钯催化氧气氧化碳—碳三键双官能团化反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
零价钯启动的炔烃双官能团化已经得到了化学家的广泛的研究,并成功的应用于许多复杂的有机分子的合成。然而,此类方法通常需要特殊的原料和配体,并伴随有一分子或多分子副产物的产生。基于绿色化学的立场,我们发展了几例钯/氧气体系中碳-碳三键的双官能团化反应:
     第一部分:钯催化氧气氧化两分子烯与一分子炔的交叉偶联。以PdCl_2为催化剂,由贫电子炔烃与烯烃出发,在钯/氧气体系中,我们成功的实现了炔烃与烯烃的高选择性交叉三聚;通过控制条件及改变反应底物,我们可以高选择性的实现炔烃与烯烃的1:2交叉三聚为1,3,5-三烯或者1,2,4,5-四取代苯衍生物。此外,通过一些控制试验,本文也对其机理进行了简单的探索,我们推测这两个反应是氯钯化启动的,然后在与两分子炔烃发生Heck串联反应。在上述两个过程中,所需的氧化剂仅为最绿色的氧气,而副产物仅为水。该方法为首例钯催化的炔/烯(1/2)的交叉杂三聚反应。
     第二部分:乙酰氧钯化启动的炔烯偶联。乙酰氧钯化可以比较便捷的实现炔烃的双官能团化,并一步构筑C-O键与C-C键。然而,在这些方法中,基于β-氢消除而保持烯烃碳-碳双键的未有报道。我们在Pd(OAc)_2催化下,O_2与Cu(OAc)_2作为共氧化剂,KBr与K_2CO_3为添加剂,在HOAc/CH_3CN中实现了炔烃尤其是富电子炔烃的乙酰氧钯化,并用末端烯烃捕捉C-Pd键,进而β-H消除高选择性得到了一系列的1-乙酰氧基-1,3-二烯。该方法对于末端烯的适用范围较广。同时,我们发现2-甲基丙烯酸甲酯也在这个反应中表现出不俗的活性,并得到了乙酰氧基取代的1,4-二烯,而非常见的1,3-二烯。
     第三部分:氯钯化启动的[2+2+2]环化反应。我们从1,6-二炔与丙烯酸酯出发,在PdCl_2催化下,以CuCl_2·2H2O与O_2为氧化剂,实现了两者的环化反应,且得到了一系列的苯并五元环。此外,我们成功的分离了中间产物,并通过控制试验对该反应的机理进行了初步的研究。基于中间产物与控制试验,我们认为这是一个氯钯化启动的[2+2+2]氧化环化反应。
Pd(0)-catalyzed processes is now recognized to be a useful tool for constructing complex organic compounds which has undergone great development during the past decades. However, special ligands and restricted starting materials usually are needed for respectful yields of the desired products and one or more molecular byproducts usually were losted during these transformations. Combining various factors of green chemistry with Pd-catalyzed coupling reactions, we developed several example of difunctionalization of alkynes in the system of Pd/O_2:
     1) Highly chemoselective palladium-catalyzed cross-trimerization between alkyne and alkenes leading to 1,3,5-trienes or 1,2,4,5-tetrasubstituted benzenes with dioxygen: A palladium-catalyzed 1:2 linear/cyclic cross-trimerization of alkyne with alkenes using molecular oxygen as the sole oxidant has been reported for the first time. Through changing the starting alkynes or additives, a series of 1,3,5-trienes or 1,2,4,5-tetrasubstituted benzenes are obtained with high chemoselectivity respectively and mechanisms of these reactions are proposed based on some controlled examination. In both transformations, water is the sole byproduct.
     2) Acetoxypalladation of unactivated alkynes and capture with alkenes to give 1-acetoxy-1,3-dienes taking dioxygen as terminal oxidant: A new and general protocol for the synthesis of 1-acetoxy-1,3-dienes by an acetoxypalladation/Heck cross-coupling/β-H elimination tandem process is described in which dioxygen is the terminal oxidant. Electron-rich and electron-deficient alkynes are both effective substrates in this system. Interesting, almost all the terminal alkenes including methyl methacrylate which is usually inert in other Heck cross-coupling are effective for the reaction. It is the first example of acetoxypalladation of diarylalkynes.
     3) An aerobic [2+2+2] cyclization via chloropalladation: From 1,6-diynes and acrylates to substituted aromatic carbocycles: A Pd-catalyzed aerobic [2+2+2] cyclization of 1,6-diynes and acrylates proceeding through chloropalladation process has been developed. Poly-substituted five-membered aromatic carbocycles/heterocycles were obtained in good to excellent yields. The key most absorbing point is the detection of intermediate C had been successfully isolated and characterized, and which is the first mechanistic evidence in [2+2+2] cyclization reactions via chloropalladation process. Results of mechanistic study are consistent with the proposed reaction mechanism.
引文
[1] Beletskaya I. P., Cheprakov A.V. The Heck Reaction as a Sharpening Stone of Palladium Catalysis [J]. Chem. Rev., 2000, 100:3009-3066.
    [2] Negishi E., Anastasia L. Palladium-Catalyzed Alkynylation [J]. Chem. Rev., 2003, 103:1979-2018.
    [3] Miyaura N, Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds [J]. Chem. Rev., 1995,95:2457-2483.
    [4] Hassan J., Sévignon M., et al. Aryl?Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction [J]. Chem. Rev., 2002, 102:1359-1469.
    [5] Chinchilla R., Nájera C. The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry [J]. Chem. Rev., 2007, 107:874-922.
    [6] Zeni G., Larock R.C. Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition [J]. Chem. Rev., 2006, 106:4644-4680.
