锂离子电池负极材料Li_4Ti_5O_(12)的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石型钛酸锂Li4Ti5O12材料由于具有优异的循环寿命,安全性能好,容易制备,对环境友好等特点,被认为是目前最有前途的锂离子电池负极材料之一。然而,Li4Ti5O12材料由于电导率低而导致倍率性能较差,成为其商业化应用的最大障碍。本文在制备纯相Li4Ti5O12材料的基础上,通过表面改性改善其倍率性能。
     以Li2CO3和Ti02为原料,采用高温固相法在850℃下焙烧12小时制备了尖晶石型Li4Ti5O12负极材料。实验结果表明:合成的Li4Ti5O12颗粒密实且堆积在一起,晶粒分布不均匀,粒径为1-4微米左右,测试电池的首次放电容量为145.4mAh/g,100次循环后容量保持率约为80%
     采用溶胶-凝胶法制备了Li4Ti5Ol2负极材料,探讨了焙烧温度、保温时间、不同锂盐及分散剂聚乙二醇(PEG)对Li4Ti5O12电化学性能的影响。XRD测试表明,制备的Li4Ti5Ol2为尖晶石结构;恒流充放电测试表明,随着焙烧温度的升高和保温时间的延长,合成的Li4Ti5O12放电比容量随之增大,但当焙烧温度高于700℃,保温时间超过6h时,产物的放电比容量反而有所降低;采用金属锂比采用乙酸锂做锂源合成的Li4Ti5O12材料颗粒小,放电比容量高,团聚现象严重;采用聚乙二醇(PEG)作为分散剂,有效地阻止了粒子的团聚长大,从而改善了由于材料颗粒较小而引起的团聚现象,提高了Li4Ti5012材料颗粒的分散性和比表面积,不仅增加了电极-电解液的接触面积,活性材料和碳黑的混合也更加均匀,从而提高了Li4Ti5O12材料的倍率性能。因此得出最佳工艺条件为:以金属锂为锂源,聚乙二醇(PEG)为分散剂,焙烧温度为700℃,保温时间为6h。用此工艺合成的材料首次放电比容量为168.3mAh/g,100次循环后容量保持率为97%,电化学性能优于高温固相法制备的材料。
     通过在Li4Ti5O12材料表面包覆导电物质碳、氮化钛、锑锡氧化物(ATO)的方法来改善Li4Ti5O12负极材料的倍率性能。实验结果表明:包覆碳、氮化钛、锑锡氧化物(ATO)后,提高了材料的首次放电容量;在5C倍率下放电,10次循环后放电容量分别为127.3 mAh/g.111.0 mAh/g、88.1 mAh/g,较之纯相Li4Ti5O12材料的5C倍率放电容量76.0mAh/g,倍率性能得到了不同程度的提高,其中改善效果包覆碳最好,氮化钛次之,ATO效果不明显。
The spinel Li4Ti5O12 has been demonstrated as one of the most promising anode material candidates for lithium ion batteries, due to its excellent cyclability, very good safety, easy preparation, environmental friendliness and so on. However, a major obstacle to its commercial application is the low conductivity of Li4Ti5O12 which exhibited poor rate performance. In the paper, pure Li4Ti5O12 was symhesized by different methods and the rate performance of Li4Ti5O12 was improved by coating substance which has good conductivity.
     Spinel Li4Ti5O12 was synthesized by solid state reaction using Li2CO3 and TiO2 as raw materials for 850℃,12 hours. The results showed that particle of Li4Ti5O12 were dense and the particle size was 1~4μm. The initial discharge capacity of the cell was 145.4 mAh/g, it retained 80% after 100 cycles.
