锂离子电池负极材料Li_4Ti_5O_(12)的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Li4Ti5O12是一种理想的锂离子电池负极材料,充放电的过程中材料的晶体结构几乎不发生变化,Li+的嵌入和脱嵌对材料的晶体结构几乎没有影响,也就是所谓的“零应变”特性;嵌锂电位较高(1.55V vs. Li+/Li),充放电过程中不会引起金属锂的析出,能够在大多数有机电解液中使用;理论放电比容量为175mAh/g,实际放电比容量可高达150~160mAh/g;锂离子扩散系数比碳材料高一个数量级;库伦效率高、原材料来源广清洁环保。钛酸锂具备了下一代锂离子电池所必需的充放电次数多、充放电过程快、安全性好的特性。
     本文采用高温固相法,以锐钛矿型TiO2和Li2CO3为原料,按照锂钛摩尔比n(Li)/n(Ti)=0.84来取料,以去离子水作为分散剂,采用行星式高能球磨机球磨混料,研究了反应温度和反应时间对Li4Ti5O12合成的影响,得到该条件下制备Li4Ti5O12的最佳工艺条件为800℃下反应12h,产物在0.5C倍率下首次放电比容量为135.8mAh/g。
     采用上述的最佳合成工艺条件,以TiO2为钛源、Li2CO3为部分锂源、柠檬酸锂为碳源和部分锂源,制备得到Li4Ti5O12/C复合物,产物的一次粒子的平均粒径为70nm(同等条件下合成的纯Li4Ti5O12的颗粒的粒径为600nm),粒子表面包覆了一层厚约1nm的碳膜;Li4Ti5O12/C复合物具有优异的电化学性能,尤其是高倍率性能,20C倍率下首次放电比容量为121.1mAh/g,循环100次后比容量仍有106.1mAh/g,容量保持率高达87.6%。
     用恒电位间歇滴定法(PITT)测定了Li4Ti5012电极材料在充放电不同阶段的锂离子扩散系数DLi+,并在此基础上研究了Li4Ti5012的充放电过程。实验测得的锂离子在活性材料中的扩散系数为10-12-10-10cm2s-1数量级,主要集中在10-11cm2s-1附近;Li4Ti5O12在充放电过程中形成了核/壳结构。
Spinel Li4Ti5O12 is a promising lithium ion battery anode material. It has some evident advantages:there is negligible volume change during charge/discharge process (the so-called "zero-strain insertion material"), so it possesses excellent reversibility; its Li-insertion potential is at about 1.55V vs. Li+/Li, which is high than the reduction voltage of common electrolyte; the diffusion coefficient is 2×10-11 cm2/s, so it has excellent lithium ion mobility that promising for high-rate battery applications. Furthermore, this material accommodates Li+ with theoretical capacity of 175 mAh/g. Compared with graphite anode material, Li4Ti5O12 is considered to be of better rate performance and safety.
     Anatase TiO2 and Li2CO3 were used as raw material to synthesize Li4Ti5O12 by solid-state method to study the optimal synthesis conditions of Li4Ti5O12. The moral ratio of n(Li)/n(Ti) was 0.84. Water was used as dispersant and ball-milling was used as mixing method. The result showed that the optimal synthesis conditions of Li4Ti5O12 were sintering 12h under 800℃. The initial discharge capacity at 0.5C was 135.8 mAh/g.
     Li4Ti5O12/C composite was prepared with the optimal synthesis conditions above and Li-citrate was used as carbon source and part of lithium source. The average particle size of as-prepared material was 70nm, while that of virgin Li4Ti5O12 synthesized under the same conditions was 600nm. The material showed excellent electrochemical performances, especially high-rate performances. The initial discharge capacity at 20C was 121.1 mAh/g, and after 100 cycles, it was still 106.1 mAh/g.
     PITT method was used to measure Li+ diffusion coefficient of Li4Ti5O12. The result showed that DLi+, ranged from 10-12 to 10-10cm2s-1 at various electrode potentials; core/shell structure was formed during charging/discharging process.
