锂离子电池负极材料Li_4Ti_5O_(12)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,动力锂离子电池的开发对电池的比能量、寿命、安全性提出了更高的要求。Li4Ti5O12作为新型的锂离子电池负极材料,因充放电过程中“零应变”,具有优良的循环性能和平稳的放电电压,能够避免电解液分解现象或保护膜的生成,安全性和可靠性很高,引起很多科研工作者的兴趣。目前,限制该材料应用的主要因素是其较差的导电性。本文以改善Li4Ti5O12的倍率特性为目标,对锂离子电池负极材料Li4Ti5O12的高温固相法制备工艺进行了研究与优化,在此基础上研究了C/Li4Ti5O12复合材料及B位Nb掺杂材料Li4Ti5-xNbxO12和A位Mg掺杂材料Li4-yMgyTi5O12的制备及电化学性能,取得如下主要创新性成果:
     以纳米级TiO2和Li2CO3为原料,采用高温固相法合成尖晶石型Li4Ti5O12。结果表明,800℃以上合成可得到纯尖晶石相Li4Ti5O12。样品的颗粒随着煅烧温度的升高和时间的延长而逐渐变大,800-820℃合成样品的晶粒发育很好。温度高于850℃晶粒开始熔融烧结。当反应时间超过14h以后,晶体颗粒已无明显变化。800℃下合成14h的样品电性能最佳,首轮容量为161.8 mAh.g-1,0.2C倍率30轮循环容量保持率为97.3%。采用高能球磨混料制得的Li4Ti5O12材料的性能优于研磨混料的。最优工艺条件为:球磨混料、800℃条件下煅烧14h。
     分别以碳黑和蔗糖作为碳源,采用两步固相煅烧工艺制备C/Li4Ti5O12复合材料。结果显示,所合成产物均无杂质峰。所制碳黑混合材料粒径约400-600nm;而蔗糖包覆样品抑制晶粒生长效果显著,粒径约100-200nm。对于碳黑混合改性Li4Ti5O12负极材料,预烧温度为650℃、碳黑混合量为5%的样品的电化学综合性能最优,1C充放电容量达161.4mAh.g-1,循环30轮容量保持率为100%。对于蔗糖包覆改性Li4Ti5O12负极材料,预烧温度为600℃、蔗糖包覆量为10%的样品电化学综合性能最优,1C充放电容量达163.1 mAh.g-1,循环30轮容量保持率为95.4%。相比碳黑混合改性样品而言,蔗糖包覆改性Li4Ti5O12负极材料的倍率特性更优。碳复合对Li4Ti5O12负极材料性能改善的原因应为:碳复合抑制了晶粒生长,缩短了锂离子扩散距离,且具有导电性的碳增加了电子电导性。
     掺杂改性研究结果显示,所制Mg2+掺杂材料都为尖晶石相结构,而Nb5+掺杂量x超过0.10时出现微量Nb2O5和LiNbO3杂相。离子掺杂对Li4Ti5O12材料的晶粒形态无明显影响。Nb掺杂样品中x为0.025和0.05的样品具有良好的电化学表现,0.2C倍率下的容量约164~169 mAh.g-1,5C时容量保持在50mAh.g-1左右;Mg掺杂样品中y为0.05的样品倍率性能较好,0.2C充放电容量在160 mAh.g-1左右,5C时容量保持在28mAh.g-1左右。与纯样Li4Ti5O12相比,这两种材料的大电流充放电容量及循环性能都有很大程度的改善。掺杂对Li4Ti5O12负极材料性能改善的原因应为:非等价置换掺杂导致电荷传递阻抗减小,提高了导电性,改善了倍率特性。
     以蔗糖为碳源,采用高温固相两步法煅烧工艺所合成C/Li4Ti5O12复合材料具有优良的电性能和广阔的应用前景。
At present, rapid development of EV or HEV requests high power Li-ion batteries (LIBs) to have higher energy, longer life and better safety than before. Recently, Li4Ti5O12, as a new anode material for LIBs, attracts more attention of many researchers due to its better cyclability and safety resulted from "zero strain" during charge/discharge and reduction of electrolyte decomposition. However, lower conductivity limits its use. In order to improve the rate capability of Li4Ti5O12, the studies on preparation and optimization of Li4Ti5O12 by solid state reaction, preparation and electrochemical properties investigation of C/Li4Ti5O12 composite material and doped materials Li4Ti5-xNbxO12 and Li4-yMgyTi5O12 were carried out in this paper.
