黄土高原丘陵沟壑区不同尺度小流域次降雨水文过程模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小流域地表水文过程与水资源理论、地表生态、土壤侵蚀密切相关。黄土高原丘陵沟壑区水土资源流失备受关注。小流域是水土保持综合治理的基本单元,研究小流域水文过程模型为流域水土保持、水资源优化配置和洪水预报等提供辅助工具。
     本论文以黄土丘陵沟壑区为研究区,研究建立不同尺度小流域次降雨水文过程模型。在桥子西沟小流域(W1-b,1km~2),重点研究小流域降雨入渗、产流、汇流过程模型的构建、率定及验证;在罗玉沟(W100,100km~2)、吕二沟(W10,10km~2)、桥子东沟(W1-a,1km~2)和桥子西沟(W1-b,1km~2)流域,应用水力几何理论研究多尺度流域产流过程测量方法。论文主要得出以下初步结论:
     (1)提出了修正NRCS-CN模型的方法,引入流域稳定入渗修正NRCS-CN模型,得到MCN模型。根据桥子西沟小流域降雨–径流过程观测数据,采用初损量观测值和计算值,计算得到流域稳定入渗率分别为4.8mm h~(-1)和4.2mm h~(-1)。根据计算得到的流域稳定入渗率,应用MCN和NRCS-CN模型估算流域径流过程。结果表明,稳定入渗率取值4.8mm h~(-1)或4.2mm h~(-1)时,MCN模型模拟流域入渗、径流的效果均优于NRCS-CN模型,对较大的入渗、径流事件更为明显;MCN模型采用稳定入渗率4.8mm h~(-1)的模拟结果优于采用稳定入渗率4.2mm h~(-1)的模拟结果。
     (2)根据桥子西沟流域降雨–径流过程水文数据及流域DEM、土壤和土地利用等空间数据,分别采用反算法(Back Calculation,BC)和事件分析法(Event Analysis,EA)计算NRCS-CN模型初损率。反算法和事件分析法确定初损率分别为0.1和0.17。初损率分别取0.1、0.17和0.2时应用NRCS-CN模型预报流域产流量。误差分析和图形拟合评价结果表明,桥子西沟流域NRCS-CN模型初损率适宜取值为0.1。
     (3)采用水力几何关系幂函数模型和对数函数模型拟合罗玉沟(W100)、吕二沟(W10)、桥子东沟(W1-a)和桥子西沟(W1-b)四个流域出口量水堰流量―流速关系。应用确定性系数(R~2)和模型效率系数(E)分别评价模型拟合效果及验证效果。通过分析W100、W10和W1-a三个流域模拟结果探查流域尺度对两种模型参数取值的影响。结果表明幂函数参数k(单位流量流速)与流域尺度呈负相关关系,参数m(流速变化率)随流域尺度的变化趋势与参数k相反。对数函数参数e(流速变化率)与流域尺度相关性不显著,参数d(单位流量流速)与流域尺度呈负相关关系;通过分析W1-a和W1-b两个流域模拟结果研究流域土地利用方式对两种模型参数取值的影响。结果表明W1-a流域幂函数参数k显著大于W1-b参数k(P<0.001),两流域参数m无显著差异。W1-b流域对数函数参数e比W1-a参数e偏大,但无显著差异(P<0.05)。W1-a流域对数函数参数d显著大于W1-b参数d(P<0.05)。分别采用不同研究流域观测数据验证两种函数模型,验证结果均可以接受,在流速取值更为广泛的条件下,幂函数模型模拟效果优于对数函数模型。
     (4)应用GIS工具将桥子西沟流域划分成11个坡面,通过一条沟道连接。以流域1987–2006年降雨过程数据为输入,应用NRCS-CN模型计算流域坡面产流过程。采用自行设计的概念模型法对各坡面产流进行汇流演算,得到流域出口径流过程。通过考察径流深、洪峰流量和洪峰出现时间三个水文变量评价模型效果。径流深预测的绝对误差变化范围为-0.08–7.4mm,均值为0.35mm,相对误差变化范围为8%–~(-1)03%,均值为~(-1)%。洪峰流量预测的绝对和相对误差最大值分别为~(-1).85m~3s~(-1)和-63%,均值分别为-0.02m~3s~(-1)和10%;洪峰出现时间预测的绝对和相对误差最大值分别为0.99h和~(-1)09%,均值分别为-0.09h和~(-1)7%。此外,洪峰流量和洪峰出现时间模拟结果的线性拟合斜率分别为1.09和1.04。模型的确定性系数(R~2)分别为0.99和0.97。径流模拟结果的线性拟合斜率和确定性系数分别为0.83和0.78。计算得到了各水文变量拟合的均方根误差(RMSE)、模型效率系数(E)和整群剩余系数(CRM),结果表明模型对洪峰流量模拟效果最好,其次是洪峰出现时间和径流深。
     (5)提出一种通过测量流速根据流速-流量关系确定流量的新方法。通过求解水力几何(Hydraulic Geometry)关系幂函数反函数,建立以流速为自变量、流量为因变量的流速–流量幂函数模型。将模型应用于罗玉沟(W100)、吕二沟(W10)、桥子东沟(W1-a)和桥子西沟(W1-b)四个流域出口量水堰流速–流量关系模拟。根据模型确定性系数(R~2),幂函数模型拟合优度依次为W100、W1-a、W10和W1-b。根据模型效率系数(E),幂函数模型模拟效率依次为W1-a、W100、W10和W1-b。模型验证结果表明,水力几何关系幂函数反函数模型能够用于测量流域流量,建立了一种通过测量流域出口流速而非水深确定流量的新方法。
     本论文研究结果有助于理解黄土高原小流域水文循环过程,为研究流域水资源优化配置、土壤侵蚀和泥沙运移等提供辅助工具。
The hydrological processes of small watersheds are closely related to water resourcetheory, land surface ecology, and soil erosion. Severe soil and water loss in the loesshilly–gully region of the Loess Plateau has attracted much concern. Small watersheds arethe basic unit for soil and water conservation. Models of hydrologic processes for smallwatersheds could serve as an important aid for soil and water conservation, water resourceoptimization and flood prediction.
     In this study, by taking the hilly-gully regions of the Loess Plateau as the study area,the establishment of hydrological process models for different-scale watersheds during asingle rainfall event was studied. In Qiaozi-West watershed (W1-b,1km~2), the modelestablishment, calibration and validation for watershed infiltration, runoff, and flow routingwere studied. In the watersheds of Luoyugou (W100,100km~2), Lvergou (W10,10km~2),Qiaozi-East (W1-a,1km~2) and Qiaozi-West (W1-b,1km~2), the Hydraulic Geometrytheory was introduced to study the measuring method of watershed runoff. Preliminaryconclusions of the study are summarized as follows:
     (1) A method was developed for modifying NRCS-CN model. By introducing steadyinfiltration to the NRCS-CN model, the modified NRCS-CN (MCN) model was developed.The steady infiltration rates for the study watershed were determined as4.8mm h~(-1)byusing observed initial abstraction, and4.2mm h~(-1)by using calculated initial abstraction.Both of the MCN and NRCS-CN models were used to simulate watershed runoff processfor the study events. The results showed that the simulation of watershed infiltration andrunoff by the MCN model was better than that of NRCS-CN model by using either calibrated steady infiltration rate, especially in simulating larger infiltration, runoff events;the infiltration simulation using steady infiltration rate of4.8mm h~(-1)was superior to thatusing4.2mm h~(-1)for MCN model.
     (2) Based on Qiaozi-West watershed rainfall-runoff process data, watershed DEM,soil and land use digital maps, the initial abstraction ratio of the NRCS-CN model wasdetermined by Back Calculation (BC) and Event Analysis (EA) methods. The initialabstraction ratios were determined as0.1and0.17by using BC and EA methods,respectively. Using three initial abstraction ratio values of0.1,0.17and0.2, runoffamounts for the study watershed were predicted by NRCS-CN model. Considering both oferror analyses and curve fitting results, the value of0.1was indicated as the appropriatevalue of the initial abstraction ratio for the NRCS-CN model in Qiaozi-West watershed.
     (3) The observed flow velocity data from the measuring weirs at watershed outletswere fitted with the discharge rate, using both Hydraulic Geometry power function andlogarithmic function models for the Luoyugou (W100,100km~2), Lvergou (W10,10km~2),Qiaozi-East (W1-a,1km~2) and Qiaozi-West (W1-b,1km~2) watersheds. The coefficient ofdetermination (R~2) and model efficiency coefficient (E) were used to evaluate modelcalibration and validation results, respectively. The effect of watershed scale on the modelparameters was examined by using model calibration results from W100, W10and W1-awatersheds. It was found that the parameter k (flow velocity for unit discharge rate) in thepower function model was negatively correlated with watershed size, while parameter m(rate of change of flow velocity) had an opposite correlation with watershed size comparedwith parameter k. In the logarithmic function model, parameter e (rate of change of flowvelocity) had no significant correlation with watershed size, while parameter d (flowvelocity for unit discharge rate) was negatively correlated with watershed size, similar toparameter k The calibration results from the two paired watersheds (W1-a and W1-b) wereused for exploring the effect of watershed land use on the model parameters. Theparameter k in the power function model for W1-a watershed was significantly higher thanthat of W1-b watershed (P<0.001). The parameter m for the two paired watersheds showedno significant difference. The parameter e in the logarithmic function model for W1-bwatershed was higher than that of W1-a watershed, however the difference was notsignificant (P<0.05). The parameter d for W1-a watershed was significantly higher than that of W1-b watershed (P<0.05). Another data set from the study watersheds was used totest the two function models. The results showed that both of the model functions yieldedacceptable results, nevertheless the power function model generally showed superiorperformance to the logarithmic function model for the wide value range of flow velocity.