    [7] Varela J.A., SaáC. Construction of Pyridine Rings by Metal-Mediated [2+2+2] Cycloaddition [J]. Chem. Rev., 2003, 103:3787-3801.
    [8] Shibata K., Aatoh T., et al. Palladium-Catalyzed Intermolecular Three-Component Coupling of Aryl Iodides, Alkynes, and Alkenes To Produce 1, 3-Butadiene Derivatives [J]. Org. Lett., 2005, 7:1781-1783
    [9] Horiguchi H., Hirano K., et al. Palladium-Catalyzed Three-Component 1:2:1 Coupling of Aryl Iodides, Alkynes, Alkenes to Produce 1,3,5-Hexatriene Derivatives [J]. Adv. Synth. Catal., 2009, 351:1431-1436.
    [10] Hirano K., Horiguchi H., et al. Palladium-Catalyzed Intermolecular Three-Component Coupling of Organic Halides with Alkynes and Alkenes: Efficient Synthesis of Oligoene Compounds [J]. Adv. Synth. Catal., 2007, 349:2317-2325.
    [11] Sakai N., Komatsu R., et al. A Single-Step Synthesis of Enynes: Pd-Catalyzed Arylalkynylation of Aryl Iodides, Internal Alkynes, And Alkynylsilanes [J]. Org. Lett., 2010, 12:1300-1303.
    [12] (a) Zhou C., Larock R.C., Emrich D.E. An Efficient, Regio- and Stereoselective Palladium-Catalyzed Route to Tetrasubstituted Olefins [J]. Org. Lett., 2003, 5:1579-1582. (b)Zhou C., Larock R.C. Regio- and Stereoselective Route to Tetrasubstituted Olefins by the Palladium-Catalyzed Three-Component Coupling of Aryl Iodides, Internal Alkynes, and Arylboronic Acids [J]. J. Org. Chem., 2005, 70:3765-3777.
    [13] Cheng Y.-N., Duan Z., et al. Palladium-Catalyzed Three-Component Arylcyanation of Internal Alkynes with Aryl Bromides and K4[Fe(CN)6] [J]. Org. Lett., 2008, 10:901-904.
    [14] Lu X. Handbook of Organopalladium Chemistry for Organic Synthesis [M]. Negishi, E., Ed.; Wiley-Interscience: New York, 2002; 2: 2267-2288.
    [15] Li J.H., Jiang H.F., et al. Novel Stereospecific Synthesis of 3-Chloroacrylate Esters via Palladium-Catalyzed Carbonylation of Terminal Acetylenes [J]. J. Org. Chem., 1999, 64:5984-5987.
    [16] Li J.H., Tang S., Xie Y.X. General and Selective Synthesis of (Z)-3-Haloacrylates via Palladium-Catalyzed Carbonylation of Terminal Alkynes [J]. J. Org. Chem., 2005, 70:477-479.
    [17] Ma S., Wu B., Zhao S. Mild and Efficient Synthesis of (Z)-Chloroalkylidene-β-lactones via the PdCl2-Catalyzed Cyclocarbonylation of 2-Alkynols [J]. Org. Lett., 2003, 5: 4429-4432.
    [18]谢叶香,李金恒,尹笃林,江焕峰.钯催化α-炔醇立体专一合成α-(Z)-氯亚甲基-β-内酯[J].有机化学, 2003, 23:1241-1245.
    [19] Ma S., Wu B., Jiang X. PdCl2-Catalyzed Efficient Transformation of Propargylic Amines to (E)-Chloroalkylidene-β-lactams [J]. J. Org. Chem., 2005, 70:2588-2591.
    [20] Tang S., Yu Q.-F., et al. Palladium-Catalyzed Carbonylative Annulation Reaction of 2-(1-Alkynyl)-benzenamnes: Selective Synthesis of 3-(Halomethylene)indolin-2-ones [J]. Org. Lett., 2007, 9:3413-3416.
    [21] Kenada K., Uchiyama T., et al. Selective codimerization of acetylenes and allyl halides catalyzed by palladium complexes [J]. J. Org. Chem., 1979, 44:55-59.
    [22] B?ckvall J.-E., Nilsson Y.I.M. et al. Stereochemistry and Mechanism of Chloropalladation of Acetylenes [J]. Organometallics, 1995, 14:4242-4246.
    [23] Ma S.M., Lu X.Y. Divalent Palladium Catalyzed Stereoselective Synthesis ofα-(Z)-(Halomethylene)-γ-butyrolactone Derivative and Its Mechanism [J]. J. Org. Chem., 1991, 56:5120-5125.
    [24] Zhu G.X., Lu X.Y. Reactivity and Stereochemistry ofβ-Heteroatom Elimination. A detailed Study through a Palladium-Catalyzed Cyclization Reaction Model [J]. Organometallics, 1995, 14:4899-4904.
    [25] Zhang Z.G., Lu X.Y., Lang S.H. An Unexpected Reaction of Allylic Propynoate under Palladium(ΙΙ) Catalysis [J]. Chinese J. Chem., 2002, 20:1287-1290.
    [26] Xie X., Lu X.Y., Liu G.S. Palladium(ΙΙ)-Catalyzed Cyclization of N-(2’,4’-Dienyl)-2-alkynamides toα-Alkylidene-γ-butyrolactams [J]. Chinese J. Chem., 2001, 19:1285-1288.
    [27] Ji J.G., Wang, Z., Lu, X.Y. Studies on [PdH]- and [PdCl]-Catalyzed Intramolecular Cyclization: The Search for a Better Solution to Selective Enyne Coupling [J]. Organometallics, 1996, 15:2821-2828.
    [28] Yin G.Y., Liu G.S. Palladium-Catalyzed Oxidative Cyclization of Enynes with Hydrogen Peroxide as Oxidant [J]. Angew. Chem. Int. Ed., 2008, 47:5442-5445.
