PAP1和PAP2基因的克隆及其相关生物信息学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肿瘤抑制蛋白P53是一个通用转录因子,通过激活或抑制其下游基因的表达,在应答诸如癌基因表达、缺氧以及DNA损伤等细胞胁迫信号方面起着关键作用。P53及其下游基因组成了一个复杂的调控网络,了解该调控网络无论对于理解P53的生理功能、肿瘤临床基因治疗或是药物发现等都具有十分重大的意义。而了解P53调控网络的关键是鉴定p53下游基因。本研究首先利用分子生物学的方法克隆新的p53下游基因,并对其功能进行初步研究;其次利用生物信息学方法对整个人类基因组DNA中存在的p53下游基因进行预测分析;从而进一步完善p53基因调控网络。
     方法:利用哺乳动物基因诱导表达系统,Tet-On~(TM)基因表达系统,以人脑胶质瘤细胞株U251为实验材料,建立p53基因可诱导表达的转p53基因细胞系,并构建p53基因过度表达的cDNA文库。通过差异显示、测序、同源性比较及cDNA文库筛选等方法克隆新的p53下游基因。对新克隆的p53下游基因利用生物信息学方法进行结构与功能预测,通过凝胶滞留实验研究新克隆的p53下游基因调控序列与P53蛋白结合状态,并利用Northern blot、原位杂交等分子生物学实验技术研究克隆的基因在小鼠胚胎发育过程中表达规律。
     其次,收集已报道的p53下游基因及P53蛋白结合序列,通过统计分析,了解这些调控序列的特征信息,得到保守性一致性序列的特征,并对E1-Deiry等定义的一致性序列特征信息进行修改;利用PWM模型、词频法、串模型及E1-Deiry等定义的一致性序列中的插入序列长度等计算序列的信息特征,利用logistic回归分析方法建立p53下游基因预测新的模型。运用该模型对人类基因组DNA中p53下游基因进行预测,根据GO(Gene Ontology)功能分类标准,对预测的结果进行分类,并与利用保守性一致性序列及一致性序列预测的结果进行比较。
     结果:主要包括以下五个方面:
     一、建立了p53基因可诱导表达的转p53基因细胞系,命名为U251-pTet-p53。该细胞系在强力霉素诱导下,外源性p53基因过度表达,在没有强力霉素的培养基条件下,外源性p53基因几乎不表达。差异显示结果表明:外源性p53基因过度表达,能引起细胞内许多基因的差异表达,有的基因表达上调,有的基因表达下调。所有这些差异表达的基因都有可能是p53下游基因。对观察到的有差异表达的11个EST进行测序,其中2个代表未报道的新基因。
     二、建立了p53基因过度表达时的cDNA文库。并对第一部分差异显示获得的两个新的EST,进一步通过cDNA文库筛选获得全序列,分别命名为PAP1(p53 activated protein 1)(GenBank收录号:AF497245)和PAP2(p53 activated protein 2)(GenBank收录号:AY093673)。
     三、PAP1基因的结构与功能:
     1、PAP1基因的生物信息学分析表明:
     (1)、PAP1基因定位于人类染色体16p12-13,整个基因由6个外显子和5个内含子组成;
     (2)、PAP1基因启动子和前3个内含子中含有许多P53蛋白结合位点;
     (3)、PAP1基因cDNA全长2779bp,开放阅读框起始第282 nt,终止位点第1130nt,全长846bp。预测其编码蛋白分子量为32.9KD,理论等电点pI为5.81,化学方程式为C_(1505)H_(2309)N_(385)O_(421)S_(11)。
     (4)、PAP1蛋白的二级结构:40%为α螺旋,17%为β折叠,43%为其它类型的二级结构。PAP1蛋白为亲水性蛋白,存在一个跨膜区,大约在42—79氨基酸片段,没有信号肽。
     (5)、PAP1基因属免疫球蛋白超家族(IGSF)成员,与黑猩猩、狗、小鼠、鸡、牛等物种具有高度同源性,在进化过程中十分保守。
     2、分子生物学实验结果表明:
     (1)、内含子2中的P53蛋白结合位点,GAGCTTGTCCcccGAtCAAGCCC,能与P53蛋白结合,说明PAP1基因是p53下游基因;
     (2)、PCNA免疫组织化学和细胞凋亡检测结果表明:小鼠胚胎发育的第9—10天主要以细胞增殖为主的时期;胚胎第11—14天是细胞增殖和凋亡的逐渐趋于平衡的阶段;不同组织的发育进程不同。
     (3)、Northern blot结果表明PAP1基因(实际上是PAP1在小鼠中的同源基因IGSF6)在小鼠胚胎不同的发育时期表达有差异。
     (4)、原位杂交显示:PAP1基因(实际上是PAP1在小鼠中的同源基因IGSF6)在第11—14天中,肺、肾、肠及脊柱组织中特异性表达,说明PAP1基因参与了这些主要器官的发育过程,通过与发育过程的细胞增殖与凋亡趋势比较,该基因很可能与胚胎发育过程中的细胞凋亡有关。
     四、PAP2基因的生物信息学分析表明:
     (1)、PAP2基因定位于人类17号染色体上;
     (2)、mRNA全长2007bp转录调控区域起始位167bp处,启动子序列在反链1998-1748处,开放阅读范952bp-1461bp,全长510bp;
     (3)、它编码蛋白全长169aa,分子量为19247.3,理论等电点为12.56,化学式为C_(818)H_(1355)N_(317)O_(208)S_9。没有发现信号肽和跨膜螺旋结构,属于亲水性,非分泌性蛋白;
     (4)、PAP2蛋白亚细胞定位在核内;
     (5)、PAP2蛋白二级结构:α螺旋20.71%,β折叠4.14%,其他75.15%。
     五、本研究共收集已报道的49个p53下游基因及72条P53蛋白结合序列。
     1、统计分析结果:
     (1)、基本上与E1-Deiry等定义的一致性保守序列特征吻合,但在十聚体的绝大多数位点都存在错配,错配率在10-20%;
     (2)、对于整个十聚体,错配数为3的基因占34.4%,错配数为4的基因占12.7%,错配数为5的基因占6.35%。因此,我们认为用一致性序列模型预测p53下游基因时,整个十聚体的允许的错配数为4比较恰当;
     (3)、在一致性序列中,插入的碱基数与错配数呈正相关。
     2、建立logistic回归模结果如下:
     (1)、采用两个PWM矩阵来分别对前后十聚体建模,并采用交叉验证法确定已报道的结合序列中的模体,将确定位置的模体特征信息作为logistic回归分析的对象,通过SPSS提供的logistic回归分析模型对特征逐步选取,最终确定以前后十聚体的PWM得分作为特征信息建立了logistic回归模型:p=(exp(-4.655+0.457×hpwmsc+0.421×tpwmsc))╱(1+exp(-4.655+0.457×hpwmsc+0.421×tpwmsc))
     阈值设为0.1076,其中hpwmsc,tpwmsc分别表示motif的前后十聚体中PWM模型得分。
     (2)、用已报道的P53结合序列作为正数据集,随机挑选的CDS序列作为负数据集,并对正数据集和负数据集进行刀切法测试验证了方法的有效性,平均正确率达到了93.91%。
     (3)、利用我们总结的保守性一致性序列模型、修正后一致性序列模型及建立的logistic回归模型,采用Perl语言编写程序,对人类基因组数据中P53结合位点进行分析比较,表明logistic回归模型的识别性能更加优异,而且该模型还具有良好的可扩展性,能够方便地容纳新特征,使识别性能不断提高。
     3、对人类基因组DNA进行p53下游基因预测分析结果:
     (1)、利用保守性一致性序列预测到p53下游基因1693个;
     (2)、利用允许错配数为4的一致性序列(串模型)预测到p53下游基因22107个;
     (3)、利用logistic回归模型预测到p53下游基因15182个;
     4、基于GO对p53下游基因进行功能分类结果:
     (1)、细胞组分:p53下游基因主要的功能集中在细胞、细胞器及蛋白复合物等几个区域。
     (2)、分子功能:p53下游基因功能主要有结合、催化活性、酶调节活性、信号转导活性、结构分子行为、转译调节活性、运输行为和未知分子功能等几个方面。而在转译调节活性、运输行为和未知分子功能等功能区域中有非常多p53下游基因还没有被发现。
     (3)、生物过程:p53下游基因参与的生物过程主要包括细过程胞内、、生理过程、生物学过程调节、刺激应答等,在发育、未知的生物学过程等有非常多的p53下游基因还没有被发现。
     结论:主要包括如下:
     (1)建立了p53基因可诱导表达的转p53基因细胞系,命名为U251-pTet-p53。该细胞系中外源性p53基因可以被强力霉素诱导过度表达。
     (2)构建了p53基因过度表达时的cDNA文库。
     (3)PAP1基因是新克隆的p53下游基因,定位于人类染色体16p12-13,由6个外显子和5个内含子组成。PAP1基因编码的蛋白属免疫球蛋白超家族(IGSF)成员,在进化过程中十分保守。PAP1基因在小鼠胚胎发育过程中,肺、肾、肠及脊柱组织中有特异性表达,很可能与这些器官发育过程中的细胞凋亡有关。
     (4)PAP2基因是新克隆的p53下游基因,定位于人类17号染色体上,其编码的蛋白在进化过程中十分保守;
     (5)对已报道的p53下游基因分析表明,用一致性序列模型预测p53下游基因时,整个十聚体允许的错配数为4比较恰当;
     (6)建立了预测p53下游基因的logistic回归模型:p=(exp(-4.655+0.457×hpwmsc+0.421×tpwmsc))╱(1+exp(-4.655+0.457×hpwmsc+0.421×tpwmsc))
     阈值设为0.1076,其中hpwmsc,tpwmsc分别表示motif(decamers)的前后十聚体PWM中模型得分。
     利用该模型在人类基因组中预测到15182个p53下游基因。
[Objective] Tumor suppressor p53 is a transcription factor that playsa critical role in coordinating the response of cells to a diverse range ofstress conditions, e.g. oncogenic activation, hypoxia or DNA damage,which can mediate its different downstream functions by activating orrepressing a large number of target genes. P53 and its downstream genesconsist of a complicated gene network. It is very important to understandthe p53 gene regulatory network in order to know the p53 physiologicalfunctions, medicament discovery and gene therapy in cancers. Theultimate challenge to define the complete p53 gene regulatory network isto identify p53 downstream genes. To identify novel p53 downstreamgenes and explain their functions by molecular approaches, to predict p53downstream genes in the whole human genomic DNA by bioinformaticsmethods in order to study the p53 gene regulatory network further.
