锂离子电池正极材料LiNi_(0.8)Co_(0.15)Al_(0.05)O_2的合成与改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有高容量,低成本等优势,高镍系正极材料是一种极具应用前景的锂离子电池材料。然而,目前的方法合成的材料还存在诸多不足,其性能有待改进。论文针对共沉淀法合成LiNi0.8Co0.15Al0.0502工艺中的关键问题展开系统研究,探索了一种高容量正极材料的合成工艺。该工艺操作简单,成本低,有助于实现LiNi0.8Co0.15Al0.0502材料的产业化。
     论文通过控制结晶法合成了球形前驱体。配锂盐,热处理合成了LiNi0.8Coo.15Al0.05O2材料。考察了预处理温度、预处理时间、焙烧温度等合成条件对材料的结构、形貌及电化学性能的影响。得到了优化的合成条件:前驱体在750。C下高温预处理4h后,加入理论锂用量105%的锂盐,在氧气气氛下750℃恒温煅烧15h。优化条件下合成的材料表现出了优异的电化学性能。0.1C,0.2C和2.5 C充放电倍率下,材料的放电比容量分别为203.2 mAh·g-1,192.4 mAh·g-1和146.8 mAh·g1。0.2C和2.5C充放电倍率下30次循环后,容量保持率分别为93.7%和93.3%。
     考察了不同包覆工艺及不同包覆组分对LiNi0.8Co0.15Al0.05O2材料电化学性能的影响。沉淀法包覆LiCoO2的材料表现出最好的电化学性能。55℃、0.2C充放电倍率下,包覆钻量为1.2wt%材料首次放电比容量为191.7 mAh·g1,经过38次充放电循环后,容量保持率为93.7%。采用溶胶-凝胶法合成了Si02包覆LiNi0.8Coo.15Al0.05O2材料,其中,包覆1.0wt% Si02的材料具有最高的初始容量和最好的循环性能。55℃,O.1C和0.2C充放电倍率下,材料的首次放电比容量分别为199.1 mAh·g1和191.9 mAh·g-1,0.2C充放电倍率下循环30次,容量保持率为94.6%。
With high capacity and low cost, rich nicklic cathode are very intractive materials for lithium ion battery. However, the performance of the materials prepared by present synthetic methods is not good enough for lithium-ion battery. In the paper, the key isssues of LiNio.8Coo.15Al0.05O2 prepared by co-precipitation method were systematically studied, we has explored a new mothed for preparing LiNio.8Co0.15Al0.05O2 cathode material. The mothed is simple and the material shows good performance. It is helpful in preparing rich nicklic cathode material in large scale. To avoid the intrinsic defect of LiNio.8Coo.15Alo.05O2, the performance of LiNio.8Coo.15Alo.05O2 was improved by surface modification。
     The spherical Ni0.8Co0.15Al0.05(OH)x precursor was prepared by the method of controlled crystallization. The cathode material LiNio.8Coo.15Al0.05O2 is prepared from the spherical Ni0.8Co0.i5Al0.05(OH)x precursor by heat treatment. The influences of pretreatment temperature, pretreatment time, synthesis temperature, synthesis time on the performance of cathode material were studied. The optimized conditions were got:the spherical precursor is pretreated at 750℃in 4h, then mixed with lithium (theory 105%) and kept 15h at 750℃in oxygen, cooled along with stove.
     The samples synthesized under optimized conditions show good electrochemical performance. It have discharge capacity of 203.2mAh/g, 192.4mAh/g,185.9mAh/g,166.2mAh/g,155.7mAh/g and 146.8mAh/g at 0.1C,0.2C,0.5C,1C and 2C rate. After 30 circles, The capacity retention are 93.7% and 93.3% at 0.2C and 2.5C rate.
     The effect of different surface modification motheds and different coated compnents on the performance of cathode materials were studied. LiCoO2-coated LiNi0.8Coo.15Al0.05O2 materials prepared by precipation mothed show the best electrochemical performance.1.2wt%Co-coated materials has discharge specific capacity of 191.7mAh/g at 0.2C rate and 55℃. After 38 circles, Capacity retention is 93.7%. Compared to uncoated materials, coated materials have better electrochemical performance at high temperature. SiO2-coated LiNi0.8Co0.15Al0.05O2 materials prepared by sol gel mothed improve electrochemical performance at 55℃. The material coated 1.0%wt SiO2 has high capacity. Its first discharge capacity is 199.1 mAh/g at 0.1C rate and 55℃. It also has discharge capacity of 191.9 mAh/g at 0.2C rate and 55℃. After 30 circles, the capacity retention is 94.6%.
