锂离子电池负极材料Li_4Ti_5O_(12)的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Li4Ti5O12是一种理想的锂离子电池负极材料,充放电的过程中材料的晶体结构几乎不发生变化,Li+的嵌入和脱嵌对材料的晶体结构几乎没有影响,也就是所谓的“零应变”材料;嵌锂电位较高(1.55V vs.Li+/Li),充放电过程中不会引起金属锂的析出,能够在大多数有机电解液中使用;理论放电比容量为175mAh/g,实际放电比容量可高达150-160mAh/g;锂离子扩散系数比碳材料高一个数量级;库伦效率高、原材料来源广、清洁环保。钛酸锂具备了下一代锂离子电池所必需的充放电次数多、充放电过程快、安全性好的特性。
     本文采用高温固相法合成锂离子电池负极材料钛酸锂,采用室温恒流充放电、交流阻抗、循环伏安等测试方法,以及XRD.SEM对材料进行了表征。重点考察了Y掺杂、Y和碳协同掺杂、以及不同掺杂量和不同碳源对Li(4-x/3)YxTi(5-2x/3)012(x=0.1)形貌、粒径和电化学性能的影响。结果表明,使用蔗糖为碳源合成的复合材料Li(4-x/3)YxTi(5-2x/3)012/C(x=0.1)表现了相对较好的倍率性能和循环稳定性,在0.15C.0.4C.0.7C.1.4C和3.3C倍率下材料首次放电比容量分别为149.0、144.5、144.5、141.3和118.0mAh/g,3.3C倍率下循环10次后容量仍保持为115.0mAh/g,明显优于纯Li4Ti5012。电化学交流阻抗表明,使用蔗糖为碳源合成的Li(4-x/3)YxTi(5-2x/3)012/C复合材料的阻抗从纯Li4Ti5012的912.5Ω降低到227.7Ω。
Spinel Li4Ti5O12is a promising lithium ion battery anode material. It has some evident advantages:there is negligible volume change during charge/discharge process (the so-called "zero-strain insertion material"), so it possesses excellent reversibility; its Li-insertion potential is at about1.55V vs. Li+/Li, which is high than the reduction voltage of common electrolyte; the diffusion coefficient is2×10-11cm2/s, so it has excellent lithium ion mobility that promising for high-rate battery applications. Furthermore, this material accommodates Li+with theoretical capacity of175mAh/g. Compared with graphite anode material, Li4Ti5O12is considered to be of better rate performance and safety.
     In this text, Materials for lithium ion batteries was synthesized through a simple solid state reaction in an inert atmosphere using yttria as Y3+dopant source and sucrose or conductive carbon black as carbon source. Composites were characterized by XRD, SEM analysis combined with electrochemical tests, and the effects of Y3+doping, Y3+and carbon doped simultaneously, and different carbon sources such as sucrose or conductive carbon black on the morphology, particle size, electrochemical and performance of anode materials were investigated. It shows that Li(4-x/3)YxTi(5_2x/3)O12(x=0.1) composites using yttria as Y3+dopant source and sucrose as carbon source exhibited a relatively good rate capability and cycling stability. At the charge-discharge rate of0.15C,0.4C,0.7C,1.4C and3.3C, its discharge capacities were149.0,144.5,144.5,141.3and118mAh/g, respectively. After10cycles at3.3C, its discharge capacity remained at115.0mAh/g. The impedance Rct of this material is227.7Ω, while that of the undoped Li4Ti5O12material is912.5Ω.
引文
[1]王世银.锂离子电池电极材料的合成改性及电化学性能研究[D].湖北:湖北大学,2008.
    [2]李蔚.2011年汽车动力电池研讨会[J].电源技术,2011,35(4):365-368.
    [3]谢娇娜.锂离子电池负极材料Li4Ti5O12的研究[D].北京:北京化工大学.2010.
    [4]雷勇泉.新能源材料[M].第1版.天津:天津大学出版社,2000:52-102.
    [5]艾新平,杨汉西.电动汽车与动力电池[J].电化学,2011,17(2):123-132.
    [6]李阳兴,万春荣.锂离子电池的研究与开发[C].第四届中国国际电池技术交流会/展览会论文集.北京:北京师范大学出版社,1999:200-202。
    [7]J. B. Goodenough, K. Youngsik. Challenges for rechargeable Li batteries [J]. Chemistry of Materials. 2010,22(3):587-603.