    [29] Hoye T.R., Wang J.Z. Alkyne Haloallylation [with Pd (ΙΙ)] as a Core Strategy for Macrocycle Synthesis: A Total Synthesis of (-)-Haterumalide NA/(-)-Oocydin A [J]. J. Am. Chem. Soc., 2005, 127:6950-6951.
    [30] Li Y., Jardine K.J., et al. Palladium-Catalyzed Intramolecular Carboesterification of Olefins [J]. Angew. Chem. Int. Ed., 2009, 48:9690-9692.
    [31] Huang J.M., Zhou L., Jiang H.F. Palladium-Catalyzed Allylation of Alkynes with Allyl Alcohol in Aqueous Media: Highly Regio- and Stereoselective Synthesis of 1,4-Dienes [J]. Angew. Chem. Int. Ed., 2006, 45:1945-1949.
    [32] Chen X.Y., Kong W. et al. Palladium-catalyzed highly region- and stereoselective synthesis of (1E)- or (1Z)-1,2-dihalo-1,4-dienes via haloallylation alkynyl halides [J]. Chem. Comm., 2011, 47:2164-2166.
    [33] Ye S.Q., Gao K., et al. Synthesis of 1-methyleneindenes via palladium-catalyzed tandem reactions [J]. Chem. Comm., 2009, 5406-5408.
    [34] Huang J.M., Dong Y., et al. Highly regio- and stereoselective intermolecular tandem reaction to synthesize chloro-substituted 1,3-butadienes [J]. Chem. Comm., 2010, 46:1035-1037.
    [35] Jiang H.F., Qiao C.L., Liu W.B. Palladium(II)-Catalyzed Highly Regio- andStereoselective Synthesis of 2-Chloro-1,3-diene Derivatives from Alkynols and Alkenes [J]. Chem.-Eur. J., 2010, 16:10968-10970.
    [36] Reinheimer H., Dietl H., et al. Reactions of Aeetylenes with Noble-Metal Halides.Ⅷ. The Palladium Chloride Catalyzed Trimerization of 2-Butyne and l-Phenyl-l-propyne [J]. J. Am. Chem. Soc., 1970, 92:2276-2285.
    [37] Li J.H., Jiang H.F., Chen M.C. CuCl2-Induced Regiospecifical Synthesis of Benzene Derivatives in the Palladium-Catalyzed Cyclotrimerization of Alkynes [J]. J. Org. Chem., 2001, 66:3627-3629.
    [38] Li J.H., Liang Y., Xie Y.X. Mild and Selective Palladium-Catalyzed Dimerization of Terminal Alkynes To Form Symmetrical (Z,Z)-1,4-Dihalo-1,3-dienes [J]. J. Org. Chem., 2004, 69:8125-8127.
    [39] Jiang H.F., Liu X.H., Zhou L. First Synthesis of 1-Chlorovinyl Allenes via Palladium-Catalyzed Allenylation of Alkynoates with Propargyl Alcohols [J]. Chem.-Eur. J., 2008, 14:11305-11309.
    [40] Liang Y., Tang S., et al. Novel and Selective Palladium-Catalyzed Annulations of 2-Alkynylphenols To Form 2-Substituted 3-Halobenzo[b]furans [J]. Org. Lett., 2006, 8:3017-3020.
    [41] Chang W.-R., Lo Y.-H., et al. Palladium-Catalyzed Cyclization of Enediynes to Benzopyranones [J]. Adv. Synth. Catal., 2008, 350:1248-1252.
    [42] (a) Forgione P., Brochu M.-C., et al. Unexpected Intermolecular Pd-Catalyzed Cross-Coupling Reaction Employing Heteroaromatic Carboxylic Acids as Coupling Partners [J]. J. Am. Chem. Soc., 2006, 128:11350-11351. (b) Goossen L., Rodriguez N., Linder C. Decarboxylative Biaryl Synthesis from Aromatic Carboxylates and Aryl Triflates [J]. J. Am. Chem. Soc., 2008, 130:15248-15249. (c) Maehara A., Tsurugi H., et al. Regioselective C-H Functionalization Directed by a Removable Carboxyl Group: Palladium-Catalyzed Vinylation at the Unusual Position of Indole and Related Heteroaromatic Rings [J]. Org. Lett., 2008, 10:1159-1162. (d) Nakano M., Tsurugi H,. et al. Palladium-Catalyzed Perarylation of 3-Thiophene- and 3-Furancarboxylic Acids Accompanied by C-H Bond Cleavage and Decarboxylation [J]. Org. Lett., 2008, 10:1851-1854.
    [43] Huang X.C., Wang F., et al. Halopalladation/Decarboxylation/Carbon-Carbon FormingDomino Process: Synthesis of 5-Halo-6-substituted Benzo[b]naphtho[2,1-d]furans [J]. Org. Lett., 2009, 11:1139-1142.
    [44] (a) Nyffeler P.T., Durón S.G., et al. Selectfluor: Mechanistic Insight and Applications [J]. Angew. Chem. Int. Ed., 2005, 44:192-212. (b) Shimizu M., Hiyama T. Modern Synthetic Methods for Fluorine-Substituted Target Molecules [J]. Angew. Chem. Int. Ed., 2005, 44: 214-231. (c) Pihko P.M. Enantioselectiveα-Fluorination of Carbonyl Compounds: Organocatalysis or Metal Catalysis? [J]. Angew. Chem. Int. Ed., 2006, 45:544-547.
    [45] Peng H.H., Liu G.S. Palladium-Catalyzed Tandem Fluorination and Cyclization of Enynes [J]. Org. Lett., 2011, 13:772-775.