     Synthesis of spinel Li4Ti5O12 by solid state reaction using Li2CO3 and nanometer TiO2 as raw materials show that pure spinel Li4Ti5O12 can be obtained over 800℃. The particle size increases with elevation of heating temperatures and time. The sample prepared at 800~820℃show better crystal characteristics. However, heating temperatures over 850℃make particles melt and agglomerate. In addition, annealing time over 14h has no obvious effects on particle size. The sample prepared at 800℃for 14h exhibits the best electrochemical performance, with discharge capacity of 161.8 mAh.g-1 in the first cycle and capacity retention of 97.9% after 30 cycles at 0.2C. Using high energy ball-milling to mix raw materials benefits the properties of Li4Ti5O12. The preparation condition can be optimized to be that mixing raw materials by ball-milling, annealing at 800℃for 14h.
     Synthesis of C/Li4Ti5O12 composite materials by two-step solid state reaction using black carbon and sugar as carbon resources was investigated. The results show that all prepared samples show no impurity. The black carbon mixed material has particle size of 400-600nm, but carbon coated sample only has particle size of 100-200nm, showing better reduction effects on crystal growth. Among the black carbon mixed materials, the 5% mixed sample preheated at 650℃exhibits the best properties, with capacity of 161.4 mAh.g-1 at 1C and capacity retention of 100% after 30 cycles. Among carbon-coated samples, the 10% sugar coated sample preheated at 600℃exhibits the best properties, with capacity of 163.1 mAh.g-1 at 1C and capacity retention of 95.4% after 30 cycles. Compared with the black carbon mixed samples, carbon-coated Li4Ti5O12 materials show better rate capability. Better properties of C/Li4Ti5O12 composite materials can be attributed to reduction of crystal growth and increase of electric conductivity.
     Investigation of doped Li4Ti5O12 reveals that all Mg-doped sample show pure spinel phase, but the Nb-doped samples with x>0.10 show minor impure phase of Nb2O5 and LiNbO3. Doping has no obvious effects on particle sizes in this study. Among Nb-doped samples, the doped sample with x values of 0.025 and 0.05 exhibits better properties, with capacity of 164~169 mAh.g-1 at 0.2C and capacity of about 50mAh.g-1at 5C. Among Mg-doped samples, the doped sample with y values of 0.05 exhibits better properties, with capacity of about 160 mAh.g'1 at 0.2C and capacity of about 28mAh.g-1at 5C. Compared with Li4Ti5O12, the optimized doped materials show great improvement of rate capability and cycling stability. Better properties of doped Li4Ti5O12 can be attributed to reduction of charge-transfer impedance.
     C/Li4Ti5O12 composite materials synthesized by two-step solid state reaction using sugar as carbon resources show better electrical properties, being a promising anode material for LIBs.