引文
[1]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践.北京:科学出版社,2004.3-5
    [2]黄可龙,王兆翔,刘素琴,锂离子电池原理和关键是技术.北京:化学工业出版社,2007.5
    [3]Thackeray M. Structural considerations of layered and spinel lithiated oxides for lithium ion battery[J]. J Electrochem Soc,1995,142(8):2558-2563
    [4]Ritchie A G. Recent developments and likely advances in lithium rechargeable batteries[J]. J Power Sources,2004,136(2):285-289
    [5]吴川,吴锋,陈实,等.锂离子电池正极材料研究进展[J].电池,2000,30(1):36-39
    [6]屈平,方芳.锂离子电池的技术与市场[J].国际电源商情,2004,9:32-35.
    [7]万传云.锂离子电池正负极材料市场发展趋势[J].电池工业,2005,10(6):369-371
    [8]杨勇.新型锂离子电池正极材料的研究现状及其发展前景[J].新材料产业,2010,10:11-14
    [9]Tarascon J M. Key challenges in future Li-battery research [J]. Phil. Trans. R. Soc. A,2010,368:3227-3241
    [10]Armand M, Tarascon J M. Building better batteries [J]. Nature,2008,451: 652-657
    [11]Goodenough J B, Kim Y. Challenges for Rechargeable Li-Batteries [J]. Chem Mater,2010,22:587-603
    [12]Ellis B L, Lee K T, Nazar L F. Positive Electrode Materials for Li-Ion and Li-Batteries [J]. Chem Mater,2010,22:691-714
    [13]Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co)electrodes for lithium-ion batteries[J]. Mater Chem,2007, 17:3112-3125
    [14]Li Y X, Jiang C Y, Wan C R, et al. Research and development status of lithium-ion battery [J]. China international battery fair'99,1999,6:202-220
    [15]廖春发,郭守玉,陈辉煌等.锂离子电池正极材料的合成研究现状[J].江西有色金属,2003,17(2):34-38
    [16]Akimoto J, Gotoh Y, Oosawa Y, et al. Synthesis and structure refinement of LiCoO2 single crystals[J]. J Solid State Chemistry,1998,141:298-302.
    [17]赵浩,LiNio.8Coo.2O2的合成与性能研究[硕士学位论文].长沙:中南大学,2005
    [18]Wang H, Jang Y I, Huang B, et al. Chiang. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries [J]. J Electrochem Soc,1999,146:473-480
    [19]Wang H, Jang Y I, Huang B, et al. Electron microscopic characterization of electrochemically cycled LiCoO2 and Li(Al,Co)O2 battery cathodes [J]. J Power Sources,1999,81(82):594-598
    [20]Sun Y K. Cycling behaviour of LiCoO2 cathode materials prepared by PAA-assisted sol-gel method for rechargeable lithium batteries [J]. J Power Sources,1999,83:223-226
    [21]Choi Y M, Pyun S I. Effects of intercalation-induced stress on lithium transport through porous LiCoO2 electrode [J]. Solid State Ionics,1997,99:173-183.
    [22]Cho J, Kim Y J, Park B. LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase [J]. J Electrochem Soc,2001,148: A1110-115
    [23]Amatucci G. G, Tarascon J M, Klein L C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J]. Solid State Ionics,1996,83:167-173
    [24]Ohzuku T, Ueda A. Solid-state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells [J]. J Electochem Soc,1994,141:2972-2975
    [25]刘汉三,杨勇,张忠如等.锂离子电池正极材料锂镍氧化物研究新进展[J].电化学,2001,7(2):145~154
    [26]应皆荣,万长春,姜长印等.用溶胶凝胶法在LiNio.8Coo.2O2表面包覆Si02[J].电源技术,2001,25(6):401~404
    [27]Lee K. K, Yoon W. S, Kim K. B, et al. A study on the thermal behavior of electrochemically delithiated Li1-xNiO2 [J] J Electrochem Soc,2001,148: A716-722.
    [28]闫建英.锂镍钴氧正极材料合成新工艺的研究:[博士学位论文].昆明:昆明理工大学,2006
    [29]Li W, ReimersJ N, Dahn J R. In situ x-ray diffraction and electrochemical studies of Li1-xNiO2 [J]. Solid State Ionics,1993,67:123-130.
    [30]Barker J, Koksbang R, Saidi M Y. Electrochemical investigation into the lithium insertion properties of LixNiO2 [J]. Solid State Ionics,1996,89:25-35.
