锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_4的制备及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动力锂离子电池的开发对电池的比能量、寿命、安全性提出了更高的要求。尖晶石LiNio.5Mn1.5O4具有高电压、高功率、低成本等优势,引起很多科研工作者的兴趣。目前,限制该材料应用的主要因素是其高压下氧化分解电解液严重,导致高倍率下循环稳定性不佳。本文以改善LiNio.5Mn1.5O4高倍率下循环性为目标,研究了LiNio.5Mn1.5O4高温固相合成中煅烧温度对容量和倍率性能的影响,然后分别通过F掺杂、Cr与F复合掺杂、Co与F复合掺杂对LiNio.5Mn1.5O4进行了改性研究,取得如下主要创新性成果:
     煅烧温度对LiNio.5Mn1.5O4放电容量和倍率性能的影响研究结果显示,800℃-900℃煅烧所制样品均具有较理想的尖晶石结构。随着煅烧温度的升高,样品的晶粒不断长大,0.2C倍率下的放电初始容量呈下降趋势,800℃煅烧所制样品的容量最高,可达129.1mAh·g-1。然而,1C-5C高倍率循环时,900℃所制样品的容量较高,2C放电容量达100.8mAh·g-1。随着煅烧温度的升高,晶粒增大,电解液分解受到一定抑制,Mn3+含量提高,降低了LiNio.5Mn1.5O4的膜电阻和电荷传递阻抗,这是改善LiNio.5Mn1.5O4样品高倍率循环性能的原因。然而,由于增大了锂离子扩散路径,导致其初始容量下降,高倍率下的容量改善程度不是太大。
     F掺杂改性研究结果显示,800℃-900℃煅烧所制LiNi0.5Mn1.5O4-xFx样品均为较理想的尖晶石结构,F掺杂可抑制杂质相NiO或LixNi1-xO的生成。F掺杂量和煅烧温度是影响样品晶粒发育、颗粒形貌与大小、电性能的两个主要因素。850℃煅烧所制F掺杂量x=0.05样品晶粒发育完善、颗粒大小适中且均匀,抑制电解液氧化分解效果好,具有最小的膜阻抗和电荷传递阻抗,显著改善倍率循环稳定性。该样品0.2C放电容量为125mAh·g-1左右;0.2C、0.5C、1C、2C各循环10轮后,容量仍保持在120 mAh·g-1左右。过高温度和过多F离子掺杂使得样品烧结过度而形成较大的异形颗粒,对电性能不利。
     首次对LiNi0.5Mn1.5O4进行了Cr与F复合掺杂改性研究,结果显示,800℃-900℃煅烧所制LiNi0.5Mn1.5-xCrxO4-xFx均为较理想的尖晶石结构,NiO或LixNi1-xO杂相峰基本消失。800℃、850℃煅烧温度下,复合掺杂样品可有效抑制电解液氧化分解,使得膜阻抗和电荷传递阻抗都明显下降,倍率性能有了明显改善。其中,850℃煅烧所制Cr、F掺杂量为0.025的样品颗粒分布均匀,形态清晰,晶粒生长趋于完整,具有最小的电化学阻抗,电性能最佳,其0.2C的放电容量为124.1 mAh·g-,经0.2C、0.5C、1C、2C各循环10轮后的容量仍保持在120 mAh·g-1左右。而900℃煅烧时晶粒熔融烧结长大严重,所制样品性能无改善。
     首次对LiNio.5Mn1.5O4进行了Co与F复合掺杂改性研究,结果显示,800℃-900℃煅烧所制LiNi0.5Mn1.5-xCoxO4-xFx也为较纯的尖晶石结构,几乎没有LixNi1-xO、NiO等杂相的生成。掺杂对产品颗粒形貌影响甚小。相比未掺杂样品,800℃下所制掺杂量x=0.04的样品阻抗有所降低,其0.2C倍率下放电容量达132.4mAh·g-1,倍率循环性能有所改善,但效果不是很显著。随着Co、F复合掺杂量增大,对高压下电解液分解的加速作用增大,其电荷传递阻抗和膜阻抗呈增加趋势,电池内阻增大,电性能恶化。
     对比以上三种改性手段的效果,对LiNi0.5Mn1.5O4进行F掺杂或Cr与F复合掺杂,通过优化煅烧温度和掺杂量,可以制备得到晶粒发育完善、颗粒大小适中且均匀,抑制电解液分解效果好,膜阻抗和电荷传递阻抗小的改性材料,从而显著改善高倍率循环性能。
Rapid development of EV or HEV requests high power Li-ion batteries (LIBs) to have higher energy, longer life and better safety than before. Recently, spinel LiNi0.5Mn1.5O4 attracts more attention of many researchers due to its lower cost, higher voltage and rate capability. However, severer electrolyte decomposition on higher voltage leads to unsatisfactory cycling stability at high rate, which limits its use. In order to improve the rate cycling capability of LiNi0.5Mn1.5O4,the effects of annealing temperature on the capacity and rate capability of LiNio.5Mn1.5O4 were studied, and modification of LiNi0.5Mn1.5O4 by F-doping, Cr- and F- co-doping, Co- and F- co-doping were investigated in this paper.