     [Methods] We established a new system of p53 gene inducibleexpressions, with the Tet-On~(TM) Gene Expression System, in whichexogenous p53 gene could overexpress in doxycycline (Dox) medium butnot in the medium without Dox. And constituted a cDNA library whilep53 gene overexpressed. Gained the novel p53 downstream genes byDD-PCR, sequencing, BLASTn in GenBank and screening the cDNAlibrary. Predicted the structures and functions of the novel genes bybioinformatics analysis and knowed their expression characterizations inmouse embryonic development by northern blot and in situ hybridizationapproaches.
     Then, collected the p53 downstream genes and the binding DNAsequences for wild-type P53 protein published in PubMed. Statisticalanalysis of the characteristics of the consensus sequences. A model forprediction of p53 downstream genes based on logistic regression analysiswas proposed, with which the candidate features of primary sequence arecalculated by selecting proper models including PWM model, frequencydistribution model, consensus sequence model and the length of insertsequence in the motif. We predicted the p53 downstream genes in human genomic DNA by the conservative consensus binding sequence, theconsensus binding sequence, and the logistic regression analysis model,then classified them according to GO (Gene Ontology).
     [Results] These results were divided into five parts:
     Ⅰ. We established a new system of p53 gene inducible expression,named U251-pTet-p53 cell line, with the Tet-OnTM Gene ExpressionSystem, in which exogenous p53 gene could overexpress in doxycycline(Dox) medium but not in the medium without Dox. By comparing theirrandom primer RT-PCR products, it was proved that exogenous p53 geneexpression could lead to many genes differential expression, someup-expressed and others down-expressed. All of these differentialexpressed genes may be p53 downstream genes. Sequenced the 11 EST ofdifferential expressed genes observed, 2 of them not reported.
     Ⅱ. We constructed the p53 overexpressed cDNA library andscreened the two novel genes complete nucleotide sequences, namedPAP1 (p53 activated protein 1, GenBank number: AF497245) and PAP2(p53 activated protein 2, GenBank number: AY093673) respectively.
     Ⅲ. The structure and function of PAP1 as follow:
     1. The results of PAP1 gene bioinformatics analysis:
     (1). PAP1 gene has been localized the human chromosome 16p12-13,with six exons and five introns.
     (2). There are many p53 binding sites in PAP1 gene promoter and1-3 introns.
     (3). The complete nucleotide sequence of PAP1 cDNA has 2779 bpand contains a long open reading frame of 849 bp that starts at the firstmethioine codon (nt 282) and ends with the stop codon TAA (nt 1130).The predicted protein sequencederived from the open reading frameproduces a 282-amino acid polypeptide, with a calculated molecular massof 32.9 kD and a theoretical isoelectric point of 5.81. The molecularformula is C_(1505)H_(2309)N_(385)O_(421)S_(11).
     (4). The secondary structure of PAP1 protein can be classified as:40%of alpha-helix, 17%of beta-pleated sheet and 43%of others. PAP1protein is hydropathicity protein, and no signal peptide was found.
     (5). PAP1 gene is a novel member of the immunoglobulin superfamily (IGSF). Alignment of the predicted protein sequence forHuman, Pan troglodytes, Canis, Mus musculus and Gallus gallus revealedit was highly conserved.
     2. The results of the molecular experiment:
     (1). There is a p53 binding site, GAGCTTGTCCcccGAtCAAGCCC,in intron 2 of PAP1 gene indicated it is a p53 downstream gene.
     (2). The results of immunohistochemistry and TUNEL techniquesshowed From 9-10-dpc was the phase of primitive organ formation inembryo development. It was observed that the cell proliferation wasdominant, apoptosis was scarce, 11-14-dpc was the the phase ofmaintainnent balance by the proliferation and apoptosis.
     (3). PAP1 gene (in fact is its homologue, IGSF6gene) possibleinvolves in mouse embryonic development. The presence of IGSF6specific transcript was detected by Northern blot in the RNAs extractedfrom 11-14 day-postconception. PAP1 expression is different in mouseembryos of the different ages.
     (4). In situ hybridization performed on mice embryos sections in11-14 dpc showed the differential presence of PAP1 (in fact is itshomologue, IGSF6gene) in developing lung, kidney, intestine andvertebral column and indicated that PAP1 possible involved in mouseembryonic development. By comparing it with the proliferation andapoptosis in the developing cells suggests a function involvement inembryonic development, perhaps involvement in cell apoptosis.
     Ⅳ. The results of PAP2 gene bioinformatics analysis as follow:
     1. PAP2 gene has been localized in the human chromosome 17.
     2. The complete nucleotide sequence of PAP2 cDNA has 2007 bpand contains a long open reading frame of 510 bp that starts at the firstmethioine codon (nt 952) and ends with the stop codon TGA (nt 1461).
     3. The predicted protein sequence derived from the open readingframe produces a 169-amino acid polypeptide, with a calculatedmolecular mass of 19.2 kD and a theoretical isoelectric point of 12.56.The molecular formula is C_(818)H_(1355)N_(317)O_(208)S_9. NO signal peptide wasfound, it might be non-secretory protein.
     4. The PAP2 protein has been localized in nucleus.
     5. The secondary structure of PAP2 protein can classified as: 20.71%of alpha-helix, 4.14%of beta-pleated sheet and 75.15%of others.
     Ⅴ. Total 49 of p53 downstream genes and 72 of human DNAbinding sequences for wild-type p53 published in PubMed was collected.
     1. The results of statistical analysis as follow:
     (1). It's consistent with the consensus binding sequence for wild-typep53 that El-Deiry, et al defined, but there are mismatch distribution inmost of position in decamers and the numbers of mismatch are 10-20%.
     (2). In all decamers, the number of three mismatches is 34.4%, fourmismatches is 12.7%and five mismatches is 6.35%. These data show thatthe criterion for computer analysis of p53 downstream genes allows atleast four mismatches.
     2. The results of establishment of the model of logistic regressionanalysis as follow:
     (1). Two PWM matrices were adopted to modeling the two decamersrespectively, and a cross validate method was used to affirm the motif inevery known binding sequence. Then those motifs' features wereconsidered as the objects of the logistic regression analysis. A model forprediction of p53 downstream genes based on logistic regression analysiswas proposed, according to the optimal features including the twodecamers' PWM score are determined from candidate feature sets througha stepwise selection process offered by SPSS. The model is:
     p=exp(-4.655+0.457×hpwmsc+0.421×tpwmsc)/(1+exp(-4.655+0.457×hpwmsc+0.421×tpwmsc))
     The region is p>or=0.1076, and hpwmsc, tpwmsc stands for thescore of PWM of head decamer, tail decamer in the motif, respectively.
     (2). The DNA binding sequences for wild-type p53 published inPubMed was regarded as positive dataset and human gene CDSsequences picked random as negative dataset. The model was trained andtested on the selected positive and negative datasets by the jackknifemethod, and the average prediction accuracy is 93.91%.
