水稻全长cDNA文库的构建和两个microRNA的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是全球最重要的粮食作物之一。水稻遗传改良的关键是寻找能调节水稻株高、分蘖数、抽穗期、穗的大小和育性等重要农艺性状的基因。以MicmRNA为代表的内源small RNA分子是生物生长发育关键调节因子,为水稻的遗传改良提供了新的基因资源。
     本研究包含三方面的内容:一是构建水稻全长cDNA文库,得到13000个以上的全长cDNA克隆,同时构建用于酵母双杂交筛选的cDNA文库;二是系统的分析水稻中的OsSPL(Oryza Sativa SQUAMOSA Promoter-binding Like)基因,特别是miR156的靶基因;三是以筛选控制水稻重要农艺性状的small RNA基因为目标,重点研究miR156和miR164在水稻生长发育中的调节机制。
     cDNA文库的构建的结果如下:
     1.利用改良的Oligo-capping方法构建了全长比例在92%以上的水稻幼穗的cDNA文库,并对3000个随机挑选的克隆测序。此外,从本实验室已有的cDNA文库中筛选了10828个包含完整读码框的cDNA克隆。总共得到了13650个全长cDNA克隆。
     2.构建了两个用于酵母双杂交的cDNA文库,在本实验室已成功用于转录因子、mRNA剪切因子、未知基因等不同类型基因的互作蛋白的筛选,假阳性率在10%以下。
     miR156及靶基因OsSPL基因分离鉴定的主要结果如下:
     1.分析了水稻中miR156的靶基因OsSPL家族。主要包括水稻中18个OsSPL基因的分离、植物中SPL基因的进化分析、保守结构域的分析,并分析了OsSPL基因在水稻的13不同发育时期的组织中的表达水平。对8个OsSPL基因进行了超表达。
     2.序列分析表明水稻中11个OsSPL基因含miR156的结合位点(M156BR,miR156 binding region)。通过Northern blot的结果表明,OsSPL12和OsSPL14的mRNA分子被miR156-RISC切断。
     3.RLM-RACE分析OsSPL14和OsSPL17被miR156-RISC切断的位置。miR156-RISC在M156BR的第7和8个核酸之间的位置切断靶基因,正好位于M156BR与miR156错配的核酸的位置。
     4.对miR156的一个靶基因OsSPL14进行了定点诱变,得到不受miR156调节的基因OsSPL14ml和OsSPL14m2,并对OsSPL14m2进行了超表达。
     5.通过Y2H筛选穗的cDNA文库,得到了OsSPL14的6个互作蛋白。其中三个是与ubiquitin途径相关的RING finger类蛋白,表明OsSPL14除了受miR156调节外,蛋白的稳定性可能还受ubiquitin途径的调节。
     miR156和miR164功能研究主要结果如下:
     1.在玉米Ubiquitin启动子的作用下超表达了miR156和miR164,得到了miR156的两个前体(pri-miR156b和pri-miR156h)的超表达植株(Md和Mh)和miR164一个前体(pri-miR164b)的超表达植株(MI7)。
     2.分析了Md和Mh的T_4代植株与WT(wild type)在生长和发育上的差异。在苗期(四叶期以前)Md和Mh与WT无差异。在第四叶生长出以后,Md和Mh的叶片和分蘖发生的速度是WT的3倍以上。到灌浆期,Md和Mh植株叶片的数目是WT的100倍以上,有效分蘖的数目是WT的50倍以上。在大田种植条件下(武汉7月至10月)Md和Mh的营养生长延长,抽穗期推迟7天以上。Md和Mh植株高度只有WT的50%,穗的二次枝梗和颖花数变少。通过比较Md和Mh的叶片大小、叶片表皮细胞的发育情况和SAM(shoot apical meristem)的大小,推断miR156超表达改变了水稻的发育时间。
     3.通过small RNA gel blot分析miR156在不同“年龄”的叶片中的表达水平表明miR156的高低与叶片发育时间正相关,miR156是叶片发育时间的Marker基因。
     4.利用水稻的全基因组芯片分析了Md/Mh和WT植株的老叶和新叶中基因的表达情况,并据此分析miR156的下游基因以及叶片发育时间相关的基因。
     5.比较了含M156BR的OsSPL基因在Md/Mh和WT不同器官中的表达量,结果表明miR156-OsSPL基因的互作受其他因子的调节,可能的调节因子有DRG12和已报道的PLA2。
     6.在叶片的生长发育过程中miR164表达模式与miR156正好相反,说明两者在叶片的发育过程中存在联系。同时在small RNA gel blot中还检测到一个表达模式与成熟miR164相反的未知前体,表明miR164的水平受启动子和microRNA形成过程的双重调节。
     7.序列分析表明水稻中仅有OsNAC1和OsNAC2含M164BR(miR164 bindregion)。RLM-RACE分析也证明OsNAC1和OsNAC2的mRNA在M164BR第10个核酸的位置被切断。OsNAC1和OsNAC2的转录本在不同发育时间的叶片中,表达模式与miR164的表达模式相反。
     8.miR164能调节水稻叶片的边界。在miR164超表达的MI7植株中,叶鞘边缘融合、部分叶片融合或扭曲,在一些极端的植株中有类似拟南芥cup-shaped的结构形成。MI7叶片发育的缺陷随植株生长时间的增加而加剧。
     9.miR164调节水稻的生殖生长。MI7的花药形态发育异常,花粉完全不育。MI7虽能正常开花,但胚和胚乳不能正常发育。正常抽穗开花的MI7主分蘖的倒数第二个节(穗颈节的前一个节)未伸长。MI7的叶片中,一个Flowers Locus T(FT)的同源基因(MI7D1)被抑制。在长日照条件下,OsNAC1、OsNAC2和MI7D1的表达与日照有关,OsNAC1和OsNAC2表达的最高峰在黑暗时间段的正中点。
     10.miR164的超表达改变了水稻体内的激素水平。通过外施生长素和细胞分裂素可以使MI7生长发育恢复正常。在MI7植株中部分生长素合成、运输和应答的基因被抑制。
     11.通过比较不同植物中miR156和miR164的表达,发现miR156-miR164在禾本科作物中保守,但在油菜叶片中存在不同的表达模式。
     12.根据以上结果,可以推断出以下结论:miR156是控制水稻发育特别是叶片发育的异时性基因。miR164在水稻中除了调节器官边界外,还具有与拟南芥中不同的功能—调节水稻的生殖生长。最后,一个miR164-miR156Paradigm的模型用来解释miR156和miR164在协同调节水稻器官发生、生长和成熟过程中的作用。MicroRNA表达模式的改变和靶基因数目的变化是miR156-miR164进化的重要组成部分。