引文
[1]王世银.锂离子电池电极材料的合成改性及电化学性能研究[D].湖北大学,2008
    [2]雷勇泉.新能源材料[M].第1版.天津:天津大学出版社,2000
    [3]谢娇娜.锂离子电池负极材料Li4Ti5O12的研究[D].北京化工大学.2010
    [4]李蔚.2011年汽车动力电池研讨会[J].电源技术.2011,35(4):365-368
    [5]艾新平,杨汉西.电动汽车与动力电池[J].电化学.2011,17(2):123-132
    [6]李阳兴,万春荣,姜长印等.锂离子电池的研究与开发,第四届中国国际电池技术交流会/展览会论文集[C].北京,1999:200-202
    [7]J. B. Goodenough, K. Youngsik. Challenges for rechargeable Li batteries [J]. Chemistry of Materials.2010,22(3):587-603
    [8]周恒辉,慈云祥,刘昌炎等.锂离子电池电极材料研究进展[J].化学进展.1998,(1):85-94
    [9]M. Lowe, S. Tokuoka, T. Trigg, G. Gereffi. Lithium-ion batteries for electric vehicles [M]. Center on Globalization Governance & Competitiveness.2010
    [10]王志国.锂离子电池负极材料Li4Ti5012的制备及改性研究[D].中南大学.2010
    [11]郭炳琨,徐徽,王先友.锂离子电池[M].第一版.中南大学出版社.2002
    [13]M. Wakihara. Recent developments in lithium ion batteries [J]. Journal of Materials Engineering and Performance.2000,33:109-134
    [14]王蔚.锂离子电池负极材料Li4Ti5012的固相合成及电化学性能研究[D].浙江大学.2010
    [15]M. S. Whittingham. Insertion electrodes as SMART materials the first 25 years and future promises [J]. Solid State Ionics.2000,134:169-178
    [16]W. B. Xing, J. S. Xue, J. R. Dahn. Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries [J]. Journal of the Electrochemical Society.1996, 143(10):3046-3052
    [17]郭炳琨,李新海,杨松青.化学电源:电池原理及制造技术[M].中南大学出版社.2003
    [18]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社.2008
    [19]陈立泉.锂离子电池中的物理问题[J].物理,北京.1998,27(6):354-357
    [20]K. Wang, X. M. He, J. G. Ren. Preparation of Sn2Sb Alloy Encapsulated Carbon Microsphere Anode Materials for Li-ion Batteries by Carbothcrmal Reduction of the Oxides [J].Electrochimca Acta.2006,52(3):1221-1225
    [21]管海英.钛酸锂及其复合材料电化学性能研究[D].中南大学.2009
    [22]刘景,温兆银,吴梅梅等. LiCoO2正极材料的络合法合成及其电化学性能研究[J].无机材料学报.2002,17(6):1157-1162
    [23]唐致远,李建刚,薛建军等. LiNiO2的制备与改性的探讨[J].电池.2001,31(1):10-13
    [24]郑子山,唐子龙,张中太等.锂离子电池正极材料LiMn2O4的研究进展[J].无机材料学报.2003,18(2):257-263
    [25]F. Y. Kang, J. Ma, B. H. Li. Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium ion batteries [J]. New Carbon Materials.2011,26(3):161-170
    [26]张治安,王姣丽,赖延清等.非对称电化学电容器负极材料Li4Ti5O12的研究进展[J].材料导报.2008,22(9):26-29
    [27]熊琳强,张英杰,董鹏等.锂离子电池电解液防过充添加剂研究进展[J].化工进展.2011,30(6):1198-1204
    [28]胡继文,许凯,沈家瑞等.锂离子电池隔膜的研究与开发[J].高分子材料科学与工程.2003,19(1):215-219
    [29]白莹,吴锋.多孔复合聚合物隔膜的制备及其电化学性质[J].功能材料.2004,35(3):324-327
    [30]J. Gao, C. Y. Jiang, J. R. Ying, et al. Preparation and Characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries [J]. Journal of Power Sources.2006,155:364-367
    [31]陈方,梁海潮,李仁贵等.负极活性材料Li4Ti5O12的研究进展[J].无机材料学报.2005,20(3):537-544