     (3). Analyzed the p53 downstream genes in the human genome usingthe prediction model and computer Perl language, and compared with theresult of consensus sequence model, the results indicated that our model was a universal algorithm that outperformed the traditionary consensussequence model, furthermore the framework of the model is extendable,which could accept more new fratures to improve the efficiency ofprediction results.
     3. The results of prediction of p53 downstream genes in humangenomic DNA as follows:
     (1). There are 1693 of p53 downstream genes by the conservativeconsensus binding sequence.
     (2). There are 22107 of p53 downstream genes by the consensusbinding sequence (allows four mismatches).
     (3). There are 15182 of p53 downstream genes by the logisticregression analysis model.
     4. The results of the classification of p53 downstream genesaccording to GO as follows:
     (1). Cellular Component: mainly including cell, organelle and proteincomplex.
     (2). Molecular Function: mainly including binding, catalytic activity,enzyme regulator activity, signal transducer activity, structural moleculeactivity, transcription regulator activity, transporter activity and obsoletemolecular function. There are a lot of p53 downstream genes which arenot identified now in the groups of transcription regulator activity,transporter activity and obsolete molecular function.
     (3). Biological process: mainly including cellular process,physiological process, regulation of biological process, response tostimulus. There are a lot of p53 downstream genes which are notidentified now in the groups of development and obsolete biologicalprocess.
     [Conclusion] The conclusion mainly including:
     1. We have established a new system of p53 gene inducibleexpression, named U251-pTet-p53 cell line, in which exogenous p53gene could overexpress in doxycycline (Dox) medium but not in themedium without Dox.
     2. Constructed cDNA library in whichp53 gene overexpressed.
     3. PAP1 gene is a novel p53 downstream gene which has been localized the human chromosome 16p12-13, with six exons and fiveintrons. The predicted PAP1 protein is a novel member of theimmunoglobulin superfamily (IGSF), which is highly conserved. Thedifferential presence of PAP1 in developing lung, kidney, intestine andvertebral column indicated that PAP1 possible involved in mouseembryonic development, perhaps involvement in cell apoptosis.
     4. PAP2 gene is a novel p53 downstream gene which has beenlocalized the human chromosome 17. The predicted PAP1 protein ishighly conserved.
     5. The results of statistical analysis show that the criterion forcomputer analysis of p53 downstream genes allows at least fourmismatches.
     6. A model for prediction of p53 downstream genes based on logisticregression analysis was proposed:
     p=exp(-4.655+0.457×hpwmsc+0.421×tpwmsc)/(1+exp(-4.655+0.457×hpwmsc+0.421×tpwmsc))
     The region is p>or=0.1076, and hpwmsc, tpwmsc stands for thescore of PWM of head decamer, tail decamer in the motif, respectively.
     15182 of p53 downstream genes have identified by this model.
引文
[1] De Leo AB, Jay G; Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA, 1979, 76:2420-2424
    [2] Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature, 1979, 278:261-263
    [3] Linzer DIH, Levine AJ. Characterizations of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and in infected embryonal carcinoma cells. Cell, 1979, 1:43-52
    [4] Bode AM, Dong ZG. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer, 2004, 4(10):793-805
    [5] Eliyahu D, Raz A, Gruss P, et al. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature, 1984, 312:646-649
    [6] Jenkins JR, Rudge K, Currie GA. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature, 1984, 312:651-654
    [7] Parada LF, Land H, Weinberg RA, et al. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature, 1984, 312:649-651
    [8] Soussi T, Caron de Fromentel C, May P. Structural aspects ofthep53 protein in relation to gene evolution. Oncogene, 1990, 5: 945-952
    [9] Soussi T, Caron de Fromentel C, Mechali M, et al. Cloning and characterization of a cDNA from Xenopus laevis coding for a protein homologous to human and murine p53. Oncogene, 1987, 1:71-78
    [10] Lorne J, Hofseth S, Perwez H. p53:25 years after its discovery. Trends Pharmacol Sci 2004, 25(4): 177-181
    [11] Perwez H, Harris CC. p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. Nippon Med Sch, 2006, 73(2): 54-64
    [12] Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature, 2000, 408 (6810): 307-310
    [13] Green DR, Chipuk JE. p53 and metabolism: Inside the TIGAR. Cell, 2006,126(1):30-32
    [14] Chen J, Lin J, Levine AJ. Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene. Mol. Med., 1995, 1(2):142-152
    [15] Veprintsev DB, Freund SM, Andreeva A, et al. Core domain interactions in full-length p53 in solution, PNAS, 2006, 103 (7): 2115-2119
    [16] Canadillas JM, Tidow H, Freund SM, et al. Solution structure of p53 core domain: Structural basis for its instability. PNAS, 2006, 103 (7): 2109-2114
    [17] Ho WC, Fitzgerald MX, Marmorstein R. Structure of the p53 Core Domain Dimer Bound to DNA. J Biol Chem, 2006, 281(29): 20494-20502
    [18] Zhao K, Chai X, Johnston K, et al. Crystal structure of the mouse p53 core DNA-binding domain at 2.7 A resolution. J Biol Chem., 2001, 276(15): 12120-12127
    [19] Lane DP, Benchimol S. p53: oncogene or antioncogene. Genes Dev, 1990,4(1):1-8.
    [20] Dittmer D, Pati S, Zambetti G, et al. Gain of function mutations in p53. Nature Genet, 1993, 4(1):42-46.
    [21] Hsiao M, Low J, Dorn E, et al. Gain-of-function mutations of the p 53 gene induces lymphohematopoietic metastatic potential and tissue invasiveness. Am J Pathol, 1994, 145(3): 702-714
    [22] Lowe SW , Bodis S, Bardeesy N, et al. Apoptosis and the prognos prognostic significance of p53 mutation. Cold Spring Harb Symp Quant Biol, 1994, 59:419-426.
    [23] Bullock AN, Fersht AR. Rescuing the function of mutant p53. Nat Rev Cancer, 2001, 1(1): 68-76
    [24] Selivanova G. Mutant p53: the loaded gun. Curt Opin Investig Drugs, 2001,2(8):1136-1141
    [25] Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops.Oncogene, 2005, 24(17):2899-2908
    [26] Sengupta S, Harris CC. p53: Traffic cop at the crossroad of DNA repair and recombination. Nat Rev Mol Cell Biol, 2005, 6(1):44-55
    [27] Ayed A, Mulder FA, Yi GS, et al. Latent and active p53 are identical in conformation. Nature Structural Biology, 2001, 8(9): 756-760
    [28] E1-Deiry WS, Kern SE, Pietenpol JA, et al. Definition of a consensus binding site forp53. Nature Genet, 1992, 1(1): 45-49
    [29] Bourdon JC, Deguin-Chambon V, Lelong JC, et al. Further characterization of the p53 responsive element—identification of new candidate genes for trans-activation by p53. Oncogene, 1997, 14 (1): 85-94
    [30] Funk WD, Pak DT, Karas RH, et al. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol, 1992, 12(6): 2866-2871
    [31] Wang L,Wu Q,Qiu P, et al. Analyses of p53 target genes in the human genome by bioinformatic and microarray approaches. J Biol Chem, 2001, 276 (47):43604-43610
    [32] Nakamura Y. Isolation of p53-target genes and their functional analysis.Cancer Sci 2004, 95(1): 7-11
    [33] Zhao R, Gish K,Murphy M,et al. Analysis ofp53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev, 2000, 14 (8): 981-993
    [34] Liu S,Mirza A,Wang L. Generation of p53 target database via integration of microarray and global p53 DNA-binding site analysis. Methods Mol Biol, 2004, 281:33-54
    [35] Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 1995, 80(2): 293-299
    [36] Bian J, Sun Y. Transcriptional activation by p53 of the human type Ⅳ collagenase (gelatinase A or matrix metalloproteinase 2) promoter. Mol Cell Biol.,1997, 17(11): 6330-6338
    [37] Comer KA, Dennis PA, Armstrong L, et al. Human smooth muscle alpha-actin gene is a transcriptional target of the p53 rumor suppressor protein. Oncogene, 1998,16(10): 1299-1308
    [38] Ludes-Meyers JH, Subler MA, Shivakumar CV, et al. Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol, 1996, 16(11): 6009-6019
    [39] Zauberman A, Flusberg D, Haupt Y, et al. A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res., 1995, 23(14): 2584-2592
    [40] Grimberg A, Coleman CM, Bums TF, et al. p53-Dependent and p53-independent induction of insulin-like growth factor binding protein-3 by deoxyribonucleic acid damage and hypoxia. J Clin Endocrinol Metab, 2005, 90(6): 3568-3574
    [41] Hollander MC, Alamo I, Jackman J, et al. Analysis of the mammalian gadd45 gene and its response to DNA damage. J Biol Chem, 1993, 268(32): 24385-24393
    [42] el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell, 199375(4): 817-825
    [43] Kimura Y, Furuhata T, Urano T, et al. Genomic structure and chromosomal localization of GML (GPI-anchored molecule-like protein), a gene induced by p53. Genomics, 1997, 41(3): 477-480
    [44] Oda K, Arakawa H, Tanaka T, et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53, Cell, 2000,102(6): 849-862