Rice(Oryza Sativa L.) is one of the most important crops worldwide.Identification of genes,which control plant height,heading date,number of tillers and panicle size,is essential for rice genetic improvement.Endogenous small RNAs,especially microRNAs, are key regulators for plant development.MicroRNAs are novel candidate genes for rice genetic improvement.
     There are three objectives of this research:1) construction of cDNA libraries including full-length cDNA libraries and yeast two hybrid cDNA libraries;2) identification and analysis of the OsSPL genes from rice,specifically for miR156 targeted OsSPL genes;and 3) studying the functions of miR156 and miR164 in rice.
     In the first part,the main results are as follows:
     1.One full-length cDNA library has been constructed from young panicles(stage 3, 4,5).The sequences of 3,000 random selected clones indicated that more than 92% clones are full-length cDNA.A total of 10,828 cDNA clones,which contain full length open reading frames,have identified from the conventional cDNA library.Thus,13,650 full-length cDNA clones have been identified in this research.
     2.Two cDNA libraries have been constructed for yeast two hybrid(Y2H).The cDNA library have been used for Y2H screening for identification of interacting proteins of intested proteins in our group with less than 10%false positive clones.
     The main results of the second part of this research:
     1.OsSPL gene family in rice was systematically analyzed.18 OsSPL genes have been identified.The phylogenetic relation ship of plant SPL genes,conserved protein motifs,and expression pattern in 13 different tissues were studied in this research.
     2.There are 11 OsSPL genes containing M156BR(miR156 binding region) based on sequence analysis.The miR156-directed mRNA cleavage of OsSPL12 and OsSPL14 can be detected when they were over expressed in plants.
     3.The cleavage sites of OsSPL14 and OsSPL17 were mapped by RLM-RACE. The cleavage sites of miR156 targets were located between the seventh and eighth nucleotide of M156BR,where is the mismatch site of M156BR and miR156.
     4.Two point mutations of OsSPL14 gene,OsSPL14m1 and OsSPL14m2,were generated and OsSPL14m2 was over-expressed in rice.
     5.OsSPL14-interact-proteins were identified by Y2H screen of a panicle cDNA library.Three of them encode a RING finger protein,which is involved in ubiquitin pathway,suggesting that OsSPL14 may involved in the regulation of protein turnover.
     In the third part of this research,the functions of miR156 and miR164 was analyzed. The results list as follows:
     1.Two precursors of miR156(pri-miR156d and pri-miR156h) and one of miR164 (pri-miR164b) were transformed rice under the control of maize ubiquitin promoter.The transgenic plants named Md(pri-miR156d),Mh(pri-miR156h),and MI7(pri-miR164b) respectively.
