智能结构光纤光栅保护方法及温度传感性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤布拉格光栅(FBG)及其在光纤传感器和光纤通信中的应用研究引起了人们普遍的关注,光纤光栅传感器具有不受电磁干扰、信号带宽大、灵敏度高、易于复用、重量轻、结构紧密、适合在高温、腐蚀性或危险性环境使用等优点。这种传感器在大型建筑和油井等特殊场合的安全检测方面具有极为广泛的应用前景。本文主要以光纤布拉格光栅作为研究对象,对光纤光栅的保护、基本特性及传感性能进行了理论、实验和仿真研究,主要内容包括:
     本文对光纤光栅进行了有效的保护。提出了一种无粗化的光纤表面化学镀的工艺,并且镀层和光纤有较好的结合力。根据本课题后续处理的特点,用镀层的结合力、电学性能、光亮度以及镀速四个性能指标作为判断化学镀工艺是否最佳的主要依据,采用正交试验方法得出了最佳化学镀工艺,最佳工艺为:NiSO_4·6H_2O 25g.L~(-1)、NaH_2PO_2·H_2O 20 g.L~(-1)、C_3H_6O_2 20mL.L~(-1)、H_3BO_3 20g.L~(-1)、NaF1 g.L~(-1)、糖精2mg.L~(-1)、PH值4.5、温度86℃。对化学镀后的光纤光栅进行了电镀。并对化学镀和电镀的结果进行了理论分析。
     根据镀镍FBG的特点,分析了镀镍FBG温度变化时的应力应变,从理论上推导出镀镍FBG的温度灵敏度系数公式并用实验对公式进行了验证,用理论证明了镀镍FBG的波长漂移、应力和应变与温度变化成线性关系。分析了镀镍FBG的温度灵敏度系数与镀层厚度的关系。用ANSYS软件对镀镍FBG在温度变化时的应力应变进行了仿真。理论分析得到镀层厚度为4.26um的镀镍FBG的温度灵敏度系数为14.3235pm/℃,实验值为13.92pm/℃。理论、实验和仿真得到了基本一致的结果。
     为了研究镀镍光纤布拉格光栅温度灵敏度系数与镀层厚度的关系,用同一根FBG分四次进行化学镀镍,每次化学镀后都测量其镀镍层厚度并进行温度传感实验,从而得到在不同镀镍层厚度时的温度灵敏度系数。讨论了镀镍FBG的温度灵敏度系数公式,理论分析并用实验证明了镀镍层厚度与温度灵敏度系数的关系,理论分析得到镀层厚度分别为2.315um、16.655um、85.255um的镀镍FBG的温度灵敏度系数依次为12.2403pm/℃、17.3782pm/℃、19.6026pm/℃,实验值依次为12.313pm/℃、17.1pm/℃、20.024pm/℃。理论值与实验值基本一致。讨论了镀镍FBG波长移位的滞回现象并用热处理的方法消除了滞回现象。
     对FBG埋入水泥砂浆后的温度灵敏度系数进行了理论和实验研究。分析了裸光纤光栅和镀镍光纤光栅埋入后的应力应变,推导了FBG埋入后的温度灵敏度系数公式,并用实验验证了温度灵敏度系数公式,对埋入水泥砂浆的FBG受温度变化时的应变进行了理论分析并用ANSYS软件进行了仿真。理论、实验和仿真得到了一致结果。
     分析了FBG经过保护再埋入金属后温度变化时的应力应变,推导了FBG埋入金属后的温度灵敏度系数公式。以FBG埋入金属铝为例,对埋入金属后的FBG受温度变化时的应力应变进行了理论分析并用ANSYS软件进行了仿真(有限元分析)。理论和仿真得到了一致结果。
Recently, fiber Bragg gratings (FBG) have received much attention in the areasof optical Communications and fiber sensors. Fiber Bragg Grating sensors offermany important advantages such as electrically passive operation,big signalbandwidth,high sensitivity and multiplexing capabilities,low weight, smallconfiguration and suitable to be used in the high temperature,corrosive and dangerousenvironment.The fiber bragg grating sensors possess broad application foreground inthe safety scrutiny of especially situation,for example,big architecture and oilwell.Fiber Bragg gratings is the mainly research object in the dissertation. Theprotected technics,basic properties and sensing application of FBG are studied intheory and verified by experiments and simulation.The following are the maincontents:
     Fiber Bragg grating is protected effectively in the dissertation, a non-coarseningfiber surface electroless plating technics with good adhesion force between layer andfiber is proposed, according to the characters of this project's post-processing, usingplating layer's adhesion force,electric properties,brightness and plating depositionrate as the main judgment of the electroless plating, with the help of orthogonaltesting, the technics for optimal elecroless plating is achieved, optimum conditionsare: NiSO_4·6H_2O 25g.L~(-1),NaH_2PO_2·H_2O 20g.L~(-1),C_3H_6O_2 20mL.L~(-1),H_3BO_3 20g.L~(-1),NaF 1 g.L~(-1),saccharin 2mg.L~(-1),pH 4.5,temperature 86℃.The Fiber Bragggrating is electroplated after electroless plating.for the more, theoretical analyses forthe results is applied here.