    [46] Wang Z., Lu X.Y. Palladium-Catalyzed Nucleophile-Alkyne-α,β-Unsaturated Carbonyl Coupling through Tandem Nucleopalladation and Conjugate Addition [J]. J. Org. Chem., 1996, 61:2254-2255.
    [47] Zhang Q.H., Lu X.Y. Highly Enantioselective Palladium(II)-Catalyzed Cyclization of (Z)-4′-Acetoxy-2′-butenyl 2-Alkynoates: An Efficient Synthesis of Optically Activeγ-Butyrolactones [J]. J. Am. Chem. Soc., 2000, 122:7604-7605.
    [48] (a) Zhang Q.H., Lu X.Y., Han X.L. Palladium(II)-Catalyzed Asymmetric Cyclization of (Z)-4′-Acetoxy-2′-butenyl 2-Alkynoates. Role of Nitrogen-Containing Ligands in Palladium(ΙΙ)-Mediated Reactions [J]. J. Org. Chem., 2001, 66:7676-7684. (b)韩秀玲,刘桂霞,陆熙炎。钯催化反应中的β-氢消除反应。有机化学,2005,25:1182-1197.
    [49] Zhao L.G., Lu X.Y. Palladium(ΙΙ)-Catalyzed Three-Component Coupling Reaction Initiated by Acetoxypalladation of Alkynes: An Efficient Route toγ,σ-Unsaturated Carbonyls [J]. Org. Lett., 2002, 4:3903-3906.
    [50] Zhao L.G., Lu X.Y., Xu W. Palladium(ΙΙ)-Catalyzed Enyne Coupling Reaction Initiated by Acetoxypalladation of Alkynes and Quenched by Protonolysis of the Carbon-Palladium Bond [J]. J. Org. Chem., 2005, 70:4059-4063.
    [51] (a) Muthiah C., Arai M.A., et al. Enantioselective synthesis ofα-methylene-γ-butyrolactones using chiral Pd(ΙΙ)-SPRIX catalyst [J]. Tetrahedron Lett., 2003, 44:5201-5204. (b) Song J., Shen Q., et al. The use of iminopyridines as efficient ligands in the palladium(ΙΙ)-catalyzed cyclization of (Z)-4′-acetoxy-2′-butenyl 2-alkynoates [J]. Tetrahydron, 2007, 63:5148-5153. (c) Tello-Aburto R., Harned A.M. Palladium-Catalyzed Reactions ofCyclohexadienones: Regioselective Cyclizations Triggered by Alkyne Acetoxylation [J]. Org. Lett., 2009, 11:3998-4000.
    [52] Zhao L.G., Lu X.Y. PdΙΙ-Catalyzed Cyclization of Alkynes Containing Aldehyde, Ketone, or Nitrile Groups Initiated by the Acetoxypalladation of Alkynes [J]. Angew. Chem. Int. Ed., 2002, 41:4343-4345.
    [53] Tang S., Peng P., et al. Synthesis of (2-Oxoindolin-3-ylidene)methyl Acetates Involving a C-H Functionalization Process [J]. Org. Lett., 2008, 10:1875-1878.
    [54] (a) Welbes L.L., Lyons T.W., et al. Synthesis of Cyclopropanes via Pd(ΙΙ/ΙV)-Catalyzed Reactions of Enynes [J]. J. Am. Chem. Soc., 2007, 129:5836-5837. (b) Lyons T.W., Sanford M.S. Tetrahedron, 2009, 65:3211-3221.
    [55] Tong X.F., Beller M., Tse M.K. A Palladium-Catalyzed Cyclization-Oxidation Sequence: Synthesis of Bicyclo[3.1.0]hexanes and Evidence for SN2 C-O Bond Formation [J]. J. Am. Chem. Soc., 2007, 129:4906-4907.
    [56] Kato K., Yamamoto Y., Akita H. Palladium(ΙΙ)-mediated cyclization–carbonylation of 4-yn-1-ones: facile access to 2-cyclopentenone carboxylates [J] Tetrahedron Lett., 2002, 43:4915-4917.
    [57] Nan Y., Miao H., Yang Z., A New Complex of Palladium-Thiourea and Carbon Tetrabromide Catalyzed Carbonylative Annulation of o-Hydroxylarylacetylenes: Efficient New Synthetic Technology for the Synthesis of 2,3-Disubstituted Benzo[b]furans [J]. Org. Lett., 2000, 2:297-299.
    [58] Liao Y., Reitman M., et al Palladium(ΙΙ)-Mediated Cascade Carbonylative Annulation of o-Alkynyl-phenols on Silyl Linker-Based Macrobeads: A Combinatorial Synthesis of a 2,3-Disubstituted Benzo[b]furan Library [J]. Org. Lett., 2002, 4:2607-2609.
    [59] Liao Y., Smith J., et al. Novel PdΙΙ-Mediated Cascade Carboxylative Annulation to Construct Benzo[b]furan-3-carboxylic Acids [J]. Org. Lett., 2005, 7:2707-2709.
    [60] Bacchi A., Costa M., et al. Heterocyclic Derivative Syntheses by Palladium-Catalyzed Oxidative Cyclization-Alkoxycarbonylation of Substitutedγ-Oxoalkynes [J]. J. Org. Chem., 2005, 70:4971-4979.
    [61] Ca′N.D., Campanini F., et al. Cascade Reactions: Catalytic Synthesis of Functionalized 1,3-Dihydroisobenzofuran and Tetrahydrofuran Derivatives by Sequential Nucleophilic RingOpening-eterocyclization-xidative Carbonylation of Alkynyloxiranes [J]. Adv. Synth. Catal., 2009, 351, 2423-2432.