     2.The developmental difference of Md and Mh were investigated.Md and Mh plants showed distinct developmental differences to WT after the fourth leaves emerged. The rate of leaf and tiller initiation of Md and Mh are 300%of that in WT.The heading dates of Md and Mh delayed more than 7 days.Compared to WT,the number of leaves increased more than one hundred folds and the number of tillers increased more than 50 folds.However,the plant height of the Md and Mh plants decreased 50%.Though the branches of panicle and the spikelet number of Md and Mh decreased dramatically,the yield and biomass are not changed.The shape and epidermis of leaves indicate that the developmental time of rice was changed in Md and Mh.
     3.The expression level of miR156 increased gradually parallel to the development of leaves.It is concluded that the expression level of miR156 can reflect the developmental time of rice leaf as a marker gene.
     4.The up-and down-regulated genes in mature or immature leaves of Md and Mh were identified by microarray assay.
     5.The interaction of miR156 and OsSPL may be regulated by other regulators.Two candidates including a no-coding RNA gene(DRG12) and PLA2 were identified in this research.
     6.The expression of miR164 showed reverse pattern to miR156 during the leaf development.An unknown primary transcript of miR164 has been identified in small RNA gel blot.It is suggested that the expression of miR164 is regulated by its promoter and microRNA processing.
     7.miR164 targets OsNAC1 and OsNAC2 in rice.Cleavage site mapping indicated that miR164 cleavages the 10~(th) nucleotide of M164BR.The transcript levels of OsNAC1 and OsNAC2 were decreased when miR164 was increased in different leaves.
     8.miR164 may regulate the organ boundary.The defects of MI7 leaf include fused leaf sheath and twist leaf blade.At reproductive stages,the abnormal development of MI7 pistil turns out sterile.
     9.The defects of MI7 can be rescued by applying hormones.The genes involved in auxin synthesis,transport and responses were down-regulated in MI7.Moreover,DRG12 is down-regulated in MI7.
     10.miR164 plays an essential regulation role in rice reproductive growth.One of the internodes of MI7 main culm did not elongate.In MI7 leaves,a LFY/FT homologous gene(MI7D1) was down-regulated.In addition,the expression levels of OsNAC1,OsNAC2,and MI7D1 were changed in association with photoperiodic rhythm: all the genes showed peak expression in the middle of dark phase.
     11.The expression pattern of miR156-miR164 is conserved in gramineae crops, but different in Brassica napus.
     12.A paradigm model of miR156-miR164 action has been concluded to explain the regulatory role of miR156 and miR164 in rice.
引文
1. Achard P, Herr A, Baulcombe D C, Harberd N P. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004,131: 3357-3365
    2. Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol, 2006, 16: 927-932
    3. Allen E, Xie Z, Gustafson A M, Carrington J C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005,121: 207-221
    4. Allen E, Xie Z, Gustafson A M, Sung G H, Spatafora J W, Carrington J C. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet, 2004, 36: 1282-1290
    5. Allen R S, Li J, Stahle M I, Dubroue A, Gubler F, Millar A A. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA, 2007,104:16371-16376
    6. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389-3402
    7. Alvarez J P, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell, 2006,18: 1134-1151
    8. Ambros V, Bartel B, Bartel D P, Burge C B, Carrington J C, Chen X, Dreyfuss G, Eddy S R, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. A uniform system for microRNA annotation. Rna, 2003,9: 277-279
    9. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein M J, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo J J, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T. A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 2006, 442: 203-207
    10. Aravin A A, Hannon G J, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science, 2007, 318: 761-764
    11. Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe D C. Cloning and characterization of micro-RNAs from moss. Plant J, 2005,43: 837-848
    12. Asai K, Satoh N, Sasaki H, Satoh H, Nagato Y. A rice heterochronic mutant, mori1, is defective in the juvenile-adult phase change. Development, 2002,129: 265-273
    13. Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 2003,15: 2730-2741
    14. Aung K, Lin S I, Wu C C, Huang Y T, Su C L, Chiou T J. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol, 2006,141: 1000-1011
    15. Axtell M J, Bartel D P. Antiquity of microRNAs and their targets in land plants. Plant Cell, 2005: tpc.105.032185
    16. Axtell M J, Snyder J A, Bartel D P. Common functions for diverse small RNAs of land plants. Plant Cell, 2007,19: 1750-1769
    17. Bailey T L, Williams N, Misleh C, Li W W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res, 2006, 34: W369-373