     According to the characteristic of nickel-coated FBG sensors, the strains andstresses on the nickel-coated FBG sensors under varied temperature were analyzed.The temperature sensitivity of nickel-coated FBG sensors was deduced in theory andverified by experiment. It was proved that wave shift and strains/stresses ofnickel-coated FBG sensors are proportional to the temperature change. Therelationship between plating thickness and temperature sensitivity was analyzed. AFinite Element Analysis Software (ANSYS) was used to simulate the stresses andstrains on the nickel-coated FBG sensors under varied temperatures. When plating thickness was 4.56um, temperature sensitivity was 14.3235pm/℃in theory andexperiment result was 13.92pm/℃.The results of theoretical analysis matches theones from experiments and simulation well.
     In order to research the relation between temperature sensitivity and platingthickness of nickel coated fiber bragg grating,the same FBG was electroless platedfour times, plating thicknesses of nickel coated FBG and temperature sensitivitieswere measured after every electroless plating, so the temperature sensitivities ofnickel coated FBG with different plating thickness were athieved. The temperaturesensitivity formula of nickel coated FBG was discussed, the relation betweentemperature sensitivity and plating thickness of nickel coated fiber bragg grating wasanalyzed in theory and verified by experiment。When plating thickness were2.315um, 16.655um,85.255um respectively, temperature sensitivities were12.2403pm/℃,17.3782pm/℃,19.6026pm/℃in theory and experiment results were12.313pm/℃, 17.1pm/℃,20.024pm/℃, The results of theoretical analysis matches theones from experiments well. The hysteresis of wave-shift was discussed andhysteresis disappeared after heat treatment
     The temperature sensitivity of naked and nickel-clad FBG which embedded incement mortar was researched by theory and experiment, the strains and stresses onthe embedded FBG sensors under varied temperature were analyzed. Thetemperature sensitivity formula of embedded FBG was deduced in theory and verifiedby experiments. The strains of FBG which embedded in cement mortar under variedtemperature were analyzed in theory and simulated by ANSYS software. The resultsof theoretical analysis matches the ones from experiments and simulation well.
     The strains and stresses on the FBG in smart metal structure under variedtemperature were analyzed.The temperature sensitivity of FBG in smart metelstructure was deduced in theory. Take FBG (which protected by Ni-P alloy andembedded in Aluminum-Alloy) as example, the strains of FBG under variedtemperature was analyzed in theory and simulated by Finite Element AnalysisSoftware (ANSYS). The results of theoretical analysis matches the ones fromsimulation well.