    [31]Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R-3m) for 4 volt secondary lithium cells [J]. J Electrochem Soc,1993, 140:1862-1870.
    [32]Cho J, Jung H, Park Y, et al. Electrochemical properties and thermal stability of LiaNi1-xCox02 cathode materials [J]. J Electrochem Soc,2000,147:15-20.
    [33]Gover R K B, Kanno R, Mitchell B J, et al. Effects of sintering temperature on the structure of the layered phase Lix(Nio.8Coo.2)O2 [J]. J Electrochem Soc,2000, 147:4045-4051.
    [34]Periasamy P, Kim H S, Moon S I, et al. Synthesis and characterization of LiNio.8Coo.2O2 prepared by a combustion solution method for lithium batteries[J]. J Power Sources,2004,132:213-218.
    [35]Gong Z L, Liu H S, Guo X J, et al. Effects of preparation methods of LiNio.8Coo.2O2 cathode materials on their morphology and electrochemical performance [J]. J Power Sources,2004,136:139-144.
    [36]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-livinesas positive electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc,1997, 144(4):1188-1194.
    [37]Thackeray M. Lithium-ion batteries-An unexpected conductor [J]. Nature Materials,2002,1(2):81-82.
    [38]矶野基史,蒂埃里·德列津,伊万·埃克斯纳尔,伊沃·特林克.合成LiMnPO4的方法.中国专利:CN200680040081.1,2006-10-27
    [39]住友大阪水泥.利用水热法合成法的高电压橄榄石正极材料的开发.第51届电池讨论会(2010),2C21.
    [40]Huang H J, Xie J Y. A novel alternative cathode material with high safety for lithium-ion batteries [J]. Chinese Journal of Nonferrous Metals,2004,14(3): 361-365
    [41]Ukyo Y, Itou Y. Performance of LiNiCoO2 materials for advanced lithium-ion batteries [J]. J Power Sources,2005,146(1-2):39-44
    [42]Tak J, Chung J K, Kim S S, et al. Microstructure analysis and characterization of Li(Ni1-xCox)O2 thin film prepared by Li diffusion on Ni-Co alloy substrates for cathode application [J]. Materials Science Forum,2007,544-545:403-406
    [43]Tong D G, Tang A D, Chu W, et al. Synthesis of LiCoo.3Ni0.7O2 as cathode materials for lithium ion batteries by oxidation-ion exchange of P-Coo.3Nio.7(OH)2 and LiOH at low temperature [J].Materials Chemistry and Physics,2008,107(2-3):385-391
    [44]Abraham D P, Kawauchi S, Dees D W. Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2 [J]. Electrochemical Acta,2008,53(5): 2121-2129
    [45]赵煜娟,夏定国,刘庆国,等.掺杂元素对LiNil-yCOyO2嵌锂电位影响的解析[J].电源技术,2005,29(4):214~216
    [46]Delmas C, Croguennec M L, Saadoune I, et al. An overview of the Li(Ni,M)O2 systems:syntheses,structures and properties[J]. Electrochem Act,1999,45:243-253
    [47]Balasubramanian M, Sun X, Yang X Q, et al. In situ X-ray absorption studies of a high-rate LiNi0.85C00.15O2 cathode material [J]. J Electrochem Soc,2000,147: 2903-2909
    [48]Lee K K, Kim K B. Electrochemical and structural characterization of LiNi1-yCoyO2 positive electrodes during initial cycling [J]. J Electrochem Soc, 2000,147:1709-1717
    [49]Chebiam R V, Prado F, Manthiram A. Structural instability of delithiated Li1-xNi1-yCoyO2 cathodes [J]. J Electrochem Soc,2001,148:A49-53
    [50]Fujita Y, Amine K, Maruta J, et al. LiNi1-xCoxO2 prepared at low temperature using (3-Ni1-xCoxOOH and either LiNO3 or LiOH [J]. J Power Sources,1997,68: 126-130
    [51]Broussely M, Biensan P, Simon B. Lithium insertion into host materials:the key to success for Li ion batteries[J]. Electrochim Acta,1999,45:3-22
    [52]Pouillerie C, Perton F, Biensan P, et al. Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide [J]. J Power Sources,2000,96: 293-302