     The effects of annealing temperatures on capacity and rate capability of LiNio.5Mn1.5O4 were investigated. The results show that the all samples prepared at 800℃~900℃showed better spinel structure. With increasing the temperatures, the crystal particles grew gradually, but the initial discharge capacity at 0.2C decreased. The sample prepared at 800℃showed the highest capacity of 129.1 mAh·g-1. However when discharged at 1C~5C, the sample prepared at 900℃exhibited higher capacity. Its capacity reached 100.8 mAh·g-1 at 2C. Increasing annealing temperatures made crystal particles grow bigger, the electrolyte decomposition reduce and the Mn3+ content increase, which reduced the film impedance and charge transfer impedance, and then improved the rate capability of LiNio.5Mn1.5O4. However, the improvement was limited due to the enlarged Li+ diffusion path and decrease of initial capacity.
     The studies on the modification of LiNi0.5Mn1.5O4 by F-doping show that all LiNi0.5Mn1.5O4-xFx samples prepared at 800℃~900℃showed better spinel structure. F-doping can reduce the impure phase NiO or LixNi1-xO. The doped F amount and annealing temperatures were two major factors affecting the crystal particles growth, morphology and electrochemical properties of samples. The sample with x=0.05 prepared at 850℃revealed better crystalline morphology, suitable particle size distribution, better reduce of electrolyte decomposition, the smallest film impedance and charge transfer impedance, leading to remarkable improvement of rate capability. Its capacity reached about 125 mAh·g-1 at 0.2C, and retained at about 120 mAh·g-1 after charge-discharged at 0.2C,0.5C,1C and 2C each 10 cycles. Too high annealing temperatures and too more doped F made the sample agglomerate seriously to form too big particles, and then deteriorate its electrochemical performance.
     The investigation of Cr- and F- co-doped LiNio.5Mn1.5O4 has been carried out first to our knowledge. The results show that all LiNio.5Mn1.5-xCrxO4-xFx samples prepared at 800℃~900℃showed better spinel structure. Impure phase NiO or LixNi1-xO was not observed. The co-doped samples prepared at 800℃and 850℃exhibited effective reducing electrolyte decomposition, leading to remarkable decrease of film impedance and charge transfer impedance, and then improving the rate capability significantly. Among the samples, the sample with x=0.025 prepared at 850℃showed uniform particle size, better crystalline morphology, the smallest electrochemical impedance and the best electrochemical performance. Its capacity reached about 124.1 mAh·g-1 at 0.2C, and retained at about 120 mAh·g-1 after charge-discharged at 0.2C,0.5C,1C and 2C each 10 cycles. Annealing at 900℃made the sample agglomerate seriously to form too big particles, and then deteriorate its electrochemical performance.