引文
[1] 黄英,赵利,时刻等.玻璃纤维化学镀Ni-Fe-W-P合金的研究,[J],稀有金属材料与工程,2006,35(11):1725-1729
    [2] 李鹏,黄英,熊佳等.玻璃纤维化学镀Ni-Cu-P合金的研究[J],材料科学与工艺,2006,14(6):630-633
    [3] 张会平,江中浩,刘先黎等.玻璃表面化学镀纳米铜膜,[J],吉林大学学报(工学版),2007,37(1):11-16
    [4] 刘小娣,杨毅,李凤生,化学镀法制备纳米Cu/Al复合粉末,[J],功能材料,2006,37(8):1335-1337
    [5] 房汝建,侯丽雅,章维一等.微喷射技术制备的化学镀金属银线微结构,[J],微细加工技术,2006,3:49-53
    [6] 徐坚,熊惟皓,曾爱香.银催化化学镀合金包覆空心微珠粉体的制备,[J],稀有金属材料与工程,2007,36(1):141-144
    [7] 陈曙光,刘君武,丁厚福.化学镀的研究现状、应用及展望,[J],安徽化工,1996,6:23-25.
    [8] 张国栋.Ni-P化学镀反应速率及机理研究,[J].物理化学学报,1998,14(5):429-434.
    [9] 姜晓霞,沈伟.化学镀理论与实践.[M],北京:国防工业出版社,2000,13-14
    [10] 王霞,彭健锋,张志东,景步宏.化学镀Ni-P镀层的应用现状,[J],西部探矿工程,2006,增刊:135-137
    [11] 司徒海文,李志辉,叶先运,李深涛.化学镀Ni-P合金工艺的改进及其应用,[J].湖北汽车工业学院学报,1996,16(1):23~28.
    [12] 李深涛,叶先运,李志辉,司徒海文.化学镀Ni-P合金工艺的改进,[J].电镀与环保,1998,99(1):18~20.
    [13] 陈相振.化学镀镍磷合金防腐工艺及其推广应用[J].齐鲁石油化工,1997,25(3):221~223.
    [14] 于晓鹏.化学镀Ni-P合金技术在换热器管束防腐中的应用[J].石油化工设备技术,2000,5:39~42.
    [15] 王永红,何焕杰,詹适新,徐勤,张灿国.化学镀技术在油田井下工具上的应用,[J].材料保护,1997,30(9):31~32.
    [16] 梁平.PVC塑料低温碱性Ni-P合金工艺,[J].电镀与环保,2005,25(3):14~16.
    [17] 时刻,黄英,李鹏等.非金属材料化学镀的应用新进展,[J].玻璃钢/复合材料,2005(2):45~49.
    [18] 罗胜联,戴磊,周海晖等.镁合金新型电镀工艺研究,[J].湖南大学学报(自然科学版),2006,33(3):106-109
    [19] 王桂香,李宁,黎德育.直接电镀用胶体钯催化剂的研制及性能,[J].稀有金属材料与工程,2006,35(10):1656-1660
    [20] 张绍和,陈平.新型电镀弱包镶金刚石钻头研制'[J].金刚石与磨料磨具工程,2007,1:31-34.
    [21] 王玫,林菊芳,温中伟等.探测器用铀电镀片的制作,[J].核电子学与探测,2006,26(5):666-668
    [22] Lashmore D S,Ratzker M,Pratt K W.Electrodeposition and corrosion performance of Ni-P amorphous alloys.[J], Plating and Surface Finishing ,1986,9:74~82.
    [23] Bundler M.Electrochemical behavior of electro deposition of Ni-P amorphous alloys.[J], Z Anorg Allg Chem,1965,340:113~119.
    [24] Raj Naryan , Mungole M N. Electrodeposition of Ni-P alloy coatings. ,[J],Surface Technology, 1985,24:233~242
    [25] 吴玉程,洪钟.化学(电)沉积镍磷合金的腐蚀防护特性.[J],化工腐蚀与防护,1991,1:28~36.
    [26] 黄清安.在电镀镍磷合金中亚磷酸阴极行为的研究.[J],武汉大学学报(自然科学版),1982.4:55~60
    [27] 何建波,吴肖安,黄辉等,电镀镍磷合金研究现状及前景,[J],浙江工业大学学报.1999,27(1),p62-70.