    [8]汪继强.新型锂离子电池发展、应用现状及前景展望[J].电子元器件应用,2000,1:2-6
    [9]Murphy D. W, Broodhead J, Steel B. C, et al. Materialsfor advanced batteries[M]. N York:Plenum, 1980:381.
    [10]王志国.锂离子电池负极材料Li4Ti5O12的制备及改性研究[D].湖南:中南大学.2010
    [11]郭炳琨,徐徽,王先友.锂离子电池[M].湖南:中南大学出版社.2002.
    [12]M. Wakihara. Recent developments in lithium ion batteries [J]. Journal of Materials Engineering and Performance,2000,33:109-134
    [13]王蔚.锂离子电池负极材料Li4Ti5O12的固相合成及电化学性能研究[D].浙江:浙江大学.2010.
    [14]M. Armand. Intercalation Electrodes [J]. NATO Conference Series 6:Materials Science.1980,2: 145-161.
    [15]王海明.郑绳楦.锂离子电池的特点及应用[J].电气时代,2004,3:132-134.
    [16]胡行仁.世界电池市场综述[J].电池,2000,30(3):113-115.
    [17]钟俊辉.铿离子电池及其材料[J].电池,1996,26(2):91-95.
    [18]黄振谦.张昭.铿离子电池的研究进展[J].电池,1995,25(3):143-145.
    [19]詹晋华.铿离子二次电池研究进展[J].电池,1996,26(4):192-195.
    [20]Doron A, Yair Ein — Eli.The correlation between the surface chemistry and the performance of Li — carbon intercalation anodes for rechargeable"Roching-Chair"type batteries[J]. Electrochem Soc, 1994,141(3):603-611.
    [21]毛永志,潘成久.电动车拥氢镍电池[J].电池工业,2000,5(2):82-84.
    [22]黄拥理,潘春跃.聚合物铿离子蓄电池技术与市场[J].电源技术,2001,25(5):371-374.
    [23]金明钢.我国固态铿离子电池工业发展近况[J].电池工业,2000,5(2):88-92.
    [24]郭炳馄,徐徽.铿离子电池[M].第1版.长沙:中南大学出版社,2002:1-2.
    [25]J. Gao, C. Y. Jiang. Preparation and Characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries [J]. Journal of Power Sources.2006,155:364-367.
    [26]刘景,温兆银.LiCoO2正极材料的络合法合成及其电化学性能研究[J].无机材料学报,2002,17(6):1157-1162.
    [27]唐致远,李建刚.LiNiO2的制备与改性的探讨[J].电池,2001,31(1):10-13.
    [28]郑子山,唐子龙.锂离子电池正极材料LiMn2O4的研究进展[J].无机材料学报.2003,18(2):257-263.
    [29]F. Y. Kang, J. Ma. Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium ion batteries [J]. New Carbon Materials,2011,26(3):161-170.
    [30]张治安,王姣丽.非对称电化学电容器负极材料Li4Ti5O12的研究进展[J].材料导报,2008,22(9):26-29.
    [31]熊琳强,张英杰.锂离子电池电解液防过充添加剂研究进展[J].化工进展,2011,30(6):1198-1204.
    [32]胡继文,许凯.锂离子电池隔膜的研究与开发[J].高分子材料科学与工程,2003,19(1):215-219.
    [33]白莹,吴锋.多孔复合聚合物隔膜的制备及其电化学性质[J].功能材料,2004,35(3):324-327
    [34]J. Gao, C. Y. Jiang. Preparation and Characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries [J]. Journal of Power Sources.2006,155:364-367.
    [35]陈方,梁海潮.负极活性材料Li4Ti5O12的研究进展[J].无机材料学报.2005,20(3):537-544
    [36]O. Kazunori. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes:the LiCo02/C system [J]. Solid State Ionics.1994,69(3-4):212-221.
    [37]唐致远,阳晓霞.钛酸锂电极材料的研究进展[J].电源技术.2007,31(4):332-336.
    [38]李必进,王长青.锂离子电池负极材料Li3-xMxN (M=Co、Ni或Cu等)的研究进展[J].电源技术,2011,35(6):735-738.
    [39]杨宁,王剑华.溶胶-凝胶模板法制备氧化锡纳米纤维[J].稀有金属材料与工程.2008,37(4):694-696.
    [40]魏巍,王久林.锂离子电池锡基负极材料的研究进展[J].化工进展,2010,29(1):80-87.
    [41]徐欣欣.锂离子电池硅基负极材料的电化学性能研究[D].上海:上海交通大学,2008.
    [42]唐致远,武鹏.电极材料Li4Ti5O12的研究进展[J].电池.2007,31(1):73-75.