     The effects of Co- and F- co-doping on the electrochemical performance of LiNi0.5Mn1.5O4 also have been investigated first to our knowledge. The results show that all LiNi0.5Mn1.5-xCoxO4-xFx samples prepared at 800℃~900℃displayed better spinel structure. No NiO or LixNi1-xO impure phase was formed. Co-doping had little effect on the particle morphology of samples. Compared with base sample, the co-doped sample with x=0.04 prepareed at 800℃showed a little decreased impedance and smaller improved rate capability. Its discharge capacity reached 132.4mAh·g-1 at 0.2C. However, increasing the co-doped ion amount accelerated the electrolyte decomposition, enhanced the film impedance and charge transfer impedance, leading to deterioration of electrochemical performance.
     Based on above results, it is concluded that modification of LiNi0.5Mn1.5O4 by F-doping or Cr-and F- co-doping can improve rate capability remarkably. In the cases, optimizing the annealing temperatures and doped ion amounts can make sure to prepare modified higher rate LiNi0.5Mn1.5O4 with well crystalline, uniform particle size distribution, better reduce of electrolyte decomposition and smaller film impedance and charge transfer impedance.
引文
[1]张磊.锂离子电池正极材料磷酸铁锂的改性研究[D].天津:天津大学,2007
    [2]吴宇平,戴晓兵,马军旗,等.锂离子电池-应用与实践[M].北京:化学工业出版社,2004
    [3]吴宇平,万春荣,姜长印,等.锂离子二次电池[M].北京:化学工业出版社,2002
    [4]Murphy D W, Broodhead J, Steel B C. Materials for advanced batteries[M]. New York: Plenum Press,1980:145P
    [5]任学佑.锂离子电池及其发展前景[J].电池,1996,26(2):38-40
    [6]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2008
    [7]谢娇娜.锂离子电池负极材料Li4Ti5O12的研究[D].北京:北京化工大学,2010
    [8]王国增.锂离子电池正极材料磷酸铁锂的研究[D].天津:天津大学,2008
    [9]陈军,陶占良,苟兴龙.化学电源—原理、技术与应用[M].北京:化学工业出版社,2006
    [10]Tukaoto H, West A R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping[J]. Journal of the Electrochemical Society,1997,114(9):3164-3168
    [11]傅秋莲,蒋晓瑜,陈文哲.柠檬酸溶胶凝胶法合成LiCoO2的晶体结构研究[J].光谱学与光谱分析,2008,28(6):1222-1226
    [12]张宁,陈勃涛,刘勇.球形钴酸锂制备及性能研究[J].创新技术,2009,4:17-19
    [13]张倩.锂离子电池正极材料Li[NixCoyMn1-x-y]O2与LiMn2O4的氟化物包覆改性研究[D].北京:北京化工大学,2009
    [14]Takum Koyama, Hayoto, Ishhata. Research and development program of Lithium battery [J]. Electrochima Acta,1993,38 (9):1159-1167
    [15]Schoonman J, Tuller H L, Kelder E M. Defect chemical aspects of lithium ion battery cathodes [J]. Journal of Power Sources,1999,81-82:44-48
    [16]刘晓亮.锂离子电池正极材料磷酸铁锂的研究[D].天津:天津大学,2007
    [17]杨茗佳.尖晶石型LiMn2O4的制备与性能研究[D].哈尔滨:哈尔滨工程大学,2008