    [45] Tanaka H, Arakawa H, Yamaguchi T, et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 2000,404(6773): 42-49
    [46] Han H J, Tokino T, Nakamura Y. CSR, a scavenger receptor-like protein with a protective role against cellular damage causedby UV irradiation and oxidative stress. Hum Mol Genet, 1998, 7(6): 1039-1046
    [47] Shiraishi K, Fukuda S, Mori T, et al. Identification of fractalkine, a CX3C-type chemokine, as a direct target of p53, Cancer Res, 200060(14):3722-3726
    [48] Bernerd F, Sarasin A, Magnaldo T. Galectin-7 overexpression is associated with the apoptotic process in UVB-induced stmbum keratinocytes. PNAS, 1999,96(20): 11329-11334
    [49] Hermeking H, Lengauer C, Polyak K, et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell, 1998, 1(1): 3-11
    [50] Takimoto R, E1-Deiry WS. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene, 2000, 19(14): 1735-1743
    [51] Herzer K, Falk CS, Encke J, et al. Upregulation of major histocompatibility complex class I on liver cells by hepatitis C virus core protein via p53 and TAP1 impairs natural killer cell cytotoxicity. J Virol, 2003, 77(15): 8299-8309
    [52] Mirza A, Wu Q, Wang L, et al. Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene, 2003, 22(23): 3645-3654
    [53] Tan M, Heizmann CW, Guan K, et al. Transcriptional activation of the human S100A2 promoter by wild-type p53. FEBS Lett, 1999, 445(2-3): 265-268
    [54] Duriez C, Falette N, Audoynaud C, et al. The human BTG2/TIS21/PC3 gene: genomic structure, transcriptional regulation and evaluation as a candidate tumor suppressor gene. Gene, 2002, 282(1-2): 207-214
    [55] Shin TH, Paterson AJ, Kudlow JE. p53 stimulates transcription from the human transforming growth factor alpha promoter: a potential growth-stimulatory role for p53. Mol Cell Biol, 1995,15(9): 4694-4701
    [56] Zhu J, Chen X. MCG10, a novel p53 target gene that encodes a KH domain RNA-binding protein, is capable of inducing apoptosis and cell cycle arrest in G(2)-M. Mol Cell Biol, 2000,20(15): 5602-5618
    [57] Burns TF, Fei P, Scata KA, et al. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol Cell Biol, 2003,23(16): 5556-5571
    [58] St Clair S, Giono L, Varmeh-Ziaie S, et al. DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter. Mol Cell, 2004,16(5): 725-736
    [59] Im HJ, Pittelkow MR, Kumar R. Divergent regulation of the growth-promoting gene IEX-1 by the p53 tumor suppressor and Sp1. J Biol Chem, 2002, 277(17): 14612-14621
    [60] Kato MV, Sato H, Nagayoshi M, et al. Upregulation of the elongation factor-1 alpha gene by p53 in association with death of an erythroleukemic cell line. Blood, 1997, 90(4): 1373-1378
    [61] Adolph KW, Liska DJ, Bornstein P. Analysis of the promoter and transcription start sites of the human thrombospondin 2 gene (THBS2). Gene, 1997,193(1): 5-11
    [62] Metcalfe AM, Dixon RM, Radda GK. Wild-type but not mutant p53 activates the hepatocyte growth factor/scatter factor promoter. Nucleic Acids Res, 1997, 25(5): 983-986
    [63] Kunz C, Pebler S, Otte J, et al. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res, 1995, 23(18): 3710-3717
    [64] Seol DW, Chen Q, Smith ML, et al. Regulation of the c-met proto-oncogene promoter by p53. J Biol Chem, 1999,274(6): 3565-3572
    [65] Mortensen K, Skouv J, Hougaard DM, et al. Endogenous endothelial cell nitric-oxide synthase modulates apoptosis in cultured breast cancer cells and is transcriptionally regulated by p53. J Biol Chem, 1999,274(53): 37679-37684
    [66] Shou J, Ali-Osman F, Multani AS, et al. Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Oncogene, 2002, 21(6): 878-889
    [67] Lin Y, Ma W, Benchimol S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet, 2000,26(1): 122-127
    [68] Wu GS, Saftig P, Peters C, et al. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene, 1998, 16(17): 2177-2183
    [69] Mashimo T, Watabe M, Hirota S, et al. The expression of the KAI1 gene, a tumor metastasis suppressor, is directly activated by p53. PNAS, 1998, 95(19): 11307-11311
    [70] Shiio Y, Yamamoto T, Yamaguchi N. Negative regulation of Rb expression by the p53 gene product. PNAS, 1992, 89(12): 5206-5210
    [71] Saifudeen Z, Du H, Dipp S, et al. The bradykinin type 2 receptor is a target for p53-mediated transcriptional activation. J Biol Chem, 2000,275(20): 15557-15562
    [72] Zou Z, Gao C, Nagaich AK, et al. p53 regulates the expression of the tumor suppressor gene maspin. J Biol Chem, 2000,275(9): 6051-6054
    [73] Li PX, Wong J, Ayed A, et al. Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem, 2000,275(26): 20127-20135
    [74] Shan B, Xu J, Zhuo Y, et al. Induction of p53-dependent activation of the human proliferating cell nuclear antigen gene in chromatin by ionizing radiation. J Biol Chem, 2003,278(45): 44009-44017
    [75] Urano T, Nishimori H, Han H, et al. Cloning of P2XM, a novel human P2X receptor gene regulated by p53. Cancer Res, 1997, 57(15): 3281-3287
    [76] Shu KX, Wu LX, Xie YF, et al. Charaterization of the human PAP1 gene and its homologue possible involvement in mouse embryonic development. Colloids and Surfaces B: Biointerfaces, 2006, 52(1): 22-30
    [77] Shu KX, Li B, Liang YL, et al. Effects of exogenous p53 transfection on the gene expression in the human brain glioma cell line U251 [J]. Colloids and Surfaces B: Biointerfaces, 2006,47(2): 126-131
    [78] Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Seminars in Cancer Biology, 2003,13(1): 49-58
    [79] Lahav G, Rosenfeld N, Sigal A ,et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet, 2004,36 (2): 147-150
    [80] Tan ZQ , Tu WL , Schreiber SS. Downregulation of free ubiquitin: a novel mechanism of p53 stabilization and neuronal cell death. Molecular Brain Research, 2001,91:179-188
    [81] Hoh J, Jin S, Parrado T, et al. The p53MH algorithm and its application in detecting p53-responsive genes. PNAS, 2002, 99(13): 8467-72
    [82] Makoto N, Yoko K, Hitoshi M, et al. Direct Interaction of p21 Cyclin-Dependent Kinase Inhibitor with the Retinoblastoma Tumor Suppressor Protein. Biochemical and Biophysical Research Communications, 1999,263: 35-40
    [83] Kim YT, Zhao M. Aberrant cell cycle regulation in cervical carcinoma. Yonsei Med J, 2005, 46(5): 597-613
    [84] Avkin S, Sevilya Z, Toube L, et al. p53 and p21 Regulate error-prone DNA repair to yield a lower mutation load. Mol Cell, 2006,22 (3): 407-13
    [85] Nowak MA, Komarova NL, Sengupta A, et al. The role of chromosomal instability in tumor initiation. PNAS, 2002, 99(25): 16226-16231
    [86] Liu MT,Chang YT, Chen SC, et al. Epstein-Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity. Oncogene , 2005, 24(16): 2635-46
    [87] Smith ML, Seo YR. p53 regulation of DNA excision repair pathways. Mutagenesis, 2002,17(2): 149-56
    [88] Bertrand P, Saintigny Y, Lopez BS. p53's double life: transactivation-independent repression of homologous recombination. Trends Genet, 2004, 20(6): 235-243
    [89] Adimoolam S, Ford JM. p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair (Amst), 2003,2(9): 947-954
    [90] Zurer I, Hofseth LJ, Cohen Y, et al. The role of p53 in base excision repair following genotoxic stress. Carcinogenesis, 2004,25(1): 11-19
    [91] Wang XW, Yeh H, Schaeffer L, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat. Genet., 1995,10(2): 188-195
    [92] Leveillard T, Andera L, Bissonnette N, et al. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J, 1996,15(7): 1615-1624
    [93] Hwang BJ, Ford JM, Hanawalt PC, et al. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. PNAS, 1999, 96: 424-428
    [94] Adimoolam S, Ford JM. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. PNAS, 2002, 99(20):12985-12990
    [95] Rubbi CP, Milner J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J., 2003, 22(4): 975-86
    [96] Wang QE, Zhu Q, Wani MA, et al. Tumor suppressor p53 dependent recruitment of nucleotide excision repair factors XPC and TFIIH to DNA damage. DNA Repair (Amst), 2003, 2(5) 483-499
    [97] Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature, 2001, 411(6835): 366-374
    [98] Dianov GL, Sleeth KM, Dianova Ⅱ, et al. Repair of abasic sites in DNA. Mutat Res, 2003, 531(1-2): 157-163
    [99] Friedberg EC. How nucleotide excision repair protects against cancer. Nat Rev Cancer, 2001, 1(1):22-33
    [100] Lieber MR, Ma Y, Pannicke U, et al. Mechanism and regulation of human non-homologous DNA end-joining. Nature Rev Mol Cell Biol, 2003, 4(9): 712-720
    [101] Sengupta S, Linke SP, Pedeux R, et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. The EMBO J, 2003, 22(5): 1210-1222
    [102] Linke SP, Sengupta S, Khabie N, et al. p53 interacts with hRAD51 and bRAD54, and directly modulates homologous recombination. Cancer Research, 2003, 63(10): 2596-2605
    [103] Buchhop S, Gibson MK, Wang XW, et al. Interaction of p53 with the human Rad51 protein. Nucleic Acids Res, 1997, 25 (19): 3868-3874
    [104] Susse S, Janz C, Janus F, et al. Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53. Oncogene, 2000, 19(39): 4500-4512.