    [62] Kato K., Motodate S., et al. Intermolecular Methoxycarbonylation of Terminal Alkynes Catalyzed by Palladium(ΙΙ) Bis(oxazoline) Complexes [J]. Angew. Chem. Int. Ed., 2009, 48:3326-3328.
    [63] Martínez, C., Aurrecoechea J.M., et al. Palladium-Catalyzed Sequential Oxidative Cyclization/Coupling of 2-Alkynylphenols and Alkenes: A Direct Entry into 3-Alkenylbenzofurans Org. Lett., 2009, 11:1083-1086.
    [64] (a) Liu R.R., Zhang J.L. Tetrasubstituted Furans by PdII-Catalyzed Three-Component Domino Reactions of 2-(1-Alkynyl)-2-alken-1-ones with Nucleophiles and Vinyl Ketones or Acrolein [J]. Chem.-Eur. J., 2009, 15:9303-9306. (b) Li W.B., Zhang J.L. Tetrasubstituted furans by PdII/CuI-cocatalyzed three-component domino reactions of 2-(1-alkynyl)-2-alken-1-ones, nucleophiles and diaryliodonium salts [J]. Chem. Comm., 2010, 46:8839-8841. (c) Zhang X.B., Lu Z., et al. Synthesis of Polysubstituted Furans Based on a Stepwise Sonogashira Coupling of (Z)-3-Iodoalk-2-en-1-ols with Terminal Propargylic Alcohols and Subsequent Au(I)- or Pd(II)-Catalyzed Cyclization-Aromatization via Elimination of H2O [J]. J. Org. Chem., 2010, 75:2589-2598.
    [65] Peng P., Tang B.X., et al. Synthesis of (E)-3-(Isobenzofuran-3(1H)-ylidene)- indolin-2-ones by the Palladium-Catalyzed Intramolecular C-H Functionalization Process [J]. J. Org. Chem., 2009, 74:3569-3572.
    [66] Kondo Y., Shiga F., et al. Palladium-catalyzed cyclization of 2-substituted phenylacetylenes in the presence of carbon monoxide [J]. Tetrahedron, 1994, 50:11803-11807.
    [67] Gabriele B., Salerno G., et al. Stereoselective Synthesis of (E)-3-(Methoxycarbonyl) methylene-1,3-dihydroindol-2-ones by Palladium-Catalyzed Oxidative Carbonylation of 2-Ethynylanilines [J]. Eur. J. Org. Chem., 2001, 4607-4613.
    [68] Gabriele B., Salerno G., et al. Unprecedented carbon dioxide effect on a Pd-catalysed oxidative carbonylation reaction: a new synthesis of pyrrole-2-acetic esters [J]. Chem. Commun., 2002, 1408-1410.
    [69] (a) Lei A.W., Lu X.Y. Palladium(II)-Catalyzed Tandem IntramolecularAminopalladation of Alkynes and Conjugate Addition. Synthesis of Oxazolidinones, Imidazolidinones, and Lactams [J]. Org. Lett., 2000, 2:2699-2702. (b) Shen Z.M., Lu X.Y. Palladium(II)-catalyzed tandem intramolecular aminopalladation of alkynylanilines and conjugate addition for synthesis of 2,3-disubstituted indole derivatives [J]. Tetrahedron, 2006, 62:10896-10899.
    [70] Han X.L., Lu X.Y. Cationic Pd(Ⅱ)-Catalyzed Tandem Reaction of 2-Arylethynylanilines and Aldehydes: An Efficient Synthesis of Substituted 3-Hydroxymethyl Indoles [J]. Org. Lett., 2010, 12:3336-3339.
    [71] Huang Q., Larock R.C. Synthesis of isoquinolines by palladium-catalyzed cyclization,followed by a Heck reaction [J]. Tetrahedron Lett., 2002, 43:3557-3560.
    [72] Tang S., Peng P., et al. Sequential Intermolecular Aminopalladation/ortho-Arene C-H Activation Reactions of N-Phenylpropiolamides with Phthalimide [J]. Org. Lett., 2008, 10:1179-1182.
    [73] Arai S., Koike Y., Nishida A. Catalytic Dicyanative 5-exo- and 6-endo-Cyclization Triggered by Cyanopalladation of Alkynes [J]. Adv. Synth. Catal., 2010, 352:893-900.
    [74] (a) Arai S., Koike Y., et al. Catalytic Dicyanative [4+2] Cycloaddition Triggered by Cyanopalladation of Conjugated Enynes under Aerobic Conditions [J]. J. Am. Chem. Soc., 2010, 132:4522-4523. (b) Arai S., Koike Y., et al. Catalytic Dicyanative [4+2] Cycloaddition Triggered by Cyanopalladation Using Ene-Enynes and Cyclic Enynes with Methyl Acrylate [J]. J. Org. Chem., 2010, 75:7573-7579.
    [75] Wu Y.-T., Huang K.-H., et al. Palladium-Catalyzed Formation ofHighly Substituted Naphthalenes from Arene and Alkyne Hydrocarbons [J]. Chem.-Eur. J., 2008, 14:6697-6703.
    [76] Wang C.Y., Rakshit S., Glorius F. Palladium-Catalyzed Intermolecular Decarboxylative Coupling of 2-Phenylbenzoic Acids with Alkynes via C-H and C-C Bond Activation [J]. J. Am. Chem. Soc., 2010, 132:14006-14008.
    [77] Yamashita M., Hirano K., et al. Synthesis of Condensed Heteroaromatic Compounds by Palladium-Catalyzed Oxidative Coupling of Heteroarene Carboxylic Acids with Alkynes [J]. Org. Lett., 2009, 11: 2337-2340.
