特高压电器局部放电和交流耐压试验装置的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力负荷的快速增长,远距离、大容量输电急需增加超高压、特高压电网。特高压电器是电网中重要组成部分,对特高压电器进行交流耐压和局部放电试验是一项有效的检验方式。本文以研究和开发特高压电器交流耐压和局部放电试验装置选题,具有重要的理论意义和实际应用价值。
     本文综述了国内外特高压电器交流耐压和局部放电试验装置的现状,分析了不同类型的特高压电器设备的特性。以武汉高压研究院特高压试验基地的1000kV变压器的试验数据为参考,提出了特高压电力变压器的交流耐压和局部放电试验方法和试验回路原理图;在研究分析特高压GIS装置特性的基础上,提出了采用变频串联谐振的方法获取高电压进行试验;论述整个装置中的变频电源和高压电抗器的设计方法,采用现代大功率电力电子器件实现变频高压功能,论述了三极管并联放大方式可以输出超大功率,满足试验需要;针对特高压电器的交流耐压和局部放电试验装置的一些特殊要求,提出了采用变频电源直流保护方式实现安全控制的模式,采用负反馈回路保证了试验中电压稳定度;为了减小局部放电对测量的影响及电子元件发热量的问题提出了解决方案。
     本文通过对750KV电压等级超高压电器的交流耐压和局部放电试验数据分析说明了本文设计特高压电器局部放电和交流耐压试验装置方案的合理性,证明了此装置工作的可靠性高、安全性好、实用性强,具有良好的应用前景。
With the rapid increase of load, the ultra-high voltage (UHV) grid is eagerly needed for long-distance, large-capacity power delivery. UHV equipments are important parts of grid and it has been proved as an efficient inspection method to apply AC voltage withstand test (ACVWT) and partial discharge test (PDT) on UHV equipments. This paper included study and design of an appliance which can be used in ACVWT and PDT on the UHV equipments, has both academic significance and practical application value.
     This paper summarized global research status of this kind testing appliance, analyzed characteristics of different type UHV equipments. Referred to the 1000KV-transformer testing data from UHV test-base of Wuhan High Voltage Research Institute, a testing method and a wiring schematic diagram are both proposed, which are applied in ACVWT and PDT on UHV equipments. Based on analysis of UHV GIS equipments characteristics, a method of variable-frequency (VF) series-resonance is shown, used to get high voltage for the test. Designing way of VF source, high-voltage reactor in the whole equipment and applying modern high-power electronics to change frequency of high voltage have been discussed. It indicated that triode-parallel-magnification can produce huge power to satisfy the needs of test. For the special requirements of the testing appliance, a mode of safety-control applied VF source DC protection is proposed, and negative-feedback loop is also adopted to guarantee stability of the testing voltage. Solution methods are given to reduce influence of partial discharge and generating heat of electronic components on the measurement.
     This paper has proved the rationality of the testing appliance by analyzing the data from ACVWT and PDT on 750KV-UHV equipments, demonstrated its high stability, good security, strong practicability and good potential in application.
引文
[1] 黄俊.半导体变流技术.北京:机械工业出版社,1980
    [2] 蔡美琴,张为民,沉新群.MCS-51 系列单片机系统及其应用.北京:高等教育出版社,1992
    [3] 华中工学院,上海交通大学.高电压试验技术.北京:水利电力出版社,1982
    [4] 朱德恒,严璋.高电压绝缘.北京:清华大学出版社,1992
    [5] 康华光.电子技术基础(模拟部分).北京:高等教育出版社,1979
    [6] 康华光.电子技术基础(数字部分).北京:高等教育出版社,1979
    [7] 邱关源.电路.北京:高等教育出版社,1989
    [8] 田健,郭会军,王华民,等.大功率 IGBT 瞬态保护研究.电力电子技术,2000,4:29-35
    [9] 杨旭,马静,张新武,等.电力电子装置强制风冷散热方式的研究.电力电子技术,2000,4:36-38