     (4) By using GIS tools, the Qiaozi-West (W1-b) watershed was dissected as11slopes,which were connected by a channel. The runoff for each slope in the watershed wascalculated using NRCS-CN model based on watershed rainfall process input for the year1987–2006. A new conceptual method was developed and used to calculate flow routing ofthe runoff from each slope, to derive watershed hydrograph. The predictions for the threeimportant hydraulic variables: runoff, peak discharge rate and time to peak were examined.The absolute error for runoff depth prediction varied from-0.08to7.4mm, the mean was0.35mm; the relative error changed from8%to~(-1)03%, the mean was~(-1)%. The maximumabsolute and relative errors for peak discharge rate prediction were~(-1).85m~3s~(-1)and-63%,and the mean were-0.02m~3s~(-1)and10%, respectively. For the prediction of time to peak,the maximum absolute and relative errors were0.99h and~(-1)09%, and the mean were-0.09h and~(-1)7%. Moreover, the slopes of linear fitting for peak discharge rate and time to peakwere1.09and1.04(both close to1), with coefficients of determination (R~2) both close to1(0.99and0.97). For runoff prediction, the slope and R~2values for the linear fitting were0.83and0.78. The root mean square error (RMSE), model efficiency coefficient (E), andcoefficient of residual mass (CRM) were calculated for the simulations of each hydraulicvariable. It was shown that the simulation of peak discharge rate was best, followed by thatof time to peak, and runoff.
     (5) A new method was suggested to accurately measure the discharge from thewatersheds by measuring the flow velocity and using the relationship between flowvelocity and discharge rate. The power function of flow velocity-discharge rate wasestablished by deriving the inverse function of Hydraulic Geometry power function, takingthe discharge rate as the dependent variable with flow velocity as the independent variable.The inverse power function model was tested by the flow velocity-discharge rate data fromthe measuring weirs of Luoyugou (W100), Lvergou (W10), Qiaozi-East (W1-a) andQiaozi-West (W1-b) watershed outlets. According to the calculation of coefficients ofdetermination (R~2), the model calibration of W100was best, followed by those of W1-a, W10and W1-b. Based on model efficiency coefficient (E) calculation results, thesimulation accuracy of W1-a watershed was highest, followed by those of W100, W10andW1-b. The study indicated that the derived power function could be used to determinedischarge rate at study watershed outlets. Therefore, a new method was developed formeasuring discharge rate given the measurement of the flow velocity instead of flow depth.
     The results of the study contribute to better understanding watershed hydrologicalcycle, and could supply basic tools for the study of water resource optimization, soilerosion, and sediment transport for the small watersheds on the Loess Plateau.
引文
[1]水利部水土保持监测中心.水土保持内涵和外延的解析与启示[EB/OL].http://www.cnscm.org/zsc/200501/t20050114_63334.aspx.
    [2]唐克丽.中国水土保持[M].北京:科学出版社,2004.615.
    [3]毕华兴,朱金兆,张学培.晋西黄土区小流域场暴雨径流泥沙模型研究[J].北京林业大学学报,1998,20(6):14-19.
    [4]芮孝芳,蒋成煜.流域水文与地貌特征关系研究的回顾与展望[J].水科学进展,2010,21(4):444-449.
    [5] Sivapalan M, Takeuchi K, Franks S W, et al. IAHS Decade on Predictions inUngauged Basins (PUB),2003-2012: Shaping an exciting future for thehydrological sciences[J]. Hyrological Sciences Journal des Sciences Hydrologiques,2003,48(6):867-880.
    [6]朱永清.黄土高原典型流域地貌形态分形特征与空间尺度转换研究[D].西安:西安理工大学,2006.
    [7]夏军,左其亭.国际水文科学研究的新进展[J].地球科学进展,2006,21(3):256-261.
    [8]芮孝芳,姜广斌.产流理论与计算方法的若干进展及评述[J].水文,1997,(4):16-20.
    [9] Beven K. Changing ideas in hydrology-The case of physically-based models[J].Journal of Hydrology,1989,105(1-2):157-172.