    [78] (a) Shi Z.Z., Ding S.T., et al. A Palladium-Catalyzed Oxidative Cycloaromatization of Biaryls with Alkynes Using Molecular Oxygen as the Oxidant [J]. Angew. Chem. Int. Ed.,2009, 48:7895-7898. (b) Ding S.T., Shi Z.Z., Jiao N. Pd(II)-Catalyzed Synthesis of Carbolines by Iminoannulation of Internal Alkynes via Direct C-H Bond Cleavage Using Dioxygen as Oxidant [J]. Org. Lett., 2010, 12:1540-1543. (c) Shi Z.Z., Cui Y.X., Jiao N. Synthesis ofβ- andγ-Carbolinones via Pd-Catalyzed Direct Dehydrogenative Annulation (DDA) of Indole-carboxamides with Alkynes Using Air as the Oxidant [J]. Org. Lett., 2010, 12:2908-2911.
    [79] Corbet J.-P; Mignani G. Selected Patented Cross-Coupling Reacting Technologies [J]. Chem. Rev., 2006, 106:2651-2710.
    [80] For reviews on oxygen, see: (a) Stahl S.S. Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover [J]. Angew. Chem. Int. Ed., 2004, 43:3400-3420. (b) Punniyamurthy T., Velusamy S., Lqbal J. Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen [J]. Chem. Rev., 2005, 105:2329-2364. For selected recent palladium-catalyzed examples, see: (c) Aouf C., Thiery E., Bras J.L., Muzart J. Palladium-Catalyzed Dehydrogenative Coupling of Furans with Styrenes. Org. Lett., 2009, 11:4096-4099. (d ) Li B., Tian S., Fang Z., Shi Z.-J. Multiple C-H Activations to Construct Biologically Active Molecules in a Process Completely Free of Organohalogen and Organometallic Components [J]. Angew. Chem., Int. Ed., 2008, 47:1115-1118. (e) Wang D.-H, Wasa M., Giri R., Yu J.-Q. Pd(ΙΙ)-Catalyzed Cross-Coupling of sp3 C-H Bonds with sp2 and sp3 Boronic Acids Using Air as the Oxidant [J]. J. Am. Chem. Soc., 2008, 130:7190-7191.
    [81] (a) Gobbi L., Seiler P., Diederich F. A Novel Three-Way Chromophoric Molecular Switch: pH and Light controllable Switching Cycles [J]. Angew. Chem. Int. Ed., 1999, 38:674-677. (b) Horiguchi H., Hirano K., Satoh T., Miura M. Palladium-Catalyzed Three-Component 1:2:1 Coupling of Aryl Iodides, Alkynes, and Alkenes to Produce 1,3,5-Hexatriene Derivatives [J]. Adv. Synth. Catal., 2009, 351:1431-1436. (c) Saltiel J., Papadimitriou D., Krishna T.S.R., Huang Z., Krishnamoorthy G., Laohhasurayotin S., Clark R.J. Photoisomerization of All-cis-1,6-diphenyl-1,3,5-hexatriene in the Solid State and in Solution: A Simultaneous Three-Bond Twist Process [J].Angew. Chem., Int. Ed., 2009, 48:8082-8085.
    [82] Liu H.-L, Jiang H.-F, Zhang M., Yao W.-J., Zhu Q.-H, Tang Z. One-potthree-component synthesis of pyraoles through a tandem coupling-cyclocondensation sequence [J]. Tetrahedron Lett., 2008, 49:3805-3809.
    [83] Jiang H.F., Shen Y.X., Wang Z.Y. A simple PdCl2/O2/DMF catalytic system for highly regioselective cyclotrimerization of olefins with electron-withdrawing groups [J].Tetrahedron Lett., 2007, 48:7542–7545.
    [84] For selected examples onσ-vinylhalorine activation catalyzed by palladium, see: (a) Larock R.C., Doty M.J., Han X. Synthesis of Isocoumarins andα-Pyrones via Palladium-Catalyzed Annulation of Internal Alkynes [J]. J. Org. Chem., 1999, 64:8770-8779. (b) Larock R.C., Yum E.K., Doty M.J., Sham K.K.C. Synthesis of Aromatic Heterocycles via Palladium-Catalyzed Annulation of Internal Alkynes [J]. J. Org. Chem., 1995, 60:3270-3271.
    [85] For some examples on the Z/E isomerization of alkene, see: (a) Yu J.Q., Gaunt M.J., Spencer J.B. Convenient Preparation of trans-Arylalkenes via Palladium-catalyzed Isomerization of cis-Arylalkenes [J]. J. Org. Chem., 2002, 67:4627-4629. (b) Umeda N., Hirano K., Satoh T., Miura M. Rhodium-Catalyzed Mono- and Divinylation of 1-Phenylpyrazoles and Related Compounds via Regioselective C-H Bond Cleavage [J]. J. Org. Chem., 2009, 74:7094-7099.
    [86] For selected reviews on transition-metal-catalyzed tandem coupling see: (a) Tietze L.F. Domino Reaction in Organic Synthesis [J]. Chem. Rev., 1996, 96:115-136; (b) Zeni G., Larock R.C. Synthesis of Heterocycles via Palladiumπ-Olefin andπ-Alkyne Chemistry [J]. Chem. Rev., 2004, 104:2285-2310; (c) Hassan J., Svignon M., Gozzi C., Schulz E., Lemaire M. Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction [J]. Chem. Rev., 2002, 102:1359-1470; (d) Li C.J. Organic Reaction in Aqueous Media with a Focus on Carbon-Carbon Bond Formations: A Decade Update [J]. Chem. Rev., 2005, 105:3095-3166. For some recent examples see: (e) Mannathan S., Cheng C.-H. Cobalt-catalyzed region- and stereoselective intermolecular enyne coupling: an efficient route to 1,3-diene derivatives [J]. Chem. Commun., 2010, 46:1923-1925; (f) Shibata K., Satoh T., Miura M. Palladium-Catalyzed Intermolecular Three-Component Coupling of Aryl Iodides, Alkynes, and Alkenes To Produce 1,3-Butadiene Derivatives [J].