    [18]Croguennec L, Deniard P, Brec R, et al. Electrochemical behavior of orthorhombic influence of the grain size and cationic disorder[J]. Solid State Ionics,1996,89(1-2):127-137
    [19]钟辉,周燕芳,许惠.层状LiMnO2正极材料的研究进展[J].化学通报,2003,7:449-453
    [20]唐致远,李建刚,薛建军.锂离子正极材料LiMn2O4的改性与循环寿命[J].化学通报,2000,8:10-14
    [21]李建刚.锂离子电池锰酸锂正极材料的合成及其基础研究[D].天津:天津大学博士学位论文,2001
    [22]刘烈炜,田炜,赵新强,等.尖晶石LiMn2O4的掺杂研究进展[J].材料导报,2003(17):44-46
    [23]JANG D H, SHIN Y J, OH S M. Dissolution of spinel oxides and capacity losses in 4V Li/LiMn2O4 cells[J]. Journal of the Electrochemical Society,1996,143:2204-2211
    [24]XIA Y, ZHOU Y, YOSHIO M J. Capacity fading on cycling of 4V Li/LiMn2O4 cells[J]. Journal of the Electrochemical Society,1997,144:2593-2600
    [25]马尚德.锂离子电池正极材料尖晶石锰酸锂的制备与改性研究[D].长沙:中南大学,2007
    [26]贺周初,庄新娟,彭爱国.锂离子电池正极材料尖晶石型锰酸锂的研究进展[J].精细化工中间体,2010,40(1):7-11
    [27]Broussely M, Perton F, Labat J. Li/LixNiO2 and rechargeable systems: comparative study and performance of practical cells[J]. Journal of Power Sources,1993,43-44:209-216
    [28]杨书廷,张焰峰,吕庆章.微波-高分子网络法制备可充锂离子电池正极材料 LiMxMn2O4(M=La,Nd,Y) [J]功能材料,2001,32(4):399-401
    [29]Liu W, Farrington G C, Chaput F, etal. Synthesis and electronmical studies of spinel phase LiMn2O4 cathode materials prepared by the pechini process[J]. Journal of the Electrochemical Society,1996,143(3):879-884
    [30]Lee Y S, Sun Y K, Nahm K S. Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries [J]. Solid State Ionics,1998, 1009:285-294
    [31]Kang Sun-Ho, Jong B Goodenough. Li[LiyMn2-y]O4 spinel cathode material prepared by a solution method[J]. Electronchemical and Solid-state Letters,2000,3(12):536-539
    [32]李胜军,陈猛,陈增,等.尖晶石LiCoxMn2-xO4材料电化学性能研究[J].哈尔滨工程大学学报,2006,27(6):923-926
    [33]GuiMing Song, YuJin Wang, Yu Zhou. Synthesis and electrochemical performance of LiCrxMn2-xO4 powders by mechanical activation and rotary heating[J]. Journal of Power Sources, 2004,128(2):270
    [34]陈猛,杨闯,肖斌.镍掺杂对尖晶石型LiMn2O4结构及电化学性能的影响[J].稀有金属,2006,30(4):453-456
    [35]张真,刘兴泉,张峥,等.5V锂离子电池正极材料LiNio.sMn1.5O4的进展[J].电池,2011,41(1):47-50
    [36]唐致远,杨光明,王倩.5V锂离子电池正极材料LiNio.5Mn1.5O4改性研究现状[J].材料导报,2007,21(6):35-38
    [37]杨光明.5V锂离子电池正极材料的制备和电化学性能研究[D],天津:天津大学,2007
    [38]方海升,王志兴,李新海,等.高电压锂离子电池LiNio.5Mn1.5O4的合成及性能[J].电池工业,2006,11(1):36-38
    [39]Xianglan Wu, Seung Bin Kim. Improvement of electrochemical properties of LiNio.5Mn1.5O4 spinel [J]. Journal of Power Source,2002,109:53-57
    [40]Alcantara R, Jaraba M, Lavela P, et al. Optimizing preparation conditions for 5V electrode performance, and structural changes in Li1-xNi0.5Mn1.5O4 spinel[J]. Electrochimica Acta.2002,47: 1829-1835.