    [28] 秦勇.镍磷非晶态合金对黄铜冷凝管的保护作用研究.[J],腐蚀与防护,1996,17(1):16~18.
    [29] 刘云启.布拉格与长周期光纤光栅及其传感性能特性研究,[D],南京大学博士学位论文2000.
    [30] Jean-Luc Archambault and Stephen G. Grubb. Fiber gratings in lasers and amplifiers, [J], Journal of Lightwave Technology, Vol,15, No.8(1997):1378-1390.
    [31] A.D.Kersey, M.A.Davis,H.J.Patrick,et al,Fiber grating sensors.[J],Journal of Lightwave Technol, 1997,15(8): 1442-1463
    [32] Y.J.Rao, In-fiber Bragg grating sensors, [J],Meas. Sci & Technol.,1997,8(4):355-357
    [33] W.H.Loh,R.I.Laming,N.Robinson et al,Dispersion compensation over distances in excess of 500 km for 10-Gb/s system using chirped fiber gratings ,[J],IEEE Photonics Technol. Lett., 1996,8(7): 944-946.
    [34] Sugden K.,et al., Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,[J] ,IEEE Journal of Lightwave Technology, 1997 15(8):1424-1432.
    [35] Farries M.C.,et al.,Broadband chirped fiber Bragg filter for pump rejection and recycling in erbium doped fiber amplifiers,[J],Electron. Lett.,vol.28,(1992):487-489.
    [36] Eggleton B.J.,et al., Long periodic suoerstructure Bragg gratings in optical fibres,[J],Electron Ltee.,Vol.30(1994): 1620-1622.
    [37] Morton Ibsen,Michael,et al.,Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation, [J], IEEE Photonics Technology Letters, 1998,10(6):842-844.
    [38] Othonos A.,et al., Superimposed multi Bragg gratings,[J],Electron Lett., Vol. 30, (1994): 1972-1973.
    [39] Christophe Msrtinez and Pierre Ferdinand, Analysis of phase-shift fiber Bragg gratings written with phase plates, [J],Applied Optics, 1999,38(15):3223-3228.
    [40] Wei L. and Lit J.W.Y., phase-shifted Bragg grating filters with symmetrical structures, [J], Journal of Lightwave Technology, 1997,Vol. 15:1405-1410.
    [41] Kashyap R.,R.Wyatt and P.F.McKee, Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings,[J],Electron. Lett.,Vol.29,(1993): 1025-1026.
    [42] Hill K.O.,et al., birefringent photosensitivity in monomode optical fiber;Application to external writing of rocking filters, [J],Electron.Lett.,Vol.27,(1991): 1548-1550.
    [43] A.M.Vengsarkar, J.R.Pedrazzani,J.B.Judkins,et al.,Long-period fiber gratings as band-rejection filters, [J],J. Lightwave Technol,.14(1):58-64.
    [44] A.M.Vengsarkar, J.R.Pedrazzani,J.B.Judkins,et al.,Long-period fiber grating-based gain equalizer,[J],Opt.Lett., 1996,21 (5):336-338.
    [45] V.Bhatia and A.M.vengsarkar, Optical fiber long-period grating sensors,[J], Opt.Lett. 1996, 21 (9): 692-694.
    [46] 廖帮全,赵启大,冯德军等,光纤耦合模理论及其在光纤布拉格光栅上的应用,[J],光学学报2002,22(11):1340-1344.
    [47] 廖帮全;冯德军;赵启大等.光纤布拉格光栅电流传感的理论和实验研究.[J]光学学报,2002,22(9):1092~1095.
    [48] Kersey A D, Davis M A, Patrick H J et al. Fiber grating sensors.[J], J.Lightwave Technol., 1997,15 (8) :1442~1463
    [49] 林钧岫,王文华,王小旭.光纤光栅传感技术应用研究及其进展,[J],大连理工大学学报,2004,44(6):931-936
    [50] PROSSER W H, WU M C, ALL ISON S G.Structural health monitoring sensor development at NASA Langley Research Center [A]. NACA Technical Reports [R]. Hamp ton: NASA Langley Res Cent, 2003.1-6.