    [32]O. Kazunori. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes:the LiCoO2/C system [J]. Solid State Ionics.1994,69(3-4):212-221
    [33]唐致远,阳晓霞,陈玉红.钛酸锂电极材料的研究进展[J].电源技术.2007,31(4):332-336
    [34]李必进,王长青,崔艳华等.锂离子电池负极材料Li3-xMxN (M=Co、Ni或Cu等)的研究进展[J].电源技术.2011,35(6):735-738
    [35]杨宁,王剑华,郭玉忠等.溶胶-凝胶模板法制备氧化锡纳米纤维[J].稀有金属材料与工程.2008,37(4):694-696
    [36]魏巍,王久林,杨军等.锂离子电池锡基负极材料的研究进展[J].化工进展.2010,29(1):80-87
    [37]徐欣欣.锂离子电池硅基负极材料的电化学性能研究[D].上海交通大学.2008
    [38]K. Zaghib, M. Dontigny, A. Guerfi. Safe and fast-charging Li-ion battery with long shelf life for power applications [J]. Journal of Power Sources.2011,196(8):3949-3954
    [39]小柴信晴.新素材.1996,8:13-16
    [40]唐致远,阳晓霞,陈玉红.钛酸锂电极材料的研究进展[J].电源技术,2007,4(31):332-336
    [41]高宏权,王红强,李庆余.锂离子电池超高容量负极材料的研究进展[J].矿冶工程.2005,25(5):57-61
    [42]X. L. Yao, S. Xie, C. H. Chen. Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries [J]. Electrochimica Acta.2005,50(20): 4076-4081
    [43]K. Nakahara, R. Nakajima, T. Matsushima. Preparaion of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells [J]. Journal of Power Sources.2003,117(1-2):131-136
    [44]唐致远,武鹏,杨景燕等.电极材料Li4Ti5O]2的研究进展[J].电池.2007,31(1):73-75
    [45]K. Kanamura, T. Chiba, K. Dokko. Preparation of Li4Ti5O12 spherical particles for rechargeable lithium batteries [J]. Journal of the European Ceramic Society.2006, 26(4-5):577-581
    [46]P. E. Lippens, M. Womes, P. Kubiak. Electronic structure of the spinel Li4Ti5O12 studied ab initio calculations and X-ray absorption spectroscopy [J]. Solid State Sciences.2004, 6(2):161-166
    [47]J. R. Li, Z. L. Tang, Z. G. Zhang. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 [J]. Electrochemistry Commuications.2005,7(9):894-899
    [48]周益明,忻新泉.低温固相合成化学[J].无机化学学报.1999,15(3):273-292
    [49]高玲,仇卫华,赵海雷等.Li4Ti5O12作为锂离子蓄电池负极材料电化学性能[J].北京科技大学学报.2005,27(1):82-85
    [50]高玲,仇卫华,赵海雷等.合成温度对Li4Ti5O12电化学性能的影响[J].电池.2004,34(5):351-352
    [51]杨建华,钟晖,钟海云等.Li4Ti5O12的合成及影响因素.中南大学学报.2002,36(1):55-59
    [52]C. Y. Lin, J. G. Duh. Porous Li4Ti5O12 anode material synthesized by one-step solid state methoud for clectrochemical properties enhancement [J]. Journal of Alloys and Compounds.2011,509:3682-3685
    [53]M. Zaghib, M. Simoneau, M. Armand. Electrochemical study of Li4Ti5O12 as negative electrode for li ion polymer rechargeable batteries [J]. Journal of Power Sources.1999, 81-82:300-305
    [54]高文明.钛酸锂的制备与改性研究[D].天津大学.2007
    [55]H. L. Li, C. M. Shen, X. G. Zhang. Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method [J]. Materials Chemistry and Physics.2002,78(2):437-441
    [56]刘东强,赖琼钰,郝艳静等.Li4Ti5Ol2溶胶-凝胶法合成及机理研究[J].无机化学学报.2004,20(7):829-832