    [105] Yee KS, Vousden KH. Complicating the complexity of p53. Carcinogenesis, 2005, 26(8): 1317-1322
    [106] Fridman JS, Lowe SW. Control ofapoptosis byp53. Oncogene, 2003, 22(26): 9030-9040
    [107] Haupt S, Berger M, Goldberg Z, et al. Apoptosis_thep53 network. J Cell Sci, 2003, 116(Pt20): 4077-4085
    [108] Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell, 2003, 11 (3): 577-590
    [109] Jeffers JR, Parganas E, Lee Y, et al. Ihle JN, McKinnon PJ, Cleveland JL, Zambetti GP, Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell, 2003, 4(4): 321-328
    [110] Chipuk JE, Bouchier-Hayes L, Kuwana T, et al. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science, 2005, 309(5741): 1732-1735
    [111] Villunger A, Michalak EM, Coultas L, et al. p53-and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science, 2003, 302(5647):1036-1038
    [112] BourdonlJc, Laurenzi V De, Melino G, et al. p53:25 years of research and more questions to answer. Cell Death and Differentiation, 2003, 10:397-399
    [113] Zhang Y, Xiong Y. Control of p53 ubiquitirmtion and nuclear export by MDM2 and ARF. Cell Growth Difer, 2001, 12(4):175-186
    [114] Somasundaram K. Tumor suppressor p53: regulation and function. Front Biosci, 2000, 5:D424-D437
    [115] J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版)(黄培堂等译).北京:科学出版社,2002
    [116] Hollstein M, Sidransky D, Vogelstein B, et al. p53 mutations in human cancers. Science, 1991,253(5015):49-53
    [117] el-Deiry WS. Regulation of p53 downstream genes. Semin Cancer Biol.,1998, 8(5):345-57
    [118] 舒坤贤.p53下游基因及其作用.国外医学.生理、病理与临床分册,2004,24(1):68-71
    [119] 祝峙.p53基因网络的研究进展.癌症,2003,22(5):547-551
    [120] 马琳琳,孙文靖,傅松滨.p53基因网络王国.国外医学.遗传分册,2005,28(1):15-20
    [121] 许少峰,付丽.p53研究的新进展.中华病理学杂志,2004,33(6):559-561
    [122] Baron U, Bujard H. Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Meth. Enzymol., 2000, 327: 401-421.
    [123] Guo ZM, Xu K, Yue Y, B., et al. Temporal control of Cre recombinasemediated in vitro DNA recombination by Tet-on Gene Expression System. Acta Biochim. Biophys. Sinica, 2005, 37 (2): 133-138
    [124] Maider Z, Wang L, Ruben H, et al.Optimization of the Tet-on system to regulate interleukin 12 expression in the liver for the treatment of hepatic tumors.Cancer Res, 2004, 64 (8): 2799-2804
    [125] Hoyoyo.分子生物实验人员软件解决方案(http://www.bio-soft.net)
    [126] 晏慧君,黄兴奇,程在全.cDNA文库构建策略及其分析研究进展.云南农业大学学报,2006,21(1):1-6
    [127] 张霖,牛瑞芳.cDNA文库构建方法的进展.生命的化学,2002,22(6):577-580
    [128] Gubler U, Hoffman BJ. A simple and very elflent method for generating cDNA library. Gene, 1983, 25:263-269
    [129] Maruyama K, Sugano S. Oligo-Capping: A simple method to replace the cap structure of eukaryotie mRNAs with oligoribonucleotides. Gene, 1994, 138(1-2):171-174
    [130] Suzuki Y, Yoshitomo-nakagama K, Maruyama K, et al. Construction and characterization of a full length enriched and a 5'-end enriched library. Gene, 1997,200(1-2): 149-156
    [131] Wang HT, Ma FL, Ma XB, et al. Differential gene expression profiling in aggressive bladder transitional cell carcinoma compared to the adjacent microscopically normal urothelium by microdisseetion-SMART cDNA PCR-SSH. Cancer Biol Ther, 2006,5(1):104-110
    [132] Wellenreuther R, Sehupp I, Poustka A, et al. SMART amplification combined with cDNA size fraetionation in order to obtain large full-length clones.BMC Genomies, 2004, 5(1):36
    [133] Gou DM, Chow LM, Chen NQ, et al. Construction and characterization of a cDNA library from 4-week-old human embryo. Gene. 2001, 278(1-2): 141-147
    [134] Yao J, Ren X, Ireland JJ, et al. Generation of a bovine oocyte cDNA library and microarray: resources for identification of genes important for follicular development and early embryogenesis. Physiol Genomies. 2004, 19(1): 84-92
    [135] 谢卡斌,张建伟,向勇.10828条籼稻全长cDNA的分离和注释.中国科学C辑,2005,35(1):6—12
    [136] 汤文文,张文,曹祥荣等.毛冠鹿大脑组织全长cDNA文库构建.动物学杂志,2006,41(1):53-59
    [137] 王维新,史成银,黄健.中国明对虾鳃细胞全长cDNA文库的构建.海洋水产研究,2004,25(5):6-11
    [138] Weissman SM. Molecular genetic techniques for mapping the human genome. Mol Biol Med, 1987, 4(3): 133-1435
    [139] Bonoldo MF, Lennon G, Soares MB. Normalization and Subtraction: Two approaches to facilitate gene discovery. Genomo Pes, 1996, 6:791-800
    [140] Zhulidov PA, Bogdanova EA, Shcheglov AS, etal. Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Res,2004, 32(3): e37
    [141] Matz M, Shagin D, Bogdanova E, et al. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res, 1999, 27(6):1558-1560
    [142] Zhu YY, Machleder EM, Chenchik A, et al. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques, 2001, 30(4): 892-897
    [143] Shagin DA, Rebrikov DV, Kozhemyako VB, et al. A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas. Genome Res, 2002, 12(12): 1935-1942
    [144] 舒坤贤,宋惠萍,张明华等.p53基因诱导表达可调控细胞系的构建.湖南医科大学学报,2002,27(3):293—294
    [145] Shu KX,Liang YL,Xie YF,et a1.Direct cloning of p53 downstream genes using Tet-on gene expression system.中华现代医学杂志,2004,14(1):7-11
    [146] 舒坤贤,谭军,张继承等.用计算机对人类TSPYl基因P53结合位点的鉴定.重庆邮电学院学报(自然科学版),2005,17(6):718-720
    [147] 祁小廷,柴小清,刘靖等.改造地高辛标记DNA和检测试剂盒用于凝胶阻滞实验的新方法.遗传,2006,28(6):721-725
    [148] Behjatnial SAA, Dry IB, Rezaian MA. Identification of the replicationassociated protein binding domain within the ntergenic region of tomato leaf curl geminivirus. Nucleic Acids Research, 1998,26(4): 925-931
    [149] Motojima M, Ando T, Yoshioka T. Spl-like activity mediates angiotensin-Ⅱ-induced plasminogen-activator inhibitor type-1(PAl-1)gene expression in mesangial cells. Biochem J, 2000, 349:435-441
    [150] Denkin SM, Sekaric P, Nelson DR. Gel shift analysis of the empA promoter region in Vibrio anguillarum. BMC Microbiology, 2004, 4:42-51
    [151] Zhang N, Xu Y, Zhang Z, et al. A nonradioactive method for detecting DNA-binding activity of nuclear transcription factors. J Huazhong Univ Sci Technolog Med Sci, 2003, 23(3):227-229
    [152] Aikawa Y, Yamamoto M, Yamamoto T, et al. An anti- rheumatic agent T-614 inhibits NF-kappaB activation in LPS-and TNF-alpha-stimulated THP-1 cells without interfering with IkappaBalpha degradation. Inflamm Res, 2002, 51 (4): 188-194
    [153] Schultz J, Doerks T, Ponting CP, et al. More than 1,000 putative new human signaling proteins revealed by EST data mining. Nat Genet. 2000, 25(2):201-204
    [154] Baxevanis A, Ouellette BEE. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 1998