     The effect of sintering temperature, sintering time, Li materials and polyethylene glycol(PEG) to Li4Ti5O12 which synthesized by sol-gel method were studied. The XRD test indicated that the spinel lithium titanate composite Li4Ti5O12 was successfully synthesized. The charge-discharge test showed that the capacity of Li4Ti5O12 was increased with elevation of heating temperatures and time. However, the capacity of Li4Ti5O12 was fall when the temperature over 700℃and the time over 6 hours. The particle was smaller, more disperse when using lithium than CH3COOLi·2H2O. By adding PEG to improve the dispersivity and the specific surface area of the Li4Ti5O12, the electrode-electrolyte contact area was increased; meanwhile, more homogeneous mixing of the active materials with carbon black was achieved. Thus the high rate performance of Li4Ti5O12 was improved. Therefore, the ideal experiment parameters are 700℃,6 hours, using lithium as raw materials, and adding PEG as a dispersant.
     The rate performance of Li4Ti5O12 was improved by coating carbon, TiN and antimony doped Tin oxide(ATO) which increased the electronic conductivity of Li4Ti5O12. The results showed that initial discharge capacity of the cell was increased. When tested at a rate of 5C, they still retained a discharge capacity of 127.3 mAh/g,111.0 mAh/g,88.1 mAh/g, respectively, after 10 cycles, better than 76.0 mAh/g of the pure Li4Ti5O12 Obviously, the material coating carbon got the best performance, and the rate performance of Li4Ti5O12 by coating antimony doped Tin oxide(ATO) was not obvious.
引文
[1]陈光,崔崇.新材料概论[M].北京:科学出版社,2003
    [2]Zenichiro Takehara. Development of lithium rechargeable batteries in Japan[J]. Journal of Power Sources,1989,26:257-266
    [3]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社,2002
    [4]Sid Megahed, Bruno Scrosati. Lithium-ion rechargeable batteries[J]. Journal of Power Sources,1994,51:79-104
    [5]Nagaura T., Tozawa K.. Lithium ion rechargeable battery[J]. Progress in Battery and Solar Cells,1990,9:209-211
    [6]赖琼钰,卢集政.摇椅锂离子二次电池及其嵌入式电极材料[J].化学研究与应用,1998,10(1):21-26
    [7]Kazunori Ozawa. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes:the LiCoO2/C system[J]. Solid State Ionics,1994,69:12-22
    [8]Yoshio Nishi. Lithium ion seconday batteries; past 10 years and the future[J]. Journal of Power Sources,2001,100:101-106
    [9]Terada N., Yanagi T., Arai S., et al. Development of lithium batteries for energy storage and EV applications[J]. Journal of Power Sources,2001,100:80-92
    [10]施思齐,欧阳楚英,王兆翔.锂离子电池中的物理问题及其研究进展[J].物理学与新能源材料专题,2004,33:182-185
    [11]吴宇平,戴晓兵,马军旗,等.锂离子电池—应用与实践[M].北京:化学工业出版社,2004
    [12]李孟伦,李依达,陈杰泰,等.高功率软包锂离子电池的应用与发展[J].物理化学学报,2007,会议综述:100-106
    [13]CHAN C. The state of the art of electric and hybrid vehicles[J]. Proceedings of the IEEE,2002,90(2):247-275
    [14]陈立泉.电动车锂离子电池的材料问题[J].中国工程科学,2002,4:32-36
    [15]BITSCHE O, GUTMANN G. Systems for hybrid cars[J]. Journal of Power Sources, 2004,127(1-2):8-15
    [16]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2007
    [17]陈立泉.电动车锂离子电池的材料问题[J].中国工程科学,2002,11:32-36
    [18]Mizushima K., Jones P.C., Wiseman P.J., et al. LixCoO2(0    [19]Hajime Arai, Shigeto Okada, Yoji Sakurai, et al. Reversibility of LiNiO2 cathode[J]. Solid State Ionics,1997,95:275~282