    Org. Lett., 2005, 7:1781-1783; (g) Sakai N., Komatsu R., Uchida N., Ikeda R., Konakahara T. A Single-Step Synthesis of Enynes: Pd-Catalyzed Arylalkynylation of Aryl Iodides, Internal Alkynes, andAlkynylsilanes [J]. Org. Lett., 2010, 12:1300-1303.
    [87] (a) Wang A., Jiang H.F. Palladium-Catalyzed Cleavage Reaction of Carbon-Carbon Triple Bond with Molecular Oxygen Promoted by Lewis Acd [J]. J. Am. Chem. Soc., 2008, 130:5030-5031; (b) Wang A., Jiang H.F., Chen H.J. Palladium-Catalyzed Diacetoxylation of Alkenes with Molecular Oxygen as Sole Oxidant [J]. J. Am. Chem. Soc., 2009, 131:3846-3847; (c) Wang A., Jiang H.F. Palladium-Catalyzed Direct Oxidation of Alkenes with Molecular Oxygen: General and Practical Methods for the Preparation of 1,2-Diols, Aldehydes, and Ketones [J]. J. Org. Chem., 2010, 75:2321-2326.
    [88] Novák Z., Nemes P., Kotschy A. Tandem Sonogashira Coupling: An Efficient Tool for the synthesis of Diarylalkynes [J]. Org. Lett., 2004, 6:4917-4920.
    [89] For selected reviews on transition-metal-catalyzed [2+2+2] cycloadditions, see: (a) Varela J.A., SaáC. Construction of Pyridine Rings by Metal-Mediated [2+2+2] Cycloaddition[J]. Chem. Rev., 2003, 103:3787-3801; (b) Kotha S., Brahmachary E., Lahiri K. Transition Metal Catalyzed [2+2+2] Cycloaddition and Application in Organic Synthesis [J]. Eur. J. Org. Chem., 2005:4741-4767; (c) Gandon V., Aubert C., Malacria M. Recent progress in coblt-mediated [2+2+2] cycloaddition reactions [J]. Chem. Commun., 2006:2209-2217; (d) Chopade P.R., Louie J. [2+2+2] Cycloaddition Reactions Catalyzed by Transition Metal Complexes [J]. Adv. Synth. Catal., 2006, 348:2307-2327; (e) Shibata T., Tsuchikama K. Recent advances in enantioselective [2+2+2] cycloaddition [J]. Org. Biomol. Chem., 2008, 6:1317-1323; (f) Heller B., Hapke M. The fascinating construction of pyridine ring systems by transition metal-catalyzed [2+2+2] cycloaddition reactions [J]. Chem. Soc. Rev., 2007, 36:1085-1094.
    [90] For selected examples see: Rh-catalyzed: (a) Konno T., Moriyasu K., Kinugawa R., Ishihara T. Rhodium-catalyzed [2+2+2] cycloaddition of various fluorine-containing alkynes-novel synthesis of multi-substituted fluoroalkylated aromatic compounds [J]. Org. Biomol. Chem., 2010, 8:1718-1724; (b) Kaloko J.J., Teng Y.-H.G., Ojima I. One-step formation of fused tetracyclic skeletons from cyclohexene-diynes and carbon monoxide through Rh(I)-catalyzed [2+2+2+1] cycloaddition reaction [J]. Chem. Commun., 2009:4569-4571; (c) Shibata T., Otomo M., Tahara Y.-K., Endo K. Highly diastereo- and enantioselective construction of both central and axial chiralities by Rh-catalyzed [2+2+2]cycloaddition [J]. Org. Biomol. Chem., 2008, 6:4296-4298; (d) Sagae H., Noguchi K., Hirano M., Tanaka K. Rhodium-catalyzed enantio- and diastereoselective intramolecular [2+2+2] cycloaddition of unsymmetrical dienynes [J]. Chem. Commun., 2008:3804-3806; (e) Tanaka K., Kamisawa A., Suda T., Noguchi K., Hirano M. Rh-Catalyzed Synthesis of Helically Chiral and Ladder-Type Molecules via [2+2+2] and Formal [2+1+2+1] Cycloadditions Involving C-C Triple Bond Cleavage [J]. J. Am. Chem. Soc., 2007, 129:12078-12079; Ru-catalyzed: (f) Yamamoto Y., Takagishi H., Itoh K. Ruthenium(II)-Catalyzed Cycloaddition of 1,6-Diynes with Isocyanates Leading to Bicyclic Pyridones [J]. Org. Lett., 2001, 3:2117-2119; (g) Yamamoto Y., Kitahara H., Hattori R., Itoh K. Ruthenium-Catalyzed Tandem [2+2+2]/[4+2] Cycloaddition of 1,6-Heptadiyne with Norbornene [J]. Organometallics, 1998, 17:1910-1912; (h) Paih J.L., Monnier F., Dérien S., Dixneuf P.H., Clot E., Eisenstein O. Biscarbene?Ruthenium Complexes in Catalysis: Novel Stereoselective Synthesis of (1E,3E)-1,4-Disubstituted-1,3-dienes via Head-to-Head Coupling of Terminal Alkynes and Addition of Carboxylic Acids [J]. J. Am. Chem. Soc., 2003, 125:11964-11975; Pd-catalyzed: (i) Singidi R.R., Kutney A.M., Gallucc J.C., RajanBabu T.V. Stereoselective Cyclization of Functionalized 1,n-Diynes Mediated by [X-Y] Reagents [X-Y=R3Si-SnR′3 or (R2N)2B-SnR′3]: Synthesis and Properties of Atropisomeric 1,3-Dienes [J]. J. Am. Chem. Soc., 2010, 132:13078-13087; Ni-catalyzed: (j) Iwayama T., Sato Y. Nickel (0)-catalyzed [2+2+2] cycloaddition of diynes and 3,4-pyridynes: novel synthesis of isoquinoline derivatives [J]. Chem. Commun., 2009:5245-5247; (k) Saito N., Shiotani K., Kinbara A., Sato Y. Nickel-catalyzed [2+2+2] cycloaddition of arynes and an unactivated alkene: synthesis of 9,10-dihydrophenanthrene derivativses [J]. Chem. Commun., 2009:4284-4286; (l) Jeevanandam A., Korivi R.P., Huang I.