    [51] UDD E, CLARK T E, ANA S, et al. Fiber optic grating sensor systems for sensing environmental effects [P]. USP 5 380995, 1995-01-10.
    [52] UDD E, CLARK T E, ANA S, et al. Sensosystems employing optical fiber gratings [P]. USP 5397891, 1995-03-14.
    [53] UDD E. Fiber with multiple overlapping gratings[P]. USP 5627927, 1997-05-06.
    [54] UDD E, HAU GSEED, TREGO A. Fiber optic grating corrosion and chemical sensor [P]. USP 6 144 026, 2000-11-07.
    [55] ECKE W, LATKA I, WILLSCH R, et al. Optical fiber grating strain sensor network for X-38 spacecraft health monitoring [A].Proceedings of SPIE [C]. V enice: The Internat ional Society of Optical Engineering, 2000. 888-891.
    [56] WIL KERSON C. Application of multiplexed fiber optic sensors to composite pressure vessels, [J]. NNWG Newsletters, 2002, 8 (3) : 1-2.
    [57] PARMAR D S, SPRIN KLEDR, S1NGH J J.Development of in-fiber reflective Bragg gratings as shear stress monitors in aerodynamic facilities [A].NACA Techn ica l Reports [R]. Hampton:NASA/T P, 1998. 1221.
    [58] BETZD, STAUD IGEL L, TRU TZEL M N, eta 1.Test of fiber Bragg grating sensor network for commercial aircraft applications [A]. Optical Fiber Sensors Conference Technical Digest [C].Port land: IEEE Laser and Electro-Optics Society,2002.55-58.
    [59] KERSEY A D, DAVISM A, PATRICK H J, et al.Fiber grating senso- rs [J]. J. Lightwave Yechnol, 1997,15(8): 1442-1463.
    [60] SA GVOLDEN G, PRAN K, VINES L, et al.Fiber optic system for ship hull monitoring [A]. Optical Fiber Sensors Conference Technical Digest[C]. Portland: IEEE Laser and Electro-OpticsSociety, 2002. 435-438.
    [61] HJELME D R, BJERKAN L, N EEGARD S, et al. Application of Bragg grating sensors in the characterization of scaled marine vehicle models, [J]. Appl. Opt., 1997, 36(1): 328-336.
    [62] FERNANDEZA F, BERGHMAN S F, B RICHARD B, et al. Multiplexed fiber Bragg grating sensors for in-core thermometry innuclear reactors [A]. Proceedings of SPIE [C]. Boston: The International Society of Optical Engineering, 2000. 40-49.
    [63] FR IEBEL E E J. Fiber Bragg grating strain sensors: present and future applications in smart structures [J]. Optics & Photon ics News, 1998, 9(8): 33-37.
    [64] FERD INAND P, FERRA GU O, L ECH IEN J L, et al. Mine operating accurate stability control with optical fiber sensing and Bragg grating technology[J]. J. Lightwave Technol, 1995, 13(7): 1303-1313.
    [65] CHENG L K, OOSTD IJCK B W. High-speed structure monitoring using a fiber Bragg grating sensor system [A ]. Optical Fiber Sensors Conference Yechn ical Digest [C ]. Portland: IEEE Laser and Electro-Optics Society, 2002. 215-218.
    [66] 万里冰等,埋光纤光栅传感器智能土木结构应变监测,力学与实践,2003,4:
    [67] 唐风等,机敏结构中光纤传感器的集成方法,传感技术学报,1996,3;59-61
    [68] 杨建良.向清.黄德修.郭照华.智能复合材料内光纤的埋置技术,纤维复合材料,1998,1:
    [69] 黄智伟.光纤智能结构/蒙皮,[J],传感器世界,2000年04期:p21-24
    [70] Li, Xiaochun;, Ph. D. Embedded sensors in layered manufacturing., Dissertation Abstracts International, [D], Volume: 62-10, Section: B, page: 4745.; Adviser: Fritz Prinz, Stanford University. 2001
    [71] Rogers C A. Intelligent material system-the down of a new material age[J], Journal of Intelligent Material System, 1992, 4(1): P4-12.