    [53]Chowdari B V R, Subba R G. V, Chow S Y, et al. Cathodic behavior of (Co,Ti,Mg)-doped LiNiO2 [J]. Solid State Ionics,2001,140:55-62
    [54]Cho J. LiNio.74Co0.26-xMgx02 Cathode Material for a Li-Ion Cell [J]. Chem Mater, 2000,12(10):3089-3094
    [55]Chang C C, Kim J Y, Kumta P N. Divalent cation incorporated Li(1+X)MMgx02(1+X) (M=Ni0.75Co0.25):viable cathode materials for rechargeable lithium-ion batteries [J]. J Power Sources,2000,89:56-63
    [56]Arai H, Tsuda M, Sakurai Y. Lithium nickelate electrodes with enhanced high-temperature performance and thermal stability[J]. J Power Sources,2000, 90:76-81
    [57]Cao H, Zhang Y, Zhang J, et al. Synthesis and electrochemical characteristics of layered LiNio.6Coo.2Mn0.2O2 cathode material for lithium ion batteries [J]. Solid State Ionics,176,2005,13-14:1207-1211
    [58]Chang J H, Jang H Y, Won Ch, et al. Electrochemical properties of LiNi0.8Co0.2-xAlxO2 prepared by a sol-gel method [J]. J Power Sources,2004,136: 132-138
    [59]Cao H, Zhang Y, Zhang J, Xia B. Synthesis of LiNio.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization [J]. Solid State Ionics,2006,177:3303-3307
    [60]Bang H J, Joachin H, Yang H, et al. Contribution of the structural changes of LiNio.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells [J]. J Electrochem Soc,2006,153(4):A731-737
    [61]Yoon W S, Balasubramanian M, Yang X Q, et al. Time-resolved XRD study on the thermal decomposition of Li1-xNi0.8Coo.15Alo.05O2 cathode materials for Li-ion batteries [J]. Electrochem Solid State lett,2000,8(2):A863-865
    [62]Lin C H, Shen C H, Prince A A M, et al. Electrochemical studies on mixtures of LiNi0.8Coo.17Al0.03O2 and LiCoO2 cathode materials for lithium ion batteries [J]. Solid State Comm,2005,133:687-690
    [63]Weaving J S, Coowar F, Teagle D A, et al. Development of high energy density Li-ion batteries based on LiNi1-x-yCoxAlyO2[J]. J Power Sources,2001,97(98): 733-735
    [64]Lee K K, Yoon W S, Kim K B, et al. Thermal behavior and the decomposition mechanism of electrochemically delithiated Li1-xNiO2[J]. J Power Sources,2001, 97(98):308-312
    [65]陈勃涛.氢氧化物前驱体合成LiNio.8Co0.15Al0.05O2及其电化学性能[J].无机化学学报,2010,26(2):190~196
    [66]谢娇娜,李建刚,何向明.碳酸盐共沉淀法合成LiNio.8Coo.20-xAlx02[J]电池,2010,40(2):90~92
    [67]Koyama Y, Yabuuchi N, Tanaka I, et al. Solid state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries I: First-principles calculation on the crystal and electronic structures [J].J Electrochem Soc,2004,151:A1545-1551
    [68]Kubo K, Arai S, Yamada S, et al. Synthesis and charge discharge properties of Li1+xNi1-x-yCoyO2-zFz [J]. J Power Sources,1999,81(82),599-603
    [69]陈宏浩.锂离子电池正极材料层状锂镍钴氧化物掺杂研究:[博士学位论文].武汉:武汉大学,2005
    [70]Kannan A M, Rabenberg L, Manthiram A. High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries [J]. Electrochemical and Solid State Lett,2003,6(1):A16-A18
    [71]Chen Z H, Dahn J R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5V[J]. Electrochem Acta,2004,49(7):1079-1090
    [72]H. J. Kweon, D. G Park. Surface modification of LiSr0.002Nio.9Coo.1O2 by overcoating with a magnesuim oxide[J]. Electrochemical and Solid-State Letters, 2000,3(3):128-130
    [73]潘思仲,陈猛,牛少军等.Al2O3包覆LiNio.8Co0.2O2正极材料及其电化学性能[J].粉末冶金材料科学与工程,2007,12(4):254~257
    [74]Yuewu Zeng, Jinhua He. Surface structure investigation of LiNio.8Coo.2O2 by AIPO4 coating and using functional electrolyte [J]. J Power Sources,2009,189: 519-521