    [10] 甘浦烷,张宗正,陈文针.微机控制工频高压试验系统的研究.高电压技术,2000,26(4):53-55
    [11] 黄战华,蔡怀宇,瞿晓红.多相制步进电机电源技术.电力电子技术,2000,6:25-27
    [12] 王彦武,武力,P.Jacbo M.Held.IGBT 模块封装热应力研究.电力电子技术,2000,6:52-54
    [13] 谢力华,苏彦民.正弦波逆变电源的数字控制技术.电力电子技术,2001,35(6):52-55
    [14] 李长胜,崔翔,廖延彪.光纤电压传感器研究综述.高电压技术,2000,26(4):40-43
    [15] 支余庆.利用串联谐振耐压现场检出和处理 GIS 缺陷.高电压技术,2000,26(2):78-79
    [16] 赵中原,方志.高电压测量用光电系统的设计.高电压技术,2001,27(1):50-54
    [17] 朱勇,叶妙元,刘杰.220KV 组合式光学电压电流互感器的设计.高电压技术,2000,26(2):34-36
    [18] 李澎森.异频法测量大型地网接地电阻的研究.高电压技术,2000,26(3):37-39
    [19] 湖南电力试验研究所.湖南:高压电气设备试验方法导则.1992
    [20] 贾逸梅.高压电气设备现场测试技术.北京:水利电力出版社,1994
    [21] 刘宏,黄锦恩,王离九.大功率晶体管并联研究.电力电子技术,1994,1:26-28
    [22] 入江俊昭,藤江明雄,山根博基.高频大功率三极管.北京:国防工业出版社,1976
    [23] 梁煦东,关志成,陈昌渔.高电压工程.北京:清华大学电机工程与应用电子技术系,2000
    [24] 刘振亚.特高压电网.北京:中国经济出版社,2005
    [25] 何希才.新型开关电源设计与应用.北京:科学出版社,2001
    [26] 唐炬,孙才新,徐明英.测试 MOA 阻性电流的微机测试仪.高压电器,1993,123(3):25-27
    [27] 张树兵,戴红,陈哲.Visual Basic 6.0(中文版)入门与提高.北京:清华大学出版社,1999
    [28] 杨宪章.电磁场原理.北京:高等教育出版社,1984
    [29] 贺景亮.电力系统电磁兼容.北京:水利电力出版社,1993
    [30] 贾振国,许铃.“看门狗”电路 DS232 在单片机产品中的应用.见:器件在线,1006-6977(2000)04-0020-02
    [31] Lai Jih-sheng. Multilevel Converters—A New Breed of Power Converters. IEEE Trans.on Indus. Appl. 1996,32(3);509-517
    [32] Nabase A. Anew Neutral-clamped PWM Inverter. IEEE IAS’80,1980, 761-766.
    [33] Leon M Tolbert. Multilevel Converters for Large Electric Drivers. APECS, 2000,530-536.
    [34] Meyard T.A. and Foch H.Multilevel conversion :High Voltage Choppers and Voltage Source Inverters.Conference Record of the IEEE PESC’92,1992, 397-403
    [35] Manjrekar Madhav D. A Hybrid Multilevel Inverter Topology for Drive Application. APEC’98,1998,523-529
    [36] Bernet S..Recent Developments of High Power Converters for Industry and Traction Application.IEEE Trans. On Power Electronics,2000,16(6):1102-1117
    [37] Motto Keven,et al. Comparison of High-power IGBT’s and Hard-driven GTO’s for High Power Inverters.IEEE Trans.on Indus.Appl.,1999,35(2):487-494.
    [38] Sirisukprasert Siriroj,et al.Optimum Harmonic Reduction With a Wide Range of Modulation Indexes for Multilevel Converters. IEEE CPES’s 2001,212-217
    [39] Seixas P F. Aspace Vector PWM Method for Three-level Voltage Source Inverters.IEEE APEC’2000:Compact Disc,Data:13-4
    [40] Sanyo Electric Co, Ltd. Semiconductor Bussiness Headquaters 2SC3998 Ultrahigh-Definition CRT Display Horizontal Deflection Output Applications D2598HA(KT)/N158Mo,TS No.2732-1/3 1998
    [41] S. Schierig,D. Russwurm.HV on-site testing on cables by alternating voltage of variable frequency.IEEE Insulated Conductor Committee (ICC) Meeting 2000
    [42] Cho Jung-Goo.Zero-Voltage and Zero-Current Switching Full Bridge PWM Converter for High-Power Application. IEEE Trans.on Power Electronics. 1996,11(4);622-627
    [43] Avant R L. A Unified SCR Model for continuous Topology CADA.IEEE Trans.on Ind.Electron,1984,31(4):352-361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700