    [43]K. Kanamura, T. Chiba, K. Dokko. Preparation of Li4Ti5O12 spherical particles for rechargeable lithium batteries [J]. Journal of the European Ceramic Society,2006,26(4-5):577-581.
    [44]K.-C. Hsiao, S.-C. Liao, J.-M. Chen. Microstructure effect on the electrochemical property of Li4Ti5O12 as the anode material for lithium-ion batteries[J]. Electrochim. Acta,2008,53,7242-7247.
    [45]X.L.Yao,S.Xie,H.Q.Nian.Spinel Li4Ti5O12 as a reversible anode material down to 0 V[J]. Alloys Compd,2008,465,375-379.
    [46]C. Y. Lin, J. G. Duh. Porous Li4Ti5O12 anode material synthesized by one-step solid state methoud for clectrochemical properties enhancement [J]. Journal of Alloys and Compounds,2011,509:3682-3685.
    [47]M. Zaghib, M. Simoneau, M. Armand. Electrochemical study of Li4Ti5O12 as negative electrode for li ion polymer rechargeable batteries [J]. Journal of Power Sources,1999,81-82:300-305.
    [48]C.-m Shen, X.-g Zhang. Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method[J], Mater. Chem. Phys,2002,78:437-441.
    [49]Y.-J. Hao, Q.-Y. Lai. Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol-gel method[J]. J. Power Sources,2006,158:1358-1364.
    [50]Y.-j Hao, Q.-y Lai. Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery[J]. Mater.Chem. Phys,2005,94:382-387.
    [51]邓斌,阎杰.LiCoO2掺杂稀土元素研究[J].电池,2003,33(2):74-76.
    [52]J. Li, Y.-L. Jin. Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries[J]. Solid State Ionics,2007,178:1590-1594.
    [53]G. Yang, G. Wang. Microwave Solid-State Synthesis of LiV3O8 as Cathode Material for Lithium Batteries[J]. J. Phys. Chem. B,2005,109,11186-11196.
    [54]S.Y. Yin, L. Song, X.Y. Wang, M.F. Zhang, K.L. Zhang, Y.X. Zhang, Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction. Electrochim Acta,2009,54:5629-5633.
    [55]T. Yuan, K.Wang. Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance [J]. J. Alloys Compd,2009,477:665-672.
    [56]P. Afanasiev, C. Geantet. Synthesis of solid materials in molten nitrates [J]. Coordination Chemistry Reviews,1998,178-180:1725-1752.
    [57]Y. Bai, F. Wang. Influence of composite LiCl-KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12 [J]. Electrochim. Acta,2008,54:322-327.
    [58]Amatucci G G, Badway F. An Asymmetric Hybrid Nonaqueous Energy Storage Cell[J]. J.Electrochem.Soc,2001,148:A930-A939.
    [59]Cheng L, Liu H J. Nanosized Li4Ti5O12 Prepared by Molten Salt Method as an Electrode Material for Hybrid Electrochemical Supercapacitors [J]. J. Electrochem. Soc,2006,153:A1472-A1477.
    [60]Huang S H, Wen Z Y, Zhang J C, et al. Improving the electrochemical performance of Li4Ti5O12/Ag composite by an electroless deposition method[J]. Electrochimica Acta,2007,52(11):3704-3708.
    [61]Huang S H, Wen Z Y, Lin B, et al. The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries[J]. Journal of Alloys and Compounds,2008,457(2): 400-403.
    [62]Yang L X, Gao L J. Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery[J]. Journal of Alloys and Compounds,2009,485(2):93-97.
    [63]Wang Y G, Liu H M. Synthesis and electrochemical performance of nano-sized Li4Ti5O12with double surface modification of Ti(III) and carbon. Journal of Materials Chemistry,2009,19(37):6789-6795.
    [64]Amatucci G G, Badway F. An Asymmetric Hybrid Nonaqueous Energy Storage Cell[J]. J. Electrochem. Soc,2001,148(8):A930-A939.
    [65]S. Huang, Z. Wen. Preparation and electrochemical performance of Ag doped Li4Ti5O12[J]. Electrochem. Commun,2004,6:1093-1097.
    [66]S. Huang, Z. Wen. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery[J].Solid State Ionics,2006,177:851-855.
    [67]S. Huang, Z. Wen. Improving the electrochemical performance of Li4Ti50]2/Ag composite by an electroless deposition method[J]. Electrochim. Acta,2007,52:3704-3708.
    [68]J. Gao, J. Ying. High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries[J]. J. Power Sources,2007,166:255-259.
