appl. Phys.2007,40:3678-3682.
    [97]B. Brennan, S. McDonnell, G. Hughes. Photoemission studies of the interfaceformation of ultrathin MgO dielectric layers on the oxidised Si(111) surface [J]. J.Phys.: Conf. Ser.2008,100:042047.
    [98]D.G. Baik, S.M. Cho. Application of sol-gel derived films for ZnO/n-Si junctionsolar cells [J]. Thin Solid Films.1999,354:227-231.
    [99]J. Yamashita. Oxygen Band in Magnesium Oxide [J]. Phys. Rev.1958,111:733.
    [100] J. Liang, H.Z. Wu, Y.F. Lao, N.B. Chen, P. Yu, T.N. Xu. Characterization ofcubic phase MgZnO/Si (100) interfaces [J]. Appl. Surf. Sci.2005,252:1147.
    [101] Z. Xu and B. M. Sadler. Ultraviolet communications: potential andstate-of-the-art [J]. IEEE Commun. Mag.2008,46:6773.
    [102] M. R. Luettgen, J. H. Shapiro, and D. M. Reilly. Non-line-of-sightsingle-scatter propagation model [J]. J. Opt. Soc. Am. A1991,8(12):1964–1972.
    [103] G. Tabares, A. Hierro, J. M. Ulloa, A. Guzman, E. Mu oz, A. Nakamura, T.Hayashi and J. Temmyo. High responsivity and internal gain mechanisms inAu-ZnMgO Schottky photodiodes [J]. Appl. Phys. Lett.2010,96:101112.
    [104] H. Kroemer. Quasi-Electric and Quasi-Magnetic Fields in Non-UniformSemiconductors [J]. RCA. Rev.1957,18:332-342.
    [105] H. Kroemer. Nobel Lecture: Quasi-electric fields and band offsets: Teachingelectrons new tricks. Rev. Mod. Phys.2001,73:783-793.
    [106] B. Laumer, F. Schuster, T. A. Wassner, M. Stutzmann, M. Rohnke, J.Schormann and M. Eickhoff. ZnO/(ZnMg)O single quantum wells with high Mgcontent graded barriers [J]. J. Appl. Phys.2012,111:113504.
    [107] X. J. Zhuang, C. Z. Ning and A. L. Pan. Composition and Bandgap-GradedSemiconductor Alloy Nanowires [J]. Adv. Mater.2012,24:13-33.
    [108] L. Li, H. Lu, Z. Y. Yang, L. M. Tong, Y. Bando, and D. Golberg.Bandgap-Graded CdSxSe1-xNanowires for High-Performance Field-Effect Transistorsand Solar Cells [J]. Adv. Mater.2013,25:1109.
    [109] Y. Z. Lu, F. X. Gu, C. Meng, H. K. Yu, Y. G. Ma, W. Fang and L. M. Tong.Multicolour laser from a single bandgap-graded CdSSe alloy nanoribbon [J]. Opt.Express2013,21:22314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700