    [155] Bates EE, Gieu MC, Ravel O ,et al. CD40L activation of dendritic cells down-regulates DORA, a novel member of the immunoglobulin superfamily. Mol Immtmol, 1998, 35(9):513-524
    [156] Bates EE, Kissenpfening A, Peronne C, et al. The mousse and human IGSF6 (DORA) genes map to the inflammatory lowel disease 1 locus and are embedded in an intron of a gene of unknown function. Immunogenetics, 2000, 52:112-120
    [157] Waga S. The P21 inhibitor of cyclin dependent kinases controls DNA replication by interaction with PCNA. Nature, 1994, 369:534-537
    [158] Boton WE. Expression of PCNA and DNA polymerase delta in the cell cycle of synchchonized mammalina cells. Cell, 1998, 1(3); 193-197
    [159] Gavrieli Y. Identification of pogrammed cell death in situ via specific labelling of nuclear DNA fragmentation. J cell Bio, 1992, 119(3):439
    [160] Gorezyca W. Detection of DNA strand breacks in in individual apoptosis cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays.Cancer Res, 1993,54(4): 1945
    [161] 谭德勇,罗兰,赖建华等.PCNA等5种基因在小鼠睾丸发育过程中的表达,遗传,2000,22(3):149-152
    [162] 谢永芳.小鼠胚胎发育过程中主要器官的细胞增殖与凋亡研究:[硕士论文].昆明:云南大学,2001
    [163] 李鹂.小鼠胚胎发育过程中五种细胞周期调控基因的表达研究:[硕士论文].昆明:云南大学,1999
    [164] Oppon E. Synergistic use of promoter prediction algorithms: a choice for small training dataset? Ph.D. Thesis, South Africa: Western Cape University,2000
    [165] Sabatti C, Rohlin L, Liao J. Dictionary model for the analysis of E.coli promoter region. In: Proceeding of 25th Annual International Conference of the IEEE EMBS. Cancun, Mexico, 2003, 17-21
    [166] Hertz G, Stormo G. Escherichia coli promoter sequences. Analysis and prediction. Meth Enzymol, 1996, 273:31-42
    [167] Mahadevan I, Ghosh I. Analysis of E.coli promoter structures using neural network. Nucleic Acids Research, 1994, 22(11): 2158-2165
    [168] Eskin E, Pevzer P.Finding composite regulatory patterns in DNA sequences. Bioinformatics, 2002, 18(S1):S354-363
    [169] Eskin E, Keich U, Gelfand M, Pevzer E Genome-wide analysis of bacterial promoter regions. In: Pro Pac Syrup Biocomp. Lihue, USA: World Scientific Press,2003, 29-40
    [170] Stormo G. DNA binding sites: representation and discovery. Bioinformatics,2000, 16(1):16~23
    [171] Staden R. Computer methods to locate signals in nucleic acid sequences.Nucleic Acids Res, 1984, 12:505-519
    [172] Staden R. Methods for calculating the probabilities of finding patterns in sequences. Comput Applic Biosci, 1989, 5, 89-96.
    [173] Fickett.J.W. The gene identification problem: an overview for developers.Comput Chem, 1996a, 20:103-118
    [174] Fickett JW. Quantitative discrimination of MEF2 sites. Mol Cell Biol, 1996b,16: 437-441.
    [175] Wingender, E, Dietze P, KarasH. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res, 1996, 24:283-241
    [176] Wyeth WW, James WF. Identification of Regulatory Regions which Confer Muscle-Specific Gene Expression.
    [177] William K, Wyeth WW. A Predictive Model for Regulatory Sequences Directing Liver-Specific Transcription.
    [178] Tronche F, Ringeisen F, Blumenfeld M, et al. Analysis of the distribution of binding sites for a tissue-specific transcription factor in the vertebrate genome. J Mol Biol, 1997, 266:231-245.
    [179] 王济川.Logistic回归模型-方法与应用.北京:高等教育出版社
    [180] Hertz GZ, Stormo GD. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics, 1999,15:563-577
    [1] Vogelstein B, Lane D, Levine AJ. Surfing the p53 network[J]. Nature, 2000,408(6810): 307-310
    [2] Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells[J]. Nature, 1979, 278:261-263
    [3] Linzer DIH, Levine AJ. Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and in infected embryonal carcinoma cells[J]. Cell, 1979, 1:43-52
    [4] De Leo AB, Jay G, Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse[J].Proc Natl Acad Sci USA ,1979, 76:2420-2424
    [5] Eliyahu D, Raz A, Gruss P, et al. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells[J]. Nature ,1984, 312:646-649
    [6] Jenkins JR, Rudge K, Currie GA. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53[J]. Nature, 1984, 312:651-654
    [7] Parada LF, Land H, Weinberg RA, et al. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation[J]. Nature, 1984,312:649-651
    [8] Soussi T, Caron de Fromentel C, May P. Structural aspects of the p53 protein in relation to gene evolution[J]. Oncogene ,1990, 5:945-952
    [9] Soussi T, Caron de Fromentel C, Mechali M, et al. Cloning and characterization of a cDNA from Xenopus laevis coding for a protein homologous to human and murine p53[J]. Oncogene, 1987,1:71-78
    [10] Lome J, Hofseth S, Perwez H. p53:25 years after its discovery[J], Trends Pharmacol Sci 2004, 25(4): 177-181
    [11] Perwez H , Harris CC. p53 biological network:at the crossroads of the cellular-stress response pathway and molecular carcinogenesis[J]. Nippon Med Sch, 2006, 73(2): 54-64
    [12] Bode AM, Dong ZG. Post-translational modification of p53 in tumorigenesis[J]. Nat Rev Cancer, 2004, 4(10):793-805
    [13] Green DR, Chipuk JE. p53 and metabolism: Inside the TIGAR[J]. Cell, 2006, 126(1):30-32
    [14] Chen J, Lin J, Levine AJ. Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene[J]. Mol. Med., 1995, 1(2):142-152
    [15] Veprintsev DB, Freund SM, Andreeva A, et al. Core domain interactions in full-length p53 in solution[J], PNAS, 2006, 103 (7): 2115-2119
    [16] Canadillas JM, Tidow H, Freund SM, et al. Solution structure of p53 core domain: Structural basis for its instability[J]. PNAS, 2006, 103 (7): 2109-2114
    [17] Ho WC, Fitzgerald MX, Marmorstein R. Structure of the p53 Core Domain Dimer Bound to DNA[J]. J Biol Chem, 2006, 281(29): 20494-20502
    [18] Zhao K, Chai X, Johnston K, et al. Crystal structure of the mouse p53 core DNA-binding domain at 2.7 A resolution[J]. J Biol Chem., 2001, 276(15):12120-12127
    [19] Lane DP, Benchimol S. p53: oncogene or antioncogene[J]. Genes Dev, 1990, 4(1):1-8.
    [20] Dittmer D, Pati S, Zambetti G, et al. Gain of function mutations in p53[J]. Nature Genet, 1993, 4(1):42-46.
    [21] Hsiao M, Low J, Dorn E, et al. Gain-of-function mutations of the p 53 gene induce lymphohematopoietic metastatic potential and tissue invasiveness[J]. Am J Pathol, 1994, 145(3): 702-714
    [22] Lowe SW , Bodis S, Bardeesy N, et al. Apoptosis and the prognos prognostic significance of p53 mutation[J]. Cold Spring Harb Symp Quant Biol, 1994, 59:419-426.