    [41]Hong K J, Sun Y K. Synthesis and electrochemical characteristics of LiCrxNi0.5-xMn1.5O4 spinel as 5V cathode materials for lithium secondary batteries[J]. Journal of Power Sources,2002,109: 427-430
    [42]Rojas R.M, Amarilla J.M, Pascual L. et al. Combustion synthesis of nanocrystalline LiNiYCo1-2YMni+YO4 spinels for 5V cathode materials characterization and electrochemical properties [J]. Journal of Power Source,2006,160:529-535
    [43]Ooms F.G.B, Kelder E.M, Schoonman J. High-voltage LiMgδNi0.5-δMn1.5O4 spinels for Li-ion batteries[J]. Solid State Ionics,2002,152-153:143-153
    [44]Alcantara R, Jaraba M, Lavela P. Synergistic Effects of Double Substitution in LiNi0.5-yFeyMn1.5O4 Spinel as 5V Cathode Materials[J]. Journal of The Electrochemical Society, 2005,152-1:A13-A18
    [45]Oh S W, Park S H, Kim J H. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution [J]. Journal of Power Sources,2006(157):464-470
    [46]Alcantara R, Jaraba M, Lavela P, et al. X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes[J]. Journal of Electroanalytical Chemistry,2004,566(1):187-192-
    [47]Wu H M, Belharouak I, Abouimrane A, et al. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries[J]. Journal of Power Source,2010,195(9):2909-2913-
    [48]Fan Y K, Wang J M, Tang Z, et al. Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries[J]. Electrochimica Acta, 2007,52(11):3870-3875.
    [49]Noguchi T, Yamazaki I, Numata T, et al. Effect of Bi oxide surface treatment on 5V spinel LiNi0.5Mn1.5-xTixO4[J]. Journal of Power Source,2007,174(2):359-365
    [50]Kang H B, Myung S T, Amine K, et al. Improved electrochemical properties of BiOF-coated 5V spinel LiNi0.5Mn1.5O4 for rechargeable lithium batteries[J]. Journal of Power Source,2010, 195(7):2023-2028.
    [51]Sun Y.-K, Yoon C.S, Oh I.-H. Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5Vcathode materials at elevated temperatures [J]. Electrochimica Acta,2003,48:503-506
    [52]Sun Y.-K, Lee Y.S, Yoshio M. Synthesis and Electrochemical Properties of ZnO-Coated LiNi0.5Mn1.5O4 Spinel as 5V Cathode Material for Lithium Secondary Batteries[J]. Electrochemical and Solid-State Letters,2002,5:A99-A102
    [53]Takehiro Noguchi, Ikiko Yamazaki, Tatsuji Numata, et al. Effect of Bi oxide surface treatment on 5V spinel LiNi0.5Mn1.5-xTixO4[J]. Journal of Power Sources,2007,174:359-365
    [54]Ali Eftekhari. Electrochemical performance and cyclability of LiFe0.5Mn1.5O4 as a 5V cathode material for lithium batteries[J]. Journal of Power Sources,2003,124:182-190
    [55]Si Hyoung Oh, Kyung Yoon Chung, Sang Hoon Jeon, et al. Structural and electrochemical investigations on the LiNi0.5-xMn1.5-yMx+yO4(M=Cr, Al, Zr) compound for 5 V cathode material[J]. Journal of Alloys and Compounds,2009,469:244-250
    [56]杜国栋,努丽燕娜,冯真真,等LiNi0.5Mn1.5O4-xFx高电压电极高温保存下的电化学行为[J].物理化学学报,2008,24(1):165-170
    [57]Guodong Du, Yanna NuLi, Jun Yang, et al. Fluorine-doped LiNi0.5Mn1.5O4 for 5 V cathode materials of lithium-ion battery[J]. Materials Research Bulletin,2008,43:3607-3613
    [58]Yang-Kook Sun, Sung Woo Oh, Chong Seung Yoon, et al. Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4-xSx spinel material in 3-V region[J]. Journal of Power Sources,2006,161:19-26
    [59]杨军,解晶莹,王久林.化学电源测试原理与技术[M].北京:化学工业出版社,2006.16-49
    [60]熊利芝,孔丽娜,梁凯,等.5V正极材料LiNi0.5Mn1.5O4-xFx(x=0,0.1)的流变相法制备与表征[J].精细化工,2010,27(2):112-116
    [61]Gao Y, Dahn J. R. Correlation between the growth of the 3.3V discharge plateau and capacity fading in Li1+xMn2-xO4 materials[J]. Solid State Ionics,1996,84:33-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700