    18. Baker C C, Sieber P, Wellmer F, Meyerowitz E M. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol, 2005, 15: 303-315
    19. Bao N, Lye K W, Barton M K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell, 2004, 7: 653-662
    20. Bari R, Datt Pant B, Stitt M, Scheible W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006,141: 988-999
    21. Bateman A, Coin L, Durbin R, Finn R D, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer E L, Studholme D J, Yeats C, Eddy S R. The Pfam protein families database. Nucleic Acids Res, 2004, 32: D138-141
    22. Baumberger N, Baulcombe D C. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA, 2005,102: 11928-11933
    23. Berezikov E, Chung W J, Willis J, Cuppen E, Lai E C. Mammalian mirtron genes. Mol Cell, 2007,28: 328-336
    24. Bollman K M, Aukerman M J, Park M Y, Hunter C, Berardini T Z, Poethig R S. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development, 2003, 130: 1493-1504
    25. Bonnet E, Wuyts J, Rouze P, Van de Peer Y. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 2004, 101:11511-11516
    26. Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005,123: 1279-1291
    27. Cai X, Lu S, Zhang Z, Gonzalez C M, Damania B, Cullen B R. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA, 2005,102: 5570-5575
    28. Cardon G H, Hohmann S, Nettesheim K, Saedler H, Huijser P. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J, 1997,12: 367-377
    29. Carninci P, Kvam C, Kitamura A, Ohsumi T, Okazaki Y, Itoh M, Kamiya M, Shibata K, Sasaki N, Izawa M, Muramatsu M, Hayashizaki Y, Schneider C. High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics, 1996,37: 327-336
    30. Carninci P, Shibata Y, Hayatsu N, Sugahara Y, Shibata K, Itoh M, Konno H, Okazaki Y, Muramatsu M, Hayashizaki Y. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res, 2000,10: 1617-1630
    31. Chapman E J, Prokhnevsky A I, Gopinath K, Dolja V V, Carrington J C. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev, 2004, 18: 1179-1186
    32. Chellappan P, Vanitharani R, Fauquet C M. MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci USA, 2005, 102: 10381-10386
    33. Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005, 33: e179
    34. Chen H M, Li Y H, Wu S H. Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104: 3318-3323
    35. Chen J, Li W X, Xie D, Peng J R, Ding S W. Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell, 2004,16: 1302-1313
    36. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004,303: 2022-2025
    37. Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell, 2006, 18:412-421
    38. Chow J C, Yen Z, Ziesche S M, Brown C J. Silencing of the mammalian X chromosome. Annu Rev Genomics Hum Genet, 2005, 6: 69-92
    39. Chu Z H, Peng K M, ZHANG L D, Zhou B, Wei J, Wang S P. Construction and characterization of a normalized whole-life-cycle cDNA library of rice. Chinese Science Bulletin, 2003,48: 229-235
    40. Chuck G, Cigan A M, Saeteurn K, Hake S. The heterochronic maize mutant Corngrassl results from overexpression of a tandem microRNA. Nat Genet, 2007a, 39: 544-549
    41. Chuck G, Meeley R, Irish E, Sakai H, Hake S. The maize tasselseed.4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet!. Nat Genet, 2007b, 39:1517-1521
    42. Clepet C, Le Clainche I, Caboche M. Improved full-length cDNA production based on RNA tagging by T4 DNA ligase. Nucleic Acids Res, 2004,32: e6
    43. Combier J P, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M, Niebel A. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev, 2006, 20: 3084-3088
    44. Deplancke B, Dupuy D, Vidal M, Walhout A J. A gateway-compatible yeast one-hybrid system. Genome Res, 2004, 14: 2093-2101
    45. Doench J G, Sharp P A. Specificity of microRNA target selection in translational repression. Genes Dev, 2004,18:504-511
    46. Dunoyer P, Himber C, Voinnet O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet, 2005,37: 1356-1360
    47. Eddy S R. Profile hidden Markov models. Bioinformatics, 1998, 14: 755-763
    48. Edery I, Chu L L, Sonenberg N, Pelletier J. An efficient strategy to isolate full-length cDNAs based on an mRNA cap retention procedure (CAPture). Mol Cell Biol, 1995,15: 3363-3371
    49. Efimov V A, Chakhmakhcheva O G, Archdeacon J, Fernandez J M, Fedorkin O N, Dorokhov Y L, Atabekov J G.Detection of the 5'-cap structure of messenger RNAs with the use of the cap-jumping approach. Nucleic Acids Res, 2001, 29: 4751-4759
    50. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res, 1998,8: 186-194
    51. Ewing B, Hillier L, Wendl M C, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res, 1998, 8: 175-185
    52. Fahlgren N, Montgomery T A, Howell M D, Allen E, Dvorak S K, Alexander A L, Carrington J C. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol, 2006, 16: 939-944
    53. Felsenstein J. PHYLIP - phylogeny inference package (version 3.2). Cladistics, 1989,5: 164-166