-W., Cheng C.-H. Ni-Catalyzed Highly Regio- and Chemoselective Cocycloaddition of Nonconjugated Diynes with 1,3-Diynes: A Novel Method for Polysubstituted Arylalkynes [J]. Org. Lett., 2002, 4:807-810; (m) Hsieh J.-C., Cheng C.-H. O-Dihaloarenes as aryne precursors for nickel-catalyzed [2+2+2] cycloaddition with alkynes and nitriles [J]. Chem. Commun., 2008:2992-2994; (n) Ogoshi S., Nishimura A., Ohashi M. Nickel-Catalyzed [2+2+2] Cycloaddition of Two Enones and an Alkyne [J]. Org. Lett., 2010, 12:3450?3452; Co-catalyzed: (o) Zhou Y., Porco J.A., Snyder J.K. Synthesis of 5,6,7,8-Tetrahydro-1,6-naphthyridines and Related Heterocycles by Cobalt-Catalyzed [2+2+2]
    Cyclizations [J]. Org. Lett., 2007, 9:393-396; (p) Chang H.-T., Jeganmohan M., Cheng C.-H. Cobalt-Catalyzed Intramolecular [2+2+2] Cocyclotrimerization of Nitrilediynes: An Efficient Route to Tetra- and Pentacyclic Pyridine Derivatives [J]. Org. Lett., 2007, 9:505-508; (q) Bonaga L.V.R., Zhang H.-C., Gauthier D.A., Reddy I., Maryanoff B.E. Cobalt-Mediated Macrocyclizations. Facile Synthesis of 2-Oxo Pyridinophanes via [2+2+2] Cycloaddition ofα,ω-Diynes and Isocyanates [J]. Org. Lett., 2003, 5:4537-4540; (r) Sternberg E.D., Vollhardt K.P.C. Intramolecular Cobalt-Mediated [2+2+2] Cycloaddition of Linear Enediynes. A Useful Synthetic Entry into Cobalt-Protected Tricyclic Dienes and Their Synthesis Elaboration [J]. J. Org. Chem., 1984, 49:1564-1573; (s) Gandon V., Leca D., Aechtner T., Vollhardt K.P.C., Malacria M., Aubert C. Synthesis of Fused Arylboronic Esters via Cobalt(0)-Mediated Cycloaddition of Alkynylboronates withα,ω-Diynes [J]. Org. Lett., 2004, 6:3405-3407.
    [91] Shen Y.X, Jiang H.F. Chen Z.W. PdCl2(HNMe2)2-Catalyzed Highly Selective Cross [2+2+2] Cyclization of Alkynoates and Alkenes under Molecular Oxygen [J]. J. Org. Chem., 2010, 75:1321-1324.
    [92] Zhou P., Huang L.B. Jiang H.F, Wang A., Li X.W. Highly Chemoselective Palladium-Catalyzed Cross-Trimerization between Alkyne and Alkenes Leading to 1,3,5-Trienes or 1,2,4,5-Tetrasubstituted Benzenes with Dioxygen [J]. J. Org. Chem., 2010, 75:8279-8282.
    [93] For selected examples on 1,6-diynes, see: (a) Tanaka K., Otake Y., Wada A., Noguchi K., Hirano M. Cationic Rh(I)/Modified-BINAP-Catalyzed Reactions of Carbonyl Compounds with 1,6-Diynes Leading to Dienones and Ortho-Functionalized Aryl Ketones [J]. Org. Lett., 2007, 9:2203-2206; (b) Matsuda T., Kadowaki S., Goya T., Murakami M. Synthesis of Silafluorenes by Iridium-Catalyzed [2+2+2] Cycloaddition of Silicon-Bridged Diynes with Alkynes [J]. Org. Lett., 2007, 9:133(?)136.
    [94] Luo T.P., Schreiber S.L. Gold(I)-Catalyzed Coupling Reactions for the Synthesis of Diverse Small Molecules Using the Build/Couple/Pair Strategy [J]. J. Am. Chem. Soc., 2009, 131:5667-5674.
    [95] (a) Yong L., Butensch(?)n H. The first cobalt catalyzed [2+2+2] alkyne cyclotrimerization in aqueous medium at room temperature [J]. Chem. Commun., 2002:2852-2853; (b) Bo(?)agaL.V.R., Zhang H.-C., Moretto A.F., Ye H., Gauthier D.A., Li J., Leo G.C., Maryanoff B.E. Synthesis of Macrocycles via Cobalt-Mediated [2+2+2] Cycloadditions [J]. J. Am. Chem. Soc., 2005, 127:3473-3485; (c) Bo(?)aga L.V.R., Zhang H.-C., Gauthier D.A., Reddy I., Maryanoff B.E. Cobalt-Mediated Macrocycliaztions. Facile Synthesis of 2-Oxo Pyridinophanes via [2+2+2] Cycloaddition ofα,ω-Diynes and Isocyanates [J]. Org. Lett., 2003, 5:4537-4540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700