    [72] Robison R. Smart structures[J]. Civil Engineering, 1992, 62(11): p66-68
    [73] 杨大智.智能材料与智能系统.[M].天津:天津大学出版社,2000:p1-37.
    [74] 姚康德,成国祥.智能材料与仿生构思[J],化工进展,2002,21(7):p518-521.
    [75] 李川,张以漠,丁永奎.光纤智能结构的传感研究.[J],光子技术,2001(04):p193-197
    [76] Arregui F J, Liu Y J, Matias I R, et al. Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by electrostatic self-assembly[J]. SPIE, 2000(3986): p35-42
    [77] Udd E. Fiber optic smart structures[J]. Proceedings of the IEEE, 1996, 84(1): p60-67.
    [78] 曹照平,王社良.试论生命建筑结构.[J],西北大学学报(自然科学版),2000.30(4)p366-369
    [79] 马治国、闻邦椿、颜云辉,智能结构的若干问题与进展,[J],东北大学学报(自然科学版)1998.19(5):513-516
    [80] Sundaresan, M. J.; Methods of distributed sensing for health monitoring of composite material structures, Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing) Volume: 32, Issue: 9, September, 2001, pp. 1357-1374
    [81] 谢建宏,张为公,智能材料结构的研究与发展,[J]传感技术学报,2004(1):p163-167
    [82] 严钦元,方景礼.塑料电镀,[M],重庆:重庆出版社,1987:74~109
    [83] 卫云鸽.石英光纤表面化学镀镍,[D],电子科技大学,2001:P12
    [84] 谢剑锋,张华,徐建宁,胡瑢华,宋路发。智能金属结构中光纤表面金属化研究,[J],材料保护,已录用。
    [85] 迟兰州,张声峰,何为,石英光纤表面镀镍钴合金工艺研究,[J]电镀与涂饰,Vol.10 No.4 1998.P7~8
    [86] 李小甫,姜德生.石英光纤表面化学镀镍磷合金工艺,[J],化工学报,Vol.56 No.1 2005,P126~129
    [87] 张胜涛.电镀工程[M].北京:化学工业出版社,2005
    [88] 程秀云,张振华.电镀技术[M].北京:化学工业出版社,2004
    [89] 郭湛,刘凯,王怀彬,光纤传感技术用于铁轨温度监测的研究,[J].光电子·激光,2006,17(11):p1369-1371;
    [90] 万里冰,王殿富,基于参考光栅的光纤光栅应变传感器温度补偿,[J].光电子·激光,2006,17(1):p50-53;
    [91] 张晓晶,武湛君,张博明等.光纤布拉格光栅温度和应变交叉灵敏度的实验研究,[J].光电子·激光,2005,16(5):p566-569;
    [92] 乔学光,贾振安,傅海威等.光纤光栅温度传感理论与实验,[J].物理学报,2004,53(2),P494-497;
    [93] 谢剑锋,张华,宋路发。镀镍光纤布拉格光栅温度灵敏度分析,[J],光电子.激光,已录用。
    [94] 于秀娟,余有龙,张敏等.钛合金片封装光纤光栅传感器的应变和温度传感特性研究[J].光电子·激光,2006,17(5):p564-567;
    [95] 于秀娟,余有龙,张敏等.铜片封装光纤光栅传感器的应变和温度传感特性研究[J].光子学报,2006,35(9):p1325-1328;
    [96] 詹亚歌,蔡海文,耿建新等.铝槽封装光纤光栅传感器的增敏特性研究,[J].光子学报,2004,33(8):p952-955;
    [97] Gang-Chih Lin, Likarn Wang, C. C. Yang, et al. Thermal Performance of Metal-Clad Fiber Bragg Grating Sensors, [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1998, 10(3): p406-408.