    54. Franco-Zorrilla J M, Valli A, Todesco M, Mateos I, Puga M I, Rubio-Somoza I, Leyva A, Weigel D, Garcia J A, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 2007, 39: 1033-1037
    55. Fujii H, Chiou T J, Lin S I, Aung K, Zhu J K. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol, 2005,15: 2038-2043
    56. Gandikota M, Birkenbihl R P, Hohmann S, Cardon G H, Saedler H, Huijser P. The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J, 2007,49: 683-693
    57. Gasciolli V, Mallory A C, Bartel D P, Vaucheret H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol, 2005, 15: 1494-1500
    58. Gentleman R C, Carey V J, Bates D M, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini A J, Sawitzki G et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol, 2004,5: R80
    59. Girard A, Sachidanandam R, Hannon G J, Carmell M A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 2006,442: 199-202
    60. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res, 2004, 32: D109-111
    61. Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006,34: D140-144
    62. Guo H S, Xie Q, Fei J F, Chua N H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 2005, 17: 1376-1386
    63. Hartig J V, Tomari Y, Forstemann K. piRNAs-the ancient hunters of genome invaders. Genes Dev, 2007,21: 1707-1713
    64. Henderson I R, Zhang X, Lu C, Johnson L, Meyers B C, Green P J, Jacobsen S E. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet, 2006,38:721-725
    65. Henz S R, Cumbie J S, Kasschau K D, Lohmann J U, Carrington J C, Weigel D, Schmid M. Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol, 2007, 144: 1247-1255
    66. Hofacker I L. Vienna RNA secondary structure server. Nucleic Acids Res, 2003,31: 3429-3431
    67. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res, 1999,9: 868-877
    68. Hudelot C, Gowri-Shankar V, Jow H, Rattray M, Higgs P G.RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Mol Phylogenet Evol, 2003,28: 241-252
    69. Huelsenbeck J P, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 2001,17:754-755
    70. Hunter C, Willmann M R, Wu G, Yoshikawa M, de la Luz Gutierrez-Nava M, Poethig S R. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development, 2006, 133: 2973-2981
    71. Ishikawa R, Tamaki S, Yokoi S, Inagaki N, Shinomura T, Takano M, Shimamoto K. Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell, 2005, 17: 3326-3336
    72. Johnson C, Bowman L, Adai A T, Vance V, Sundaresan V. CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res, 2007,35: D829-833
    73. Johnson S M, Lin S Y, Slack F J. The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol, 2003, 259: 364-379
    74. Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004,14:787-799
    75. Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology, 2006,57: 19-53
    76. Juarez M T, Kui J S, Thomas J, Heller B A, Timmermans M C. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004,428: 84-88
    77. Kasschau K D, Carrington J C. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell, 1998,95: 461-470
    78. Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell, 2003,4: 205-217
    79. Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev, 2007, 21: 3123-3134
    80. Kato S, Sekine S, Oh S W, Kim N S, Umezawa Y, Abe N, Yokoyama-Kobayashi M, Aoki T. Construction of a human full-length cDNA bank. Gene, 1994,150: 243-250
    81. Kawakatsu T, Itoh j, Miyoshi K, Kurata N, Alvarez N, Veit B, Nagato Y. PLASTOCHRON2 regulates leaf initiation and maturation in rice. Plant Cell, 2006,18: 612-625
    82. Kedde M, Strasser M J, Boldajipour B, Vrielink J A, Slanchev K, le Sage C, Nagel R, Voorhoeve P M, van Duijse J, Orom U A, Lund A H, Perrakis A, Raz E, Agami R. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell, 2007,131: 1273-1286
    83. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet, 2007,39: 1278-1284
    84. Kidner C A, Martienssen R A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 2004,428: 81-84
    85. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li C J, Ohtsuki K, Shishiki T, Otomo Y et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science, 2003,301: 376-379
    86. Kim J, Jung J H, Reyes J L, Kim Y S, Kim S Y, Chung K S, Kim J A, Lee M, Lee Y, Narry Kim V, Chua N H, Park C M. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J, 2005,42: 84-94
    87. Ko J H, Prassinos C, Han K H. Developmental and seasonal expression of PtaHBl, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol, 2006, 169:469-478
    88. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135: 767-774
    89. Kruger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res, 2006, 34: W451-454
    90. Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCLl and HYLl is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. Rna, 2006, 12: 206-212
    91. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294: 853-858
    92. Lau N C, Lim L P, Weinstein E G, Bartel D P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294: 858-862