    [20]Gummow R.J., Thackeray M.M., An investigation of spinel-related and orthorhombic LiMnO2 cathodes for rechargeable lithium batteries[J]. Journal of the Electrochemical Society,1994,141:1178~1183
    [21]卢俊彪,唐子龙,张中太,等.LiFePO4材料的制备与电池性能的研究[J].无机材料学报,2005,20(3):666-670
    [22]颜剑,苏玉长,苏继桃,等.锂离子电池负极材料的研究进展[J].电池工业.2006,11:277-281
    [23]郭炳焜,李新海,杨松青.化学电源-电池原理及制造技术[M].中南工业大学出版社,2000
    [24]Kasuh T., Mabuchi A., Tokumitsu K., et al. Recent trends in carbon negative electrode materials[J]. Journal of Power Sources,1997,68:99-101
    [25]Mario Wachtler, Jurgen O Besenhard, Martin Winter. Tin and tin-based intermetallics as new anode materials for lithium ion cells[J]. Journal of Power Sources,2001,94 189-193
    [26]Abe T. Secondary batteryies-lithium rechargeable system-lithium-ion|Negative Electrodes:Carbon[J]. Encyclopedia of Electrochemical Power Sources,2009, 192-197
    [27]Peled E, Menachem C, Tow D B, et al. Improved graphite anode for lithium ion batteries chemically bonded SEI and nanochannel formation[J]. Journal of the Electrochemical Society,1996,143:L4-L7
    [28]Ein-eli Y, Thomas S R, Koch V R, et al. New electrolyte system for Li-ion battery[J]. Journal of the Electrochemical Society,1996,143:L 195-L 197
    [29]Tsumura T., Katanosaka A., Souma I., et al. Surface modification of natural graphite particles for lithium-ion batteries[J]. Solid State Ionics,2000,135:209-212
    [30]Komaba S, Watanabe M, Groult H. Alkali Chloride Coating for Graphite Electrode of Lithium-Ion Batteries[J]. Journal of the Electrochemical Society,2010,157: A1375-A1382
    [31]YASHINORI K, KATSUNORI Y, ATSUHIRO F, et al. Electrochemical characteristics of graphite, coke, and graphite/coke hybrid carbon as negative electrode materials for lithium secondary batteries[J]. Journal of Power Sources,2001,11(2), 74-77
    [32]张军,金忠,杨清河,等.介稳相炭微球嵌锂特性[J].电源技术,2001,25(6):398-400
    [33]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000
    [34]殷雪峰,刘贵昌.锂离子电池炭负极材料研究现状与发展[J].炭素技术,2004,23(3):37-41
    [35]CHEN MAOHUI, WU GUOTAO, et al. Characterization and electrochemical of boron-doped mesocarbon microbeads anode materials for lithium ion battery[J]电化学,2001,7(3):263-268
    [36]Giselle Sandi, Randall E Winans, Kathleen A Carrado. New carbon electrodes for secondary lithium batteries[J]. Journal of the Electrochemical Society,1996,143 (5): L95-L101
    [37]Nishijima M., Kagohashi T., Imanishi M., et al. Synthesis and electrochemical studies of a new anode material, Li3-xCoxN[J]. Solid State Ionics,1996,83:107-111
    [38]Wen Z S, Wang K, Chen L B, et al. A new ternary composite lithium silicon nitride as anode material for lithium ion batteries[J]. Electrochemistry Communications,2006,8: 1349-1352
    [39]Takeda Y., Yang I., New Composite Anode Systems Combined with Li2.6Coo.4N[J]. Journal of Power Sources,2001,97~98:244~246
    [40]郭炳焜,徐微,王先友,等.锂离子电池[M].长沙:中南工业大学出版社,2002
    [41]Wang C. S., A.pplebya A.J., Little F.E.. Electrochemical Study on Nano-Sn,Li4.4Sn and AlSi0.1 Powders Used as Secondary Lithium Battery Anodes[J]. Journal of Power Sources,2001,93:174-185
    [42]任建国,王科,何向明,等.锂离子电池合金负极材料的研究进展[J].化学进展,2005,17(4):598-603
    [43]Yang J, Takeda Y, I manishi N, et al. SiOx-based anodes for secondary lithium batteries[J]. Solid State Ionics,2002,152-153:125-129