    [57]官云龙,仇卫华,赵海雷等.液相法合成Li4Ti5O12负极材料电化学性能的研究[C].//第十三次全国电化学会议论文集.2005,432-433
    [58]邓斌,阎杰,张朝帅等. LiCoO2掺杂稀土元素研究[J].电池.2003,33(2):74-76
    [59]冯秀丽,王公应,邱发礼等.钛酸盐功能材料的研究与应用[J].化学进展.2005,17(6):1019-1025
    [60]K. Nakahara, R. Nakajima, T. Matsushima. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells [J]. Journal of Power Sources.2003,117(1-2):131-136
    [61]温兆银,黄沙华,顾中华.一种基于第二相复合的高倍率锂二次电池负极材料及制备方法:中国,1734811 A[P].2006
    [62]李星,瞿美臻.提高Li4Ti5O12高倍率性能和振实密度的研究进展[J].电源技术.2008,32(6):409-412
    [63]仇卫华,吴可,曹高平等.一种采用低温固相反应制备锂钛氧化物材料的方法:中国.1792815 A[P].2006
    [64]C. M. Shen, X. G. Zhang, Y. K. Zhou. Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method [J]. Materials Chemistry and Physics.2003,78(2):437-441
    [65]M. Venkateswarlu, C. H. Chen, J. S. Do. Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy [J]. Journal of Power Sources.2005,146(1-2):204-208
    [66]施思齐,欧阳楚英,王兆祥等.锂离子蓄电池中的物理问题及其研究进展[J].物理.2004,33(3):182-185
    [67]华兰,杨晓燕,康石林等.掺杂Li4Ti5O12作为锂离子电池负极材料[J].电池.2001,31(5):218-221
    [68]A. D. Robertson, H. Tukamoto, J. T. S. Irvine. Li1+xFe1-3xTi1+2xO4(0    [69]C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher, M. M. Thackeray. Studies of Mg-Substituted Li4-xMgxTi5O12 Spinel Electrodes (0    [70]S. W. Woo, K. Dokko, K. Kanamura. Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries [J]. Electrochimica Acta.2007,53:79-82
    [71]S. H. Huang, Z. Y. Wen, X. J. Zhu. Preparation and electrochemical performance of Ag doped Li4Ti5O12 [J]. Electrochemistry Communications.2004,6(11):1093-1097
    [72]王高军,赵娜红,吴宇平.一种尖晶石结构Li4Ti5O12材料及其制备方法与应用:中国,1837057A[P].2006
    [73]A. Guerfi, S. Sevigny, M. Lagace. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators [J]. Journal of Power Sources.2003,119-121:88-94
    [74]A. Guerfi, P. Charest. Nano electronically conductive titanium spinel as lithium ion storage native electrode [J]. Journal of Power Sources.2004,126(1-2):163-168
    [75]R. Dominko, M. Gaberscek, M. Bele. Carbon nanocoatings on active materials for Li-ion batteries [J]. Journal of the European Ceramic Society.2007,27(2-3):909-913
    [76]梅天庆,贺利敏,鱼光楠等.锂离子电池负极材料球形钛酸锂的合成及性能[J].材料导报.2011,25(8):45-48
    [77]刘春娜.锂离子蓄电池负极材料钛酸锂市场前景[J].电源技术.2011,35(5):496-498
    [78]王辰云,华宁,康雪雅等.锂离子电池负极材料Li4Ti5O12的制备[J].华南师范大学学报(自然科学版).2003,(z2):76-78
    [79]高剑,姜长印,应皆荣等.锂离子电池负极材料球形Li4Ti5O12的合成及性能研究[J].无机材料学报.2007,22(1):176-180
    [80]杨建文,钟晖,钟海云等.Li4Ti5O12的合成及影响因素[J].中南大学学报(自然科学版).2002,36(1):55-59
    [81]韩恩山,张俊平,朱令之等.高温固相法制备Li4Ti5O12负极材料及电化学性能研究[J].电源技术.2011,35(6):656-659
    [82]C. Chen, M. Spears, F. Wondre. Crystal growth and superconductivity of LiTi2O4 and Li1+1/3Ti2-1/3O4 [J]. Journal of Crystal Growth.2003,250(1-2):139-145