    93. Laufs P, Peaucelle A, Morin H, Traas J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 2004, 131:4311 -4322
    94. Lauter N, Kampani A, Carlson S, Goebel M, Moose S P. microRNA 172 down-regulates glossy 15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA, 2005, 102: 9412-9417
    95. Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001, 294: 862-864
    96. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993,75: 843-854
    97. Lee Y, Jeon K, Lee J T, Kim S, Kim V N. MicroRNA maturation: stepwise processing and subcellular localization. Embo J, 2002,21:4663-4670
    98. Lee Y, Kim M, Han J, Yeom K H, Lee S, Baek S H, Kim V N. MicroRNA genes are transcribed by RNA polymerase II. Embo J, 2004,23:4051 -4060
    99. Lehner B, Williams G, Campbell R D, Sanderson C M. Antisense transcripts in the human genome. Trends Genet, 2002, 18: 63-65
    100. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J. Control of tillering in rice. Nature, 2003,422: 618-621
    101. Liang R Q, Li W, Li Y, Tan C Y, Li J X, Jin Y X, Ruan K C. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res, 2005,33: e17
    102. Lin H. piRNAs in the germ line. Science, 2007, 316: 397
    103. Liu P P, Montgomery T A, Fahlgren N, Kasschau K D, Nonogaki H, Carrington J C. Repression of AUXIN RESPONSE FACTOR 10 by microRNA 160 is critical for seed germination and post-germination stages. Plant J, 2007,52: 133-146
    104. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408
    105. Llave C, Xie Z, Kasschau K D, Carrington J C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002,297:2053-2056
    106. Lu C, Jeong D H, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher S R, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers B C, Green P J. Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA, 2008a, 105: 4951-4956
    107. Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew R W, Wang S M, Wu C I. The birth and death of microRNA genes in Drosophila. Nat Genet, 2008b, 40: 351-355
    108. Lu S, Sun Y-H, Shi R, Clark C, Li L, Chiang V L. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 2005, 17: 2186-2203
    109. MacDonald P N. Two-hybrid systems2001. Humana Press
    110. Maher C, Stein L, Ware D. Evolution of Arabidopsis microRNA families through duplication events. Genome Res, 2006, 16: 510-519
    111. Mallory A C, Bartel D P, Bartel B. MicroRNA-directed regulation of Arabidopsis A UXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 2005, 17: 1360-1375
    112. Mallory A C, Dugas D V, Bartel D P, Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol, 2004a, 14: 1035-1046
    113. Mallory A C, Reinhart B J, Jones-Rhoades M W, Tang G, Zamore P D, Barton M K, Bartel D P. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. Embo J, 2004b, 23: 3356-3364
    114. Maruyama K, Sugano S. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene, 1994,138: 171-174
    115. Megraw M, Baev V, Rusinov V, Jensen S T, Kalantidis K, Hatzigeorgiou A G.MicroRNA promoter element discovery in Arabidopsis. Rna, 2006,12: 1612-1619
    116. Miyoshi K, Ahn B O, Kawakatsu T, Ito Y, Itoh J, Nagato Y, Kurata N. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci USA, 2004, 101: 875-880
    117. Moss E G.Heterochronic genes and the nature of developmental time. Curr Biol, 2007,17: R425-434
    118. Moss E G, Lee R C, Ambros V. The cold shock domain protein LEN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell, 1997,88: 637-646
    119. Nagasaki H, Itoh J, Hayashi K, Hibara K, Satoh-Nagasawa N, Nosaka M, Mukouhata M, Ashikari M, Kitano H, Matsuoka M, Nagato Y, Sato Y. The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci USA, 2007,104: 14867-14871
    120. Nakano M, Nobuta K, Vemaraju K, Tej S S, Skogen J W, Meyers B C. Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res, 2006,34: D731-735
    121. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones J D. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006, 312: 436-439
    122. Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell, 2006, 18: 2929-2945
    123. Nogueira F T, Madi S, Chitwood D H, Juarez M T, Timmermans M C. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev, 2007,21:750-755
    124. O'Donnell K A, Boeke J D. Mighty Piwis defend the germline against genome intruders. Cell, 2007, 129: 37-44
    125. Okamura K, Hagen J W, Duan H, Tyler D M, Lai E C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 2007, 130: 89-100
    126. Ori N, Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez J P, Blum E, Zamir D, Eshed Y. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet, 2007, 39: 787-791
    127. Osato N, Yamada H, Satoh K, Ooka H, Yamamoto M, Suzuki K, Kawai J, Carninci P, Ohtomo Y, Murakami K, Matsubara K, Kikuchi S, Hayashizaki Y. Antisense transcripts with rice full-length cDNAs. Genome Biol, 2003, 5: R5
    128. Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003,425: 257-263