    [69]L. Yang, L. Gao. Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery[J]. J. Alloys Compd,2009,485:93-97.
    [70]叶静雅赵新兵.Li4Ti5O12/C复合材料的一步固相合成及不同碳源的影响[J].功能材料,2007,38(增刊),1423-1427.
    [71]高宏权王新宇.锂离子电池Li4Ti5O12负极材料的尿素掺杂氮化修饰[J].无机材料学报,2010,259:983-988.
    [72]施思齐,欧阳楚英.锂离子蓄电池中的物理问题及其研究进展[J].物理,2004,33(3):182-185.
    [73]华兰,杨晓燕.掺杂Li4Ti5O12作为锂离子电池负极材料[J].电池,2001,31(5):218-221.
    [74]A. D. Robertson, H. Tukamoto. Li1+xFel-3xTi1+2xO4(0    [75]C. H. Chen, J. T. Vaughey. Studies of Mg-Substituted Li4-xMgxTi5O12 Spinel Electrodes (0    [76]S. W. Woo, K. Dokko. Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries [J]. Electrochimica Acta.2007,53:79-82.
    [77]Ting-Feng Yi, Li-Juan Jiang. Recent development and application of Li4Ti5O12 as anode material of lithium ion battery [J]. Journal of Physics and Chemistry of Solids,2010,71:1236-1242.
    [78]A.N. Jansen, A.J. Kahaian. Development of a high-power lithium-ion battery[J]. J. Power Sources, 1999,81-82:902-905.
    [79]A.D. Pasquier, C.C. Huang. Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life[J]. J. Power Sources,2009,186:508-514.
    [80]CM. Ionica-Bousquet, D. Mun~oz-Rojas. Polyfluorinated boron cluster-based salts:A new electrolyte for application in Li4Ti5O12/LiMn2O4 rechargeable lithium-ion batteries[J]. J. Power Sources,2010, 195:1479-1485.
    [81]I. Belharouak, Y.-K. Sun. On the Safety of the Li4Ti5O12/LiMn2O4 Lithium-Ion Battery System[J]. J. Electrochem. Soc,2007,154:A1083-A1087.
    [82]L.Q. Sun, R.H. Cui. LiFePO4 as an optimum power cell material[J]. J. Power Sources,2009,189: 522-526.
    [83]P. Reale, A. Fernicola. Compatibility of the Py24TFSI-LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes [J].J. Power Sources 2009,194:182-189.
    [84]P. Reale, S. Panero. A Safe, Low-Cost, and Sustainable Lithium-Ion Polymer Battery[J]. J. Electrochem. Soc,2004,151:A2138-A2142.
    [85]A.N. Jansen, A.J. Kahaian. Development of a high-power lithium-ion battery[J]. J. Power Sources, 1999,81-82:902-905.
    [86]S. P-Reale, B. Panero.Scrosati J. Sustainable High-Voltage Lithium Ion Polymer Batteries[J]. J.Electrochem. Soc,2005,152:A1949-A1954.
    [87]H.F. Xiang, Q.Y. Jin. Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNio.5Mn1.5O4 and Li4Ti5O12 [J]. J. Power Sources,2008,179:351-356.
    [88]H.F. Xiang, X. Zhang. Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells[J]. J. Power Sources,2008,183:355-360.
    [89]K. Ariyoshi, S. Yamamoto. Three-volt lithium-ion battery with Li[Ni]/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4[J]. Power Sources,2003,119-121:959-963.
    [90]刘春娜.锂离子蓄电池负极材料钛酸锂市场前景[J].电源技术.2011,35(5):496-498.
    [91]Sun Y K, Jung D J, Lee Y S, et al. Synthesis and electrochemical characterization of spinel Li[Li(1-x)/3CrxTi(5-2x)/3]O4 anode materials [J]. J Power Sources,2004,125:242-245.
    [92]Wu Z, Wan T, Wu X. Study on the photocatalytic degradati on of methyl orange by nano-TiO2 doped with Y3+[J]. Applied Chemical Industry,2007,36:1220-1223.
    [93]Gao J, Ying J, Jiang C, et al. Preparation and characterization of spherical La-doped Li4Ti5O12 anode material for lithium ion batteries[J]. Ionics,2009,15:597-601.
    [94]Ohzuku T, Tatsumi K, Matoba N, et al. Electrochemistry and structural chemistry of Li[CrTi]O4(Fd3m) in nonaqueous lithium cells[J]. J Electrochem Soc,2000,147:3592-3597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700