    [23] Bullock AN, Fersht AR. Rescuing the function of mutant p53[J]. Nat Rev Cancer, 2001, 1(1): 68-76
    [24] Selivanova G. Mutant p53:the loaded gun[J]. Curt Opin Investig Drugs, 2001,2(8):1136-1141
    [25] Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops[J]. Oncogene, 2005, 24(17) :2899-2908
    [26] Sengupta S, Harris CC. p53:Traffic cop at the crossroad of DNA repair and recombination[J]. Nat Rev Mol Cell Biol, 2005, 6(1):44-55
    [27] Ayed A, Mulder FA, Yi GS, et al. Latent and active p53 are identical in conformation[J]. Nature Structural Biology, 2001, 8(9): 756-760
    [28] El-Deiry WS, Kern SE, Pietenpol JA, et al. Definition of a consensus binding site forp53[J]. Nature Genet, 1992, 1(1): 45-49
    [29] Bourdon JC, Deguin-Chambon V, Lelong JC, et al. Further characterization of the p53 responsive element—identification of new candidate genes for Vans-activation by p53[J]. Oncogene, 1997, 14 (1): 85-94
    [30] Funk WD, Pak DT, Karas RH, et al. A transcriptionally active DNA-binding site for human p53 protein complexes[J]. Mol Cell Biol, 1992, 12(6): 2866-2871
    [31] Wang L,Wu Q,Qiu P, et al. Analyses of p53 target genes in the human genome by bioinformatic and microarray approaches[J]. J Biol Chem , 2001, 276 (47):43604-43610
    [32] Nakamura Y. Isolation of p53-target genes and their functional analysis[J].Cancer Sci 2004, 95(1): 7-11
    [33] Zhao R, Gish K,Murphy M,et al. Analysis of p53-regulated gene expression pattems using oligonucleotide arrays[J]. Genes Dev, 2000, 14 (8): 981-993
    [34] Liu S,Mirza A,Wang L. Generation of p53 target database via integration of microarray and global p53 DNA-binding site analysis[J]. Methods Mol Biol, 2004,281:33-54
    [35] Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene[J]. Cell, 1995, 80(2): 293-299
    [36] Bian J, Sun Y. Transcriptional activation by p53 of the human type Ⅳ collagenase (gelatinase A or matrix metalloproteinase 2) promoter[J]. Mol Cell Biol.,1997, 17(11): 6330-6338
    [37] Comer KA, Dennis PA, Armstrong L, et al. Human smooth muscle alpha-actin gene is a transcriptional target of the p53 tumor suppressor protein[J]. Oncogene,1998, 16(10): 1299-1308
    [38] Ludes-Meyers JH, Subler MA, Shivakumar CV, et al. Transcriptional activation of the human epidermal growth factor receptor promoter by human p53[J].Mol Cell Biol, 1996, 16(11): 6009-6019
    [39] Zauberman A, Flusberg D, Haupt Y, et al. A functionalp53-responsive intronic promoter is contained within the human mdm2 gene[J]. Nucleic Acids Res., 1995,23(14): 2584-2592
    [40] Grimberg A, Coleman CM, Bums TF, et al. p53-Dependent and p53-independent induction of insulin-like growth factor binding protein-3 by deoxyribonucleic acid damage and hypoxia[J]. J Clin Endocrinol Metab, 2005, 90(6):3568-3574
    [41] Hollander MC, Alamo I, Jackman J, et al. Analysis of the mammalian gadd45 gene and its response to DNA damage[J]. J Biol Chem, 1993, 268(32): 24385-24393
    [42] el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression[J]. Cell, 199375(4): 817-825
    [43] Kimura Y, Furuhata T, Urano T, et al. Genomic structure and chromosomal localization of GML (GPI-anchored molecule-like protein), a gene induced by p53[J].Genomics, 1997, 41(3): 477-480
    [44] Oda K, Arakawa H, Tanaka T, et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53[J], Cell,2000, 102(6): 849-862
    [45] Tanaka H, Arakawa H, Yamaguchi T, et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage[J]. Nature, 2000,404(6773): 42-49
    [46] Han HJ, Tokino T, Nakamura Y. CSR, a scavenger receptor-like protein with a protective role against cellular damage causedby UV irradiation and oxidative stress[J]. Hum Mol Genet, 1998, 7(6): 1039-1046
    [47] Shiraishi K, Fukuda S, Mori T, et al. Identification of fractalkine, a CX3C-type chemokine, as a direct target of p53[J], Cancer Res, 200060(14):3722-3726
    [48] Bernerd F, Sarasin A, Magnaldo T. Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes[J]. PNAS, 1999,96(20):11329-11334
    [49] Hermeking H, Lengauer C, Polyak K, et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression[J]. Mol Cell, 1998, 1(1): 3-11
    [50] Takimoto R, E1-Deiry WS. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site[J]. Oncogene, 2000, 19(14): 1735-1743
    [51] Herzer K, Falk CS, Encke J, et al. Upregulation of major histocompatibility complex class I on liver cells by hepatitis C virus core protein via p53 and TAP1 impairs natural killer cell cytotoxicity[J]. J Virol, 2003, 77(15): 8299-8309
    [52] Mirza A, Wu Q, Wang L, et al. Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression[J]. Oncogene, 2003, 22(23): 3645-3654
    [53] Tan M, Heizmann CW, Guan K, et al. Transcriptional activation of the human S100A2 promoter by wild-type p53[J]. FEBS Lett, 1999, 445(2-3): 265-268
    [54] Dudez C, Falette N, Audoynaud C, et al. The human BTG2/TIS21/PC3 gene: genomic structure, transcriptional regulation and evaluation as a candidate tumor suppressor gene[J]. Gene, 2002, 282(1-2): 207-214
    [55] Shin TH, Paterson AJ, Kudlow JE. p53 stimulates transcription from the human transforming growth factor alpha promoter: a potential growth-stimulatory role for p53[J]. Mol Cell Biol, 1995, 15(9): 4694-4701
    [56] Zhu J, Chen X. MCG10, a novel p53 target gene that encodes a KH domain RNA-binding protein, is capable of inducing apoptosis and cell cycle arrest in G(2)-M[J]. Mol Cell Biol, 2000, 20(15): 5602-5618
    [57] Burns TE Fei P, Scata KA, et al. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells[J]. Mol Cell Biol, 2003,23(16): 5556-5571
    [58] St Clair S, Giono L, Varmeh-Ziaie S, et al. DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter[J]. Mol Cell, 2004, 16(5): 725-736
    [59] Im HJ, Pittelkow MR, Kumar R. Divergent regulation of the growth-promoting gene IEX-1 by the p53 tumor suppressor and Spl[J]. J Biol Chem,2002, 277(17): 14612-14621
    [60] Kato MV, Sato H, Nagayoshi M, et al. Upregulation of the elongation factor-1 alpha gene by p53 in association with death of an erythroleukemic cell line[J].Blood, 1997, 90(4): 1373-1378
    [61] Adolph KW, Liska D J, Bomstein P. Analysis of the promoter and transcription start sites of the human thrombospondin 2 gene (THBS2)[J]. Gene, 1997193(1): 5-11
    [62] Metcalfe AM, Dixon RM, Radda GK. Wild-type but not mutant p53 activates the hepatocyte growth factor/scatter factor promoter[J]. Nucleic Acids Res, 1997,25(5): 983-986
    [63] Kunz C, Pebler S, Otte J, et al. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53[J]. Nucleic Acids Res,1995, 23(18): 3710-3717
    [64] Seol DW, Chen Q, Smith ML,et al. Regulation of the c-met proto-oncogene promoter byp53[J]. J Biol Chem, 1999, 274(6): 3565-3572
    [65] Mortensen K, Skouv J, Hougaard DM, et al. Endogenous endothelial cell nitric-oxide synthase modulates apoptosis in cultured breast cancer cells and is transcriptionally regulated byp53[J]. J Biol Chem, 1999, 274(53): 37679-37684
    [66] Shou J, Ali-Osman F, Multani AS, et al. Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA [J]. Oncogene, 2002, 21(6): 878-889
    [67], Lin Y, Ma W, Benchimol S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis [J]. Nat Genet, 2000,26(1): 122-127
    [68] Wu GS, Saftig P, Peters C, et al. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity [J]. Oncogene , 1998, 16(17): 2177-2183