    [83]H. Kleykamp. Phase equilibria in the Li-Ti-O system and physical properties of Li3TiO3 [J]. Fusion Engineering and Design.2002,61/62(7):361-366
    [84]Y. G. Wang, H. M. Liu, K. X. Wang. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(Ⅲ) and carbon [J]. Journal of Materials Chemistry.2009,19:6789-6795
    [85]蒋志军,刘开宇,陈云扬.Li4Ti5O12/(Cu+C)复合材料的制备及电化学性能[J].无机化学学报.2011,27(2):239-244
    [86]N. D. He, B. S. Wang, J. J. Huang. Preparation and electrochemical performance of monodisperse Li4Ti5O12 hollow spheres [J]. Journal of Solid State Electrochem.2010, 14(7):1241-1246
    [87]王宏宇,杨洪,谭晓兰等.锂离子动力电池负极材料Li4Ti5O12的研究进展[J].电源技术.2011,35(3):316-319
    [88]何则强,刘文萍,熊利芝等.锂离子电池用Li4Ti5O12-碳复合材料的制备与电化学 性能[J].无机化学学报.2007,23(4):733-737
    [89]王蔚,曹高劭,叶静雅等.Li4Tis012/(Ag+C)电极材料的固相合成及电化学性能[J].无机化学学报.2009,25(12):2151-2155
    [90]钟志强,岳敏.改性钛酸锂负极材料的合成及性能[J].电池技术.2008,32(2):99-101
    [91]H. R. Young, K. Kanamura. Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol-gel method [J]. Journal of Solid State Chemistry.2004,177(6):2094-2100
    [92]丁燕怀,张萍,高德淑.测定Li+扩散系数的几种电化学方法[J].电源技术.2004,31(9):741-743
    [93]M. Y. Wu, J. M. Wang, J. Q. Zhang. Structure and electrochemical performance of Mn-substituted nickel hydroxide [J]. Acta Physico Chimica Sinica.2005,21(5):523-527
    [94]T. Uchida, Y. Morikawa, H. Ikuta. Chemical diffusion coefficient of lithium in carbon fiber [J]. Journal of the Electrochemical Society.1996,143(8):2606-2610
    [95]M. Umeda, K. Dokko, M. Mohamedi. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode:Graphitized carbon [J]. Electrochimica Acta.2001,47(6):885-890
    [96]C. Bohnke, O. Bohnke, J. L. Fourquet. Electrochemical intercalation of lithium into LiLaNb2O7 [J]. Journal of the Electrochemical Society.1997.144(4):1151-1158
    [97]P. Liu, H. Q. Wu. Diffusion of lithium in carbon [J]. Solid State Ionics.1996,92(1-2): 91-97
    [98]M. D. Levi, G. Salitra, B. Markovsky. Solid-state electrochemical kinetics of li-ion intercalation into Li1-xCoO2:Simultaneous application of electroanalytical techiniques SSCV, PITT, and EIS [J]. Journal of the Electrochemical Society.1999,146(4): 1279-1289
    [99]K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari. Electrochemical kinetic studies of Li-ion in O2-structured Li2/3(Ni1/3Mn2/3)O2 and Li(2/3)+x(Ni1/3Mn2/3)O2 and Li2/3+x(Ni1/3Mn2/3)O2 by EIS and GITT [J]. Journal of the Electrochemical Society.2003,150(1):A1-A13
    [100]曲涛,田彦文,翟玉春等.采用PITT与EIS技术测定锂离子电池正极材料LiFePO4中锂离子扩散系数[J].中国有色金属学报.2007,17(8):1255-1259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700