引文
[1]张会情,锂离子电池正极材料的合成性能研究[D].河北,河北工业大学,2004
    [2]徐梅娣,封敬璋,解晶莹,杜立新.二次锂离子电池的正极材料LiMn2O4的制备和性能研究[J].上海工程技术大学学报,2003,14(1):3-7
    [3]赵健,杨维芝,赵佳明.锂离子电池的应用开发[J].电池工业,2000,5(1):3l-36
    [4]闰俊美,杨金贤,贾永忠.锂电池的发展与前景[J].盐湖研究,2001,9(4):58-63
    [5]李阳兴,等.锂离子电池的研究与开发,第四届中国国际电池技术交流会/展览会论文集[C].北京,1999,200-202
    [6]李节宾,侯毓悌,张赞锋,薛蓉丽.锂离子电池正极材料的发展研究[J].火工品,2003(2):47-49
    [7]吴国良,刘人敏,杨新河,金维华.LiCoO2正极材料的制备及其应用研究[J].电池,2000,30(3):1051-107
    [8]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践[M].北京:化学工业出版社,2004
    [9]Sung L Y, Sun Y K, Nahm K S. Synthesis and characterization of LiNiO2 cathode material prepared by an adiphic acid-assisted sol-gel method for lithium secondary batteries [J]. Solid State Ionics,1999,118:159-168
    [10]高德淑,苏光耀,肖启振,等.锂离子电池正极材料LiNiO的研究进展[J].电池工业,2004,6(9):300-304
    [11]Wang C W, Ma X L, Zhou L Q, et al. Study on the rapid synthesis of LiNi1-xCoxO2 cathode material for lithium secondary battery [J]. Electrochinica Acta,2007,52:3022-3027
    [12]Zhang Z R, Liu H S, Gong Z L. et al. Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8Co0.2O2 cathode materials [J]. Journal of Power Sources,2004,129:101-106
    [13]XIA Y, ZHOU Y, YOSHIO M J. Capacity fading on cycling of 4V Li/LiMn2O4 cells [J]. Electrochem. Soc.,1997,144:2593-2600
    [14]Guymard D, Tarascon J M. Li Metal-free rechargeable LiMn2O4/carbon cells:their understanding and optimization[J]. Electrochem.Soc.,1992,139(4):937
    [15]唐致远,杨光明,王倩.5V锂离子电池正极材料LiNi0.5Mn1.5O4改性研究现状[J].材料导报,2007,21(6):35-38
    [16]Amatucci G G, Badway F, Pasquier A D, et al. An asymmetric hybric nonaqueous energy
    storage cell [J]. Electrochem.soc.,2001,148:A930
    [17]黄原君,苏光耀,雷钢铁,高德淑.多元复合正极材料LiNi1/3Co1/3Mn1/3O2的研究进展
    [?][J].材料导报,2006,20(Ⅵ):285-287
    [18]Ohzuku T and Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chem. Lett,2001,7:642
    [19]Shaju K M, Subba Rao G V and Chowdari B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries[J]. Electrochimica Acta,2002,48:145
    [20]Yabuuchi N and Ohzuku T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries [J]. Power Sources,2003,119-121:171
    [21]Belharouak I, Sun Y K, Liu J, Amine K. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications [J]. Power Sources,2003,123:247
    [22]Fujimoto M, et al. Electrochemical behavior of carbon electrodes in some electrolyte solutions[J]. Power Sources,1996,63:127
    [23]Weydanz W J, Way B M, van Buuren T, et al. Behavior of nitrogen-substituted carbon (NzCl-z) in Li/Li(NzCl-z)6 cells[J]. Electrohcem. Soc.,1994,141:900.
    [24]Wolson A M, Dahn J R. Lithium insertion in carbons containing nanodispersed silicon[J]. Electrochem Soc.,1995,142:326
    [25]Tossci R, Berrettoni M, Nalimova V, et al. A high-rate carbon electrode for rechargeable lithium-ion batteries[J]. Electrochem.Soc.,1996,143:L64
    [26]Tossici R, Berrettoni M, Rosolen M, et al. Electrochemistry of KC8 in lithium-containing electrolytes use in lithium-ion cells[J]. Electrochem.Soc.,1997,144:186
    [27]Endo M, Kim C, Karaki T, et al. Anode performance of a Li-ion battery based on graphitized and B-doped milled mesophase pitch-based carbon fibers. Carbon,1999,37:561
    [28]Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Electrochem. Soc.1995,142:1431-1435
    [29]高玲,仇卫华,赵海雷.Li4Ti5O12作为锂离子电池负极材料电化学性能[J].北京科技大学学报.2005,1(27):82-85
    [30]Ariyoshi K, Yamato R, Ohzuku T. Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion batteries[J]. Electrochimica Acta,2005,1:1125-1129
    [31]徐宇虹,巩桂英,马萍等.Li4Ti5O12的合成及其性能研究[J].电源技术研究与设计.2007,2:140-146
    [32]Zaghib K, Simoneau M, Armand M, Gauthier M. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Sources Journal of Power Sources,1999,81-82:300-305
    [33]Prosini P P, Mancini R, Petrucci L, et al. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications[J] Solid State Ionics,2001,144:185-192.