    129. Palatnik J F, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington J C, Weigel D. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell, 2007, 13: 115-125
    130. Pant B D, Buhtz A, Kehr J, Scheible W R. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J, 2008,53: 731-738
    131. Park M Y, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig R S. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA, 2005,102: 3691-3696
    132. Peaucelle A, Morin H, Traas J, Laufs P. Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis. Development, 2007, 134: 1045-1050
    133. Pfeffer S, Zavolan M, Grasser F A, Chien M, Russo J J, Ju J, John B, Enright A J, Marks D, Sander C, Tuschl T. Identification of virus-encoded microRNAs. Science, 2004, 304: 734-736
    134. Prigge M J, Wagner D R. The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell, 2001,13: 1263-1279
    135. Ramakers C, Ruijter J M, Deprez R H, Moorman A F. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett, 2003,339: 62-66
    136. Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000,403:901-906
    137. Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P. MicroRNAs in plants. Genes Dev, 2002, 16: 1616-1626
    138. Reyes J L, Chua N H. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J, 2007,49: 592-606
    139. Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P. Prediction of plant microRNA targets. Cell, 2002,110:513-520
    140. Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003,19: 1572-1574
    141. Ru P, Xu L, Ma H, Huang H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res, 2006, 16:457-465
    142. Rual J F, Hirozane-Kishikawa T, Hao T, Bertin N, Li S, Dricot A, Li N, Rosenberg J, Lamesch P, Vidalain P O, Clingingsmith T R, Hartley J L, Esposito D, Cheo D, Moore T, Simmons B, Sequerra R, Bosak S, Doucette-Stamm L, Le Peuch C et al. Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res, 2004,14: 2128-2135
    143. Ruby J G, Jan C H, Bartel D P. Intronic microRNA precursors that bypass Drosha processing. Nature, 2007,448: 83-86
    144. Sasaki N, Nagaoka S, Itoh M, Izawa M, Konno H, Carninci P, Yoshiki A, Kusakabe M, Moriuchi T, Muramatsu M, Okazaki Y, Hayashizaki Y. Characterization of gene expression in mouse blastocyst using single-pass sequencing of 3995 clones. Genomics, 1998,49: 167-179
    145. Schuster-Bockler B, Schultz J, Rahmann S. HMM Logos for visualization of protein families. BMC Bioinformatics, 2004,5: 7
    146. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 2006, 18: 1121-1133
    147. Schwab R, Palatnik J F, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell, 2005, 8: 517-527
    148. Seki M, Carninci P, Nishiyama Y, Hayashizaki Y, Shinozaki K. High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J, 1998, 15: 707-720
    149. Seto A G, Kingston R E, Lau N C. The coming of age for Piwi proteins. Mol Cell, 2007, 26: 603-609
    150. Shapiro R. A simpler origin for life. Sci Am, 2007, 296: 46-53
    151. Shen B, Goodman H M. Uridine addition after microRNA-directed cleavage. Science, 2004, 306: 997
    152. Sieber P, Wellmer F, Gheyselinck J, Riechmann J L, Meyerowitz E M. Redundancy and specialization among plant microRNAs:role of the MIR164 family in developmental robustness.Development,2007,134:1051-1060
    153.Stone J M,Liang X,Nekl E R,Stiers J J.Arabidopsis AtSPL14,a plant-specific SBP-domain transcription factor,participates in plant development and sensitivity to fumonisin B1.Plant J,2005,41:744-754
    154.Sunkar R,Girke T,Jain P K,Zhu J K.Cloning and characterization of microRNAs from rice.Plant Cell,2005,17:1397-1411
    155.Sunkar R,Zhu J K.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.Plant Cell,2004,16:2001-2019
    156.Suzuki Y,Sugano S.Construction of full-length-enriched cDNA libraries.The oligo-capping method.Methods Mol Biol,2001,175:143-153
    157.Suzuki Y,Yoshitomo-Nakagawa K,Maruyama K,Suyama A,Sugano S.Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.Gene,1997,200:149-156
    158.Talmor-Neiman M,Stay R,Frank W,Voss B,Arazi T.Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss.Plant J,2006,47:25-37
    159.Tamaki S,Matsuo S,Wong H L,Yokoi S,Shimamoto K.Hd3a protein is a mobile flowering signal in rice.Science,2007,316:1033-1036
    160.Tanzer A,Stadler P F.Molecular evolution of a microRNA cluster.J Mol Biol,2004,339:327-335
    161.Thompson J,Gibson T,Plewniak F,Jeanmougin F,Higgins D.The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res,1997,25:4876-4882
    162.Thomsen R,Nielsen P S,Jensen T H.Dramatically improved RNA in situ hybridization signals using LNA-modified probes.Rna,2005,11:1745-1748
    163.Tsiantis M,Brown M I,Skibinski G,Langdale J A.Disruption of auxin transport is associated with aberrant leaf development in maize.Plant Physiol,1999,121:1163-1168
    164.Tsuji H,Aya K,Ueguchi-Tanaka M,Shimada Y,Nakazono M,Watanabe R,Nishizawa N K,Gomi K,Shimada A,Kitano H,Ashikari M,Matsuoka M.GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers.Plant J,2006,47:427-444