    [98] 廖延彪.光纤光学,[M],北京,清华大学出版社,2000,P197-205。
    [99] 胡家艳,江山.光纤光栅传感器的应力补偿及温度增敏封装,[J].光电子·激光,2006,17(3):p311-313;
    [100] 程昌钧.弹性力学.[M].兰州:兰州大学出版社.,1996,P467;
    [101] C. T. Shyu and L. Wang, Sensitive linear electric current measurement using two metal-coated single-mode optical fibers, [J]. J. Lightwave Technol. 1994, 12(11), p2040-2048.
    [102] 徐芝纶.弹性力学简明教程,[M],北京:高等教育出版社,2002,P52-79,P114-176
    [103] 严宗达,王洪礼.热应力,[M],北京:高等教育出版社,1993,P76-116
    [104] 张雄,王才璋,王黎智等:橡皮筋的滞后现象实验研究,[J],大学物理,1999第,18(10)P36
    [105] 陈运平,刘干斌,姚海林,岩石滞后非线性弹性模拟的研究,[J],岩土力学,2006,27(3)341
    [106] 彭伟斌,吴德隆.布喇格光栅光纤氢浓度传感器的研究.[J].压电与声光,2005,27(2):p95-97.
    [107] 曾捷,梁大开,曹振新.光纤SPR传感器测量液体折射率的研究.[J].压电与声光,2005 27(1):p18-20.
    [108] Prohaska J D, Snitzer E, Chen B, et al. Fiber optic Bragg grat-ing strain sensor in large scale concrete structures[A]. SPIE [C]. 1993, 1798:286-294
    [109] A lavie AT ,M aaskant R,O hnM M,et al.Application and characterization of intracore grating sensors in a CFRP prestressed concrete girder [A]. SPIE [C]. 1994, 2191:103-110.
    [110] DavisM A, Kersey A D, Berkoff T A ,et al.Dynamic, strain monitor-ring of an in-use interstate bridge using fiber Bragg grating sensors [A].SPIE [C]. 1997,3043: 87-95.
    [111] John Seim, Eric Udd,Whitten Schulz, et al. Health montoring of an oregon historical bridge with fiber grating strain sensors[A]. SPIE [C]. 1999, 3671: 128-134.
    [112] Measures R M, Alavie A T. A Structurally Integrated Bragg Grating Laser Sensing System for a Carbon Fiber Prestressed Concrete Highway Bridge[J]. Smart Materials Structure, 1995, (4) : 20-30.
    [113] Peter K C, Chan WJ, Lau K T, et al. Strain Monitoring of Composite-Boned Concrete Specimen Measurements by Use of a FMCW Multiplexed Fiber Bragg Grating Sensor Array[J]. Proceedings of SPIE ,2000,4077:56-59.
    [114] 万里冰,武湛君,张博明等,应用光纤Bragg光栅测量混凝土结构内部应变,[J],光电子.激光,2002,13(7):722-725
    [115] 谢剑锋,张华,叶建雄,徐健宁。光纤智能金属结构应力应变理论分析及仿真,[J]压电与声光,已录用。
    [116] 谢剑锋,张华,宋路发。光纤布拉格光栅埋入后温度灵敏度分析,[J],压电与声光,已录用。
    [117] 刘海成,宋玉普,吴智敏.考虑温度影响的大体积混凝土应力场分析方法.[J].大连理工大学学报,2005,45(1):p121-127.
    [118] 渠时勤,黄中木.锚杆锚固段合理设计长度分析.[J].重庆交通学院学报,2000,19(3):P94-97.
    [119] 谢剑锋,张华,宋路发。基于应力分析的光纤光栅温度传感性能研究,[J],微计算机信息,已录用。
    [120] 扬世铭,陶文铨.传热学(第三版)-[M].北京:高等教育出版社.1998:P422.
    [121] 王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社,1989.p182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700