    [44]李昌明,张仁元,李伟善.硅材料在锂离子电池中的应用研究进展[J].材料导报,2006,20(9):34-37
    [45]Courtney Ian A., Dahn J. R.. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites [J]. Journal of the Electrochemical Society,1997,44:2045-2052
    [46]Jin Yong Kim, King D. E., et al, Chemical synthesis of tin oxide-based materials for Li-ion battery anodes[J]. Journal of the Electrochemical Society,2000,147 (12) 411-420
    [47]Courtney Ian A., Mckinnon W. R., Dahn J. R.. On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium[J]. Journal of the Electrochemical Society,1999,146 (1):59-68
    [48]林克芝,王晓琳,徐艳辉.锂离子电池锡基负极材料的改性研究进展[J].电源技术,2005,29:62-65
    [49]WANG C, APPL EBY A J, LITTL E F E. Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes[J]. Journal of Power Sources,2001,93:174-185
    [50]毛信表,王连邦,马淳安.新型锂储藏合金负极材料研究进展[J].浙江工业大学学报,2006,34(4):363-368
    [51]葛昊,李宁,黎德育.锂离子电池负极材料Li4Ti5O12的研究进展[J].稀有金属材料与工程,2007,36:697-701
    [52]Xiang H.F., Zhang X., Jin Q.Y., et al. Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells[J]. Journal of Power Sources,2008183:355-36
    [53]OHZUKU T, YAMAMOTO N, UEDA A. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of the Electrochemical Society,1995,142(5):1431-1436
    [54]Zaghib K., Simoneau M., Armand M., et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Sources,1999,81-82:300-305
    [55]Hao Yan-Jing, Lai Qiong-Yu, Lu Ji-Zheng, et al. Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol-gel method[J]. Journal of Power Sources,2006,158:1358-1364
    [56]WANG Zhi-guo, PENG Wen-jie, WANG Zhi-xing, et al. Preparation and characterization of spinel Li4Ti5O12 anode material from industrial titanyl sulfate solution[J]. Transactions of Nonferrous Metals Society of China,2010,20:s271-s274
    [57]Yin S.Y., Song L., Wang X.Y., et al. Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction[J]. Electrochimica Acta,2009,52:5629-5633
    [58]王辰云,华宁,康雪雅,等.锂离子电池负极材料Li4Ti5O12的研究进展[J].电子元件与材料,2009,28:80-85
    [59]Aldon L., Kubiak P., Womes M., et al. Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel[J]. Chemistry of Materials,2004,16,5721-5725
    [60]谢娇娜.锂离子电池负极材料Li4Ti5Ol2的研究[硕士学位论文].北京,北京化工大学,2010
    [61]Bach S, Pereira-Ramos J P, Baffier N. Electrochemical properties of sol-gel Li4/3Ti5/3O4[J]. Journal of Power Sources,1999,81-82:273-276
    [62]Jansen A N, Kahaian A J, Kepler K D, et al. Development of a high-power lithium-ion battery[J]. Journal of Power Sources,1999,81-82:902-905
    [63]陈方,梁海潮,李仁贵,等.负极活性材料Li4Ti5Ol2的研究进展[J].无机材料学报,2005,20(3):537-544
    [64]钟志勇.锂离子电池负极材料Li4Ti5O12的第一性原理[硕士学位论文].江西,江西师范大学,2009
    [65]ZAGHIB K, SIMONEAU M, ARM AND M, et al. Electrochemical study of Li4Ti50,2 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Sources,1999,(81-82):300-305
    [66]Zaghib K., Simoneau M., Armand M., et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Sources,1999,81-82:300-305
    [67]Yao X.L., Xie S., Nian H.Q. et al. Spinel Li4Ti5O12 as a reversible anode material down to 0 V[J]. Journal of Alloys and Compounds,2008,465:375-379
    [68]Yao X.L., Xie S., Chen, C.H., et al. Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries [J]. Electrochimica Acta,2005, 50:4076-4081