    [75]Hu G. R, Deng X. R, Peng Z. D, et al. Comparison of A1PO4 and Co3(PO4)2 coated LiNio.8Coo.2O2 cathode materials for Li-ion battery [J]. Electrochem Acta, 2008,53(5):2567-2573
    [76]Ekaterina Z, Radostina S, Georgi T, et al. Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO[J]. Solid State Sci,2003,5(5):711-720
    [77]Yonghyun C, Jaephil C. Significant Improvement of LiNio.8Co0.15Al0.05O2 Cathodes at 60℃ by SiO2 Dry Coating for Li-ion Batteries [J]. J Electrochem Soc,2010,157(6):A625-A629
    [78]Sun Y K, Myung S T, Kim M H, et al. Synthesis and Characterization of Li[(Ni0.8Co0.1Mno.1)0.8(Ni0.5Mn0.5)o.2]02 with the Microscale Core-Shell Structure as the Positive Electrode Material forLithium Batteries, [J]. JACS,2005,127: 13411-13418
    [79]Cheng L D, Takahisa M, Lian Q Z, et al. Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2[J]. J Power Sources,2004, 132:150-155
    [80]王东,潘延林,李国欣,等.高温固相法合成锂离子电池正极材料LiNi0.8Co0.2O2研究[J].复旦大学学报(自然科学版),2002,3(41):286~291
    [81]朱先军,陈宏浩,周运鸿,等.锂离子电池正极材料LiNio.8Co0.2O2合成与电化学性能.中国化学与物理电源学术年会论文集[C]锂离子电池:58~59
    [82]袁荣忠,瞿美臻,于作龙.LixNi0.8-yCo0.2ZnyOp的合成及电化学性能研究[J].无机化学学报,2003,19(4):423~427
    [83]Ying J, Wan C, Jiang C, et al. Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium ion batteries[J]. J Power Sources,2001,99(1-2):78-84
    [84]刘艳君,胡国荣,高旭光等.球形正极材料LiNio.75Co0.2Mg0.05O2的合成与表征[J].电源技术,2007,31(7):523~529
    [85]Fey G T K, Shiu R F, Subramanian V, et al. LiNi0.8Coo.2O2 cathode materials synthesized by tile maleic acidassisted sol-gel method for lithium batteries [J]. J Power Sources,2002,103(2):265-272
    [86]朱先军,陈宏浩,詹晖,等.微粒溶胶-凝胶法合成LiNio.75Co0.25O2及表征[J].电池,2004,34(4):252~254
    [87]Park S H, Yoon C S, Kang S G, et al. Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method [J]. Electrochim Acta,2004,49:557-563.
    [88]刘智敏,胡国荣,方正升,等.超声喷雾热分解法合成锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2及表征[J].无机材料学报,2007,22(4):637~641
    [89]冯熙康,朱进朝,陈益奎等.电动车与航天用锂离子蓄电池的进展[J].电源技术,1999,23(3):186~190
    [90]毕道治.C1BF2001技术交流会[J].电源技术,2001,25(4):315~317
    [91]张泽波,刘秀生,薛梅,等.高性能18650型锂离子蓄电池[J].电源技术,2001,25(2):98~100
    [92]宴方勇,张花蓉,赖琼钰,等.LiNiO2正极材料的固气法合成研究[J].四川大学学报,2002,39(5),918~921
    [93]王殿龙,李建忠,戴长松,等.锂离子电池正极材料层状LiNi1/2Mn1/2O2的合成与表征[J].无机化学学报,2007,23(12):2087~2090
    [94]刘心泉.一种锂离子二次电池正极材料镍钴酸锂LiNi1-xCoxO2的合成方法.中国专利,200610020952.5,2006-4-30
    [95]曹丽娟,冯胜累,姜占峰.一种锂离子电池正极活性物质锂镍钴氧的合成方法.中国专利,200610153004.9,2006-9-19
    [96]彭容秋.镍冶金[M].长沙:中南大学出版社,2005,681
    [97]Gao Y, Yakovieva M, Ebner W. Novel LiNi1-xTix/2Mgx/2O2 compounds as cathode materials for safer lithium-ion batteries [J]. Electrochemical and Solid State Lett.1998,1:117-119
    [98]Hwang B, Santhanam R, Chen C. Effect of synthesis conditions on electrochemical properties of LiNii-yCoyO2 cathode for lithium rechargeable batteries [J]. J Power Sources,2003,114:244-247
    [99]Amatucci G G, Martinsville J M T. Rechargeable battery cell having surface-treated lithiated intercalation positive electrode[P]. USP:5705291, 1998
    [100]Ying J R, Wan C R, Jiang C Y. Surface treatment of LiNi0.8Co0.2O2 cathode material for lithium secondary batteries [J]. J Power Sources,2001,102(2): 162-166
    [101]Zhang Z R, Liu H S, Gong Z L, et al. Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8Co0.2O2 cathode materials[J]. J Power Sources,2004,129(1):101-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700