    [69] Mashimo T, Watabe M, Hirota S, et al. The expression of the KAI1 gene, a tumor metastasis suppressor, is directly activated by p53 [J]. PNAS, 1998, 95(19): 11307-11311
    [70] Shiio Y, Yamamoto T, Yamaguchi N. Negative regulation of Rb expression by the p53 gene product [J]. PNAS, 1992, 89(12): 5206-5210
    [71] Saifudeen Z, Du H, Dipp S, et al. The bradykinin type 2 receptor is a target for p53-mediated transcriptional activation [J]. J Biol Chem, 2000,275(20): 15557-15562
    [72] Zou Z, Gao C, Nagaich AK, et al. p53 regulates the expression of the tumor suppressor gene maspin [J]. J Biol Chem, 2000,275(9): 6051-6054
    [73] Li PX, Wong J, Ayed A, et al. Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression [J]. J Biol Chem, 2000,275(26): 20127-20135
    [74] Shan B, Xu J, Zhuo Y, et al. Induction of p53-dependent activation of the human proliferating cell nuclear antigen gene in chromatin by ionizing radiation [J]. J Biol Chem, 2003,278(45): 44009-44017
    [75] Urano T, Nishimori H, Han H, et al. Cloning of P2XM, a novel human P2X receptor gene regulated by p53[J]. Cancer Res, 1997, 57(15): 3281-3287
    [76] Shu KX, Wu LX, Xie YF, et al. Charaterization of the human PAP1 gene and its homologue possible involvement in mouse embryonic development[J]. Colloids and Surfaces B:Biointerfaces, 2006, 52(1): 22-30
    [77] Shu KX, Li B, Liang YL, et al. Effects of exogenous p53 transfection on the gene expression in the human brain glioma cell line U251 [J]. Colloids and Surfaces B:Biointerfaces, 2006,47(2): 126-131
    [78] Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system [J]. Seminars in Cancer Biology, 2003,13(1): 49-58
    [79] Lahav G, Rosenfeld N, Sigal A ,et al. Dynamics of the p53-Mdm2 feedback loop in individual cells [J]. Nat Genet, 2004, 36 (2): 147-150
    [80] Tan ZQ, Tu WL, Schreiber SS. Downregulation of free ubiquitin: a novel mechanism of p53 stabilization and neuronal cell death[J]. Molecular Brain Research, 2001, 91:179-188
    [81] Hoh J, Jin S, Parrado T, et al. The p53MH algorithm and its application in detecting p53-responsive genes[J]. PNAS, 2002, 99(13): 8467-72
    [82] Makoto N, Yoko K, Hitoshi M, et al. Direct Interaction of p21 Cyclin-Dependent Kinase Inhibitor with the Retinoblastoma Tumor Suppressor Protein[J]. Biochemical and Biophysical Research Communications, 1999, 263: 35-40
    [83] Kim YT, Zhao M. Aberrant cell cycle regulation in cervical carcinoma[J].Yonsei Med J., 2005, 46(5): 597-613
    [84] Avkin S, Sevilya Z, Toube L, et al. p53 and p21 Regulate error-prone DNA repair to yield a lower mutation load[J]. Mol Cell, 2006, 22 (3): 407-13
    [85] Nowak MA, Komarova NL, Sengupta A, et al. The role of chromosomal instability in tumor initiation[J]. PNAS, 2002, 99(25): 16226-16231
    [86] Liu MT, Chang YT, Chen SC, et al. Epstein-Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity[J]. Oncogene, 2005, 24(16): 2635-46
    [87] Smith ML, Seo YR. p53 regulation of DNA excision repair pathways[J]. Mutagenesis, 2002, 17(2): 149-56
    [88] Bertrand P, Saintigny Y, Lopez BS. p53's double life: transactivationindependent repression of homologous recombination[J]. Trends Genet, 2004, 20(6):235-243
    [89] Adimoolam S, Ford JM. p53 and regulation of DNA damage recognition during nucleotide excision repair[J]. DNA Repair (Amst), 2003, 2(9): 947-954
    [90] Zurer I, Hofseth L J, Cohen Y, et al. The role of p53 in base excision repair following genotoxic stress[J], Carcinogenesis, 2004, 25(1): 11-19
    [91] Wang XW, Yeh H, Schaeffer L, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity[J]. Nat. Genet., 1995, 10(2): 188-195
    [92] Leveillard T, Andera L, Bissonnette N, et al. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations[J]. EMBO J, 1996, 15(7): 1615-1624
    [93] Hwang B J, Ford JM, Hanawalt PC, et al. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair[J].PNAS, 1999, 96:424-428
    [94] Adimoolam S, Ford JM. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene[J]. PNAS, 2002, 99(20):12985-12990
    [95] Rubbi CP, Milner J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage[J]. EMBO J., 2003, 22(4): 975-86
    [96] Wang QE, Zhu Q, Wani MA, et al. Tumor suppressor p53 dependent recruitment of nucleotide excision repair factors XPC and TFIIH to DNA damage[J].DNA Repair (Amst), 2003, 2(5) 483-499
    [97] Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer[J].Nature, 2001, 411(6835): 366-374
    [98] Dianov GL, Sleeth KM, Dianova Ⅱ, et al. Repair of abasic sites in DNA[J].Murat Res, 2003, 531(1-2): 157-163
    [99] Friedberg EC. How nucleotide excision repair protects against cancer[J]. Nat Rev Cancer, 2001, 1(1):22-33
    [100] Lieber MR, Ma Y, Pannicke U, et al. Mechanism and regulation of human non- homologous DNA end-joining[J]. Nature Rev Mol Cell Biol, 2003, 4(9):712-720
    [101] Sengupta S, Linke SP, Pedeux R, et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination[J].The EMBO J, 2003, 22(5): 1210-1222
    [102] Linke SP, Sengupta S, Khabie N, et al. p53 interacts with hRAD51 and bRAD54, and directly modulates homologous recombination[J]. Cancer Research,2003,63(10): 2596-2605
    [103] Buchhop S, Gibson MK, Wang XW, et al. Interaction of p53 with the human Rad51 protein[J]. Nucleic Acids Res, 1997, 25(19): 3868-3874
    [104] Susse S, Janz C, Janus F, et al. Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53[J]. Oncogene, 2000, 19(39):4500-4512.
    [105] Yee KS, Vousden KH. Complicating the complexity of p53[J]. Carcinogenesis, 2005, 26(8): 1317-1322
    [106] Fridman JS, Lowe SW. Control of apoptosis by p53[J]. Oncogene,2003,22(26): 9030-9040
    [107] Haupt S, Berger M, Goldberg Z, et al. Apoptosis_the p53 network[J]. J Cell Sci, 2003, 116(Pt20): 4077-4085
    [108] Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria[J]. Mol Cell, 2003, 11(3): 577-590
    [109] Jeffers JR, Parganas E, Lee Y, et al. lhle JN, McKinnon PJ, Cleveland JL,Zambetti GP, Puma is an essential mediator of p53-dependent and -independent apoptotic pathways[J]. Cancer Cell, 2003, 4(4): 321-328
    [110] Chipuk JE, Bouchier-Hayes L, Kuwana T, et al. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53[J]. Science, 2005, 309(5741):1732-1735
    [111] Villunger A, Michalak EM, Coultas L, et al. p53-and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa[J]. Science, 2003,302(5647): 1036-1038
    [112] Bourdonl Jc, Laurenzi V De, Melino G, et al. p53:25 years of research and more questions to answer[J]. Cell Death and Differentiation, 2003, 10:397-399
    [113] 舒坤贤.p53下游基因及其作用[J].国外医学.生理、病理与临床分册,2004,24(1):68-71
    [114] 祝峙.p53基因网络的研究进展[J].癌症,2003,22(5):547-551
    [115] 马琳琳,孙文靖,傅松滨.p53基因网络王国[J].国外医学.遗传分册,2005,28(1):15-20
    [116] 许少峰,付丽.p53研究的新进展[J].中华病理学杂志,2004,33(6):559-561
    [117] 姚逸临.肿瘤抑制基因p53的研究进展[J].广东医学,2006,27(8):1263-1265
    [118] 郭文.鼻炎癌治疗药重组人p53腺病毒(rh Ad—p53)[J].世界临床药物,2006,27(7):443-445
    [119] 王晓维,仵晓荣,肖海敏等.重组腺病毒p53基因治疗消化道恶性肿瘤的观察及护理[J].现代肿瘤医学,2006,14(7):908-909
    [120] 班永光.重组人p53腺病毒制品治疗原发性肝癌的进展[J].2006,16(4):408-409
    [121] 官泳松,孙龙,周翔平等.重组人p53腺病毒基因局部注射联合肝动脉化疗栓塞治疗原发性肝癌[J].世界华人消化杂志,2005,13(1):125-127
    [122] 朱志兵,刘积良,隋捷等.重组人p53腺病毒治疗晚期难治性肝癌的临床研究[J].中华医药杂志,2004,3(11):11-14
    [123] 杨晓红,唐思洁,任碧轩等.外源性053基因转染的人肝癌细胞化疗药物敏感性的研究[J].免疫学杂志,2005,21(2):148-149
    [124] 施明,王福生,刘明旭等.重组腺病毒载体介导的人野生型p53基因增强肝癌细胞对化疗药物的敏感性[J].中国肿瘤生物治疗杂志,2001,8(2):80-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700