    [34]Izquierdo G, west A R. Phase equilibria in the system Li2O-TiO2[J]. Materials Reseach Bulletin,1980,15(11):1655-1660
    [35]杨晓燕,华寿南,张树永.锂钛复合氧化物锂离子电池负极材料的研究[J].电化学,2000,6(3):350-356
    [36]Nakahara K, Nakajima R, Matsushima T, et al.Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells [J].Power Sources,2003,117(1-2):131-136
    [37]Bach S, Pereira-Ramos J P, Baffier N.Electrochemical properties of Sol-gel Li4/3Ti5/3O4[J]. PowerSources,1999,81-82:273-275
    [38]高剑,姜长印,应皆荣等.锂离子电池负极材料球形Li4Ti5O12的合成及性能研究[J].无机材料学报,2007,22:176-180
    [39]Robertson A D, Trevino L, Tukamoto H, et al. New inorganic spinel oxides for use as negative electrode materials in future lithiumion batteries [J]. Power Sources,1999,81-82: 352-357.
    [40]Hua L(华兰),Yang X Y(杨晓燕),Kang S L(康石林),et al.掺杂Li4Ti5O12作为锂离子电池负极材料[J].Battery Bimonthly(电池),2001,31(5):218-221.
    [41]Hua L(华兰),Yang X Y(杨晓燕),Kang S L(康石林),et al.掺杂Li4Ti5O12作为锂离子电池负极材料[J].Battery Bimonthly(电池),2001,31(5):218-221.
    [42]Huang S H, Wen Z Y, Zhang J C, et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery [J]. Solid State Ionics,2006,177(9/10):851-855
    [43]Huang S, Wen Z, Lin B, et al. Improving the electrochemical performance of Li4Ti5O12/Ag composite by an electroless deposition method[J]. Electrochimica Acta,2007,52(7): 2704-3708
    [44]Guerfi A, Sevigny S, Lagace M, et al. Nano-particle Li4Ti5O12 spinel as electrochemical generations [J]. Power Soures,2003(119-121):88-94
    [45]于海英,谢海明,杨桂玲.锂离子电池新型快充负极材料Li4Ti5O12的改性研究[J].高等化学学报,2007,28(8):1556-1560
    [46]Masatoshi M, Satoshi U, Eriko Y, et al. Developmen to flong life lithiumion battery for power storage [J]. Power Sources,2001,143(10):53-59
    [47]Ariyoshi K, Yamamoto S, Ohzuku T. Three-volt lithium-ion bettery with Li[]Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Ni1/2Mn3/2]O4[J]. PowerSources,2003,959: 119-121
    [48]Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti3/5]O4 for rechargeable lithium cells [J]. Electrochem. Soc.,1995,142:1431
    [49]Zaghib K, Simoneau M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Power Sources,1999,300:81-82
    [50]李明,刘昊,邓龙征,万向电动汽车有限公司.尖晶石钛酸锂及其在锂离子动力电池中的应用[J].新材料产业,2009,3:15-17
    [51]施思齐,欧阳楚英,王兆翔.锂离子蓄电池中的物理问题及其研究进展[J].物理,2004,33(3):182-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700