    [69]Yan-jing Hao, Qiong-yu Lai, Dong-qiang Liu, et al. Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery[J]. Materials Chemistry and Physics,2005,94:382-387
    [70]Wang G.X., Bradhurst D.H., Dou S.X., et al. Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries[J]. Journal of Power Sources,1999,83:156-161
    [71]Alias N.A., Kufian M.Z., Majid S.R., et al. Synthesis and characterization of Li4Ti5O12[J]. Journal of Alloys and Compounds (2008), doi:10.1016/j.jallcom.2009.07.057
    [72]姚经文,吴锋.锂离子电池负极材料Li4Ti5O12的合成及电化学性能[J].功能材料,2006,11(37):1752-1754
    [73]PERAMUNAGE D, ABRAHAM K M. Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells[J]. Journal of the Electrochemical Society,1998,145(8):2609-2615
    [74]杨建文.Li4Ti5O12基混合超级电容器负极材料的开发及相关机理研究[博士学位论文].长沙,中南大学,2005
    [75]Kang S G, Kang S Y, Ryu K S, et al. Electrochemieal and structural properties HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method[J]. Solid Stale Ionics, 1999,120(1-4):155-161
    [76]SHEN Cheng-min, ZHANG Xiao-gang, ZHOU Ying-ke, et al. Preparation and characterization of nanocrystalline Li4Ti2O12 by sol-gel method[J]. Materials Chemistry and Physics,2002,78(2):437-441
    [77]王斌,瞿美臻,林浩强,等.煅烧温度对Li4Ti5O12的电化学性能的影响[J].合成化学,2006,14(6):631-633
    [78]Hao Yan-Jing, Lai Qiong Yu, Lu ji-Zheng, et al. Influence of various complex agents on electrochemical property of Li4Ti5O12 anode material[J], Journal of Alloys and Compounds,2007,439:330-336
    [79]LI J R, TANG Z L, ZHANG Z G. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12[J]. Electrochemistry Communications,2005,7:894-899
    [80]Cheng Liang, Li Xili, Liu Haijing, et al. Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion interlation[J]. Journal of the Electrochemical Society, 2007,154(7):692-698
    [81]Guerfi A., Sevigny S., LagaceM., et al. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators [J]. Journal of Power Sources,2003,119-121:88-94
    [82]Kubiak P, Garcia A, Juma J C, et al. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion:influence of the substitutions Ti/V, Ti/Mn, Ti/Fe[J]. Journal of Power Sources,2003,119-121:626-630
    [83]Sun Y K, Jung D J, Lee Y S, et al. Synthesis and electrochemical characterization of spinel Li[Li(1-x)/3 CrxTi(5-2x)/3]O4 anode materials[J]. Journal of Power Sources,2004, 125(2):242-245
    [84]李玥,赵海雷,仇卫华,等.二次锂离子电池负极材料Li4Ti5O12的研究进展[J].硅酸盐通报,2007,26(1):92-96
    [85]陈永.多孔材料制备与表征[M].合肥:中国科学技术大学出版社,2010
    [86]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2006
    [87]泉美治,小川 雅彌,加藤俊二,等.仪器分析导论(第三册)[M].北京:化学工业出版社,2005
    [88]阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用(第2版)[M].北京:化学工业出版社,2005
    [89]钟志强,岳敏.改性钛酸锂负极材料的合成及性能[J].电源技术研究与设计,2008,32.2:99-119
    [90]Chun hai Jiang, Masaki Ichihara, Itaru Honma, et al. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode[J]. Electrochimica Acta,2007, 52:6470-6475
    [91]A. Guerfi, P. Charest, K. Kinoshita, et al. Nano electronically conductive titanium-spine as lithium ion storage negative electrode[J]. Journal of Power Source, 2004,126:163-168
    [92]莫畏,邓国珠,罗方承.钛冶金(第2版)[J].北京:冶金工业出版社,1998
    [93]D. Szczuko, J.Werner, S.Oswald, et al. XPS investigation of surface segregation of doping elements in SnO2[J]. Applied Surface Science,2001,179:301-306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700