    165.Vasudevan S,Tong Y,Steitz J A.Switching from repression to activation:microRNAs can up-regulate translation.Science,2007,318:1931-1934
    166.Vaucheret H.MicroRNA-dependent trans-acting siRNA production.Sci STKE,2005,2005:pe43
    167.Vaucheret H,Mallory A C,Bartel D P.AGO1 homeostasis entails coexpression of MIR168 and AGO1and preferential stabilization of miR168 by AGO1.Mol Cell,2006,22:129-136
    168.Vaucheret H,Vazquez F,Crete P,Bartei D P.The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development.Genes Dev,2004,18:1187-1197
    169.Vazquez F,Gasciolli V,Crete P,Vaucheret H.The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development,but not posttranscriptional transgene silencing.Curr Biol,2004,14:346-351
    170.Veit B,Briggs S P,Schmidt R J,Yanofsky M F,Hake S.Regulation of leaf initiation by the terminal ear 1 gene of maize.Nature,1998,393:166-168
    171.Wang H,Chua N H,Wang X J.Prediction of trans-antisense transcripts in Arabidopsis thaliana.Genome Biol,2006,7:R92
    172.Wang J W,Wang L J,Mao Y B,Cai W J,Xue H W,Chen X Y.Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 2005a, 17: 2204-2216
    173. Wang X, Gu J, Zhang M Q, Li Y. Identification of phylogenetically conserved microRNA cis-regulatory elements across 12 Drosophila species. Bioinformatics, 2008,24: 165-171
    174. Wang X J, Gaasterland T, Chua N H. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol, 2005b, 6: R30
    175. Williams L, Carles C C, Osmont K S, Fletcher J C. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA, 2005a, 102:9703-9708
    176. Williams L, Grigg S P, Xie M, Christensen S, Fletcher J C. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 2005b, 132: 3657-3668
    177. Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Zhou D X, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J, 2003,35:418-427
    178. Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 2006,133: 3539-3547
    179. Wu M F, Tian Q, Reed J W. Arabidopsis microRNA 167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006,133:4211 -4218
    180. Xie K, Wu C, Xiong L. Genomic organization, differential expression and interaction of SPL transcription factors and microRNA156 in rice. Plant Physiol, 2006:
    181. Xie Q, Frugis G, Colgan D, Chua N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev, 2000,14: 3024-3036
    182. Xie Q, Guo H S, Dallman G, Fang S, Weissman A M, Chua N H. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 2002,419: 167-170
    183. Xie Z, Allen E, Wilken A, Carrington J C. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2005a, 102: 12984-12989
    184. Xie Z, Allen E, Wilken A, Carrington J C. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2005b, 102: 12984-12989
    185. Xie Z, Kasschau K D, Carrington J C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol, 2003,13: 784-789
    186. Xiong G S, Hu X M, Jiao Y Q, Yu Y C, Chu C C, Li J Y, Qian Q, Wang Y H. Leafy head2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Cell Res, 2006, 16: 267-276
    187. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol, 2004, 337: 49-63
    188. Yang J H, Han S J, Yoon E K, Lee W S. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res, 2006, 34: 1892-1899
    189. Yoshikawa M, Peragine A, Park M Y, Poethig R S. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev, 2005, 19: 2164-2175
    190. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett R W, Steward R, Chen X. Methylation as a crucial step in plant microRNA biogenesis.Science,2005,307:932-935
    191.Yu J,Hu S,Wang J,Wong G K,Li S,Liu B,Deng Y,Dai L,Zhou Y,Zhang X,Cao M,Liu J,Sun J,Tang J,Chen Y,Huang X,Lin W,Ye C,Tong W,Cong Let al.A draft sequence of the rice genome (Oryza sativa L.ssp.indica).Science,2002,296:79-92
    192.Yuan Q,Ouyang S,Wang A,Zhu W,Maiti R,Lin H,Hamilton J,Haas B,Sultana R,Cheung F,Wortman J,Buell C R.The institute for genomic research Osal rice genome annotation database.Plant Physiol,2005,138:18-26
    193.Zhang B,Pan X,Cannon C H,Cobb G P,Anderson T A.Conservation and divergence of plant microRNA genes.Plant J,2006a,46:243-259
    194.Zhang X,Yuan Y R,Pei Y,Lin S S,Tuschl T,Patel D J,Chua N H.Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute 1 cleavage activity to counter plant defense.Genes Dev,2006b,20:3255-3268
    195.Zhang Y.miRU:an automated plant miRNA target prediction server.Nucleic Acids Res,2005,33:W701-704
    196.Zhang Y,Liu X S,Liu Q R,Wei L.Genome-wide in silico identification and analysis of cis natural antisense transcripts(cis-NATs) in ten species.Nucleic Acids Res,2006c,34:3465-3475
    197.Zhao L,Kim Y,Dinh T T,Chen X.miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems.Plant J,2007a,51:840-849
    198.Zhao T,Li G,Mi S,Li S,Hannon G J,Wang X J,Qi Y.A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii.Genes Dev,2007b,21:1190-1203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700