    [10]芮孝芳,梁霄.水文学的现状及未来[J].水利水电科技进展,2011,31(2):1-4.
    [11] Oogathoo S. Runoff simulation in the Canagagigue Creek watershed using theMike She Model [D]. Montreal: McGill University,2007.
    [12]熊立华,郭生练.分布式流域水文模型[M].北京:中国水利水电出版社,2004.
    [13]芮孝芳,流域水文模型研究中的若干问题[J].水科学进展,1997,8(1):94-98.
    [14]芮孝芳,黄国如.分布式水文模型的现状与未来[J].水利水电科技进展,2004,24(2):55-58.
    [15]石教智,陈晓宏.流域水文模型研究进展[J].水文,2006,26(1):18-23.
    [16]吴贤忠.流域水文模型研究进展综述[J].水利工程,2011,(2):40-41.
    [17] Horton R E. The role of infiltration in the hydrologic cycle[J]. Transactions,American Geophysical Union,1933,14:446-460.
    [18] Kirkby M J. Hillslope hydrology[M]. Chichester: Hydrological Forecasting Wiley,1978.
    [19]郭瑛.一种非饱和产流模型的探讨[J].水文,1982,(1):1-7.
    [20]于维忠.论流域产流[J].水利学报,1985,(2):1-11.
    [21]雒文生,胡春歧,韩家田.超渗和蓄满同时作用的产流模型研究[J].水土保持学报,1992,6(4):6-13.
    [22]包为民,王从良.垂向混合产流模型及应用[J].水文,1997,3:18-21.
    [23]王腊春,熊江波.用遥感资料建立分块产流模型[J].地理科学,1997,17(1):76-80.
    [24]刘轶,李琼芳,邹振华,等.垂向混合产流模型的改进及应用[A].水文模拟与预报–环境变化与水安全–第五届中国水论坛论文集[C].北京:中国水利水电出版社,2007.78-81.
    [25] SCS, Estimation of direct runoff from storm rainfall in National EngineeringHandbook, in section4: Hydrology[R]. Washington, DC: United States Departmentof Agriculture,1972,1-30.
    [26] SCS, National Engineering Handbook, in Section4: Hydrology[R]. Washington,DC: United States Department of Agriculture,1985.
    [27] Van Mullem J A. Runoff and peak discharge using Green-Ampt infiltrationmodel[J]. Journal of Hydraulic Engineering,1991,117(3):354-370.
    [28]张钰娴,穆兴民,王飞.径流曲线数模型(SCS-CN)参数λ在黄土丘陵区的率定[J].干旱地区农业研究,2008,26(5):124-128.
    [29]王英,黄明斌.径流曲线法模型参数在黄土地区的优化研究[J].水土保持通报,2008,28(1):54-58.
    [30]符素华,王向亮,王红叶,等. SCS-CN径流模型中CN值确定方法研究[J].干旱区地理,2012,35(3):415-421.
    [31] Boughton W C. A review of the USDA SCS curve number method[J]. AustralianJournal of Soil Research,1989,27(3):511-523.
    [32] Rozalis S, Morin E, Yair Y, et al. Flash flood prediction using an uncalibratedhydrological model and radar rainfall data in a Mediterranean watershed underchanging hydrological conditions[J]. Journal of Hydrology,2010,394(1-2):245-255.
    [33] Ponce V M, Hawkins R H. Runoff curve number: Has it reached maturity?[J].Journal of Hydrologic Engineering,1996,1(1):11-19.
    [34] Lawrence A.J. Fennessey P D, P.E., Richard H. Hawkins P D, P.E. The NRCSCurve Number, a new look at an old tool[C]. the2001Pennsylvania stormwatermanagement symposium--Re-thinking comprehensive stormwatermanagement—integrating quality, volume and peak controls. Villanova,2001,17.
    [35] Melesse A M, Shih S F. Spatially distributed storm runoff depth estimation usingLandsat images and GIS[J]. Computers and Electronics in Agriculture,2002,37(1-3):173-183.
    [36] Mishra S K, Singh V P, Sansalone J J, et al. A modified SCS-CN method:Characterization and testing[J]. Water Resources Management,2003,17(1):37-68.
    [37] Mishra S K, Singh V P. Validity and extension of the SCS-CN method forcomputing infiltration and rainfall-excess rates[J]. Hydrological Processes,2004,18(17):3323-3345.
    [38] Mishra S K, Singh V P. Long-term hydrological simulation based on the SoilConservation Service curve number[J]. Hydrological Processes,2004,18:1291-1313.
    [39] Mishra S K, Jain M K, Singh V P. Evaluation of the SCS-CN-based modelincorporating antecedent moisture[J]. Water Resources Management,2004,18(6):567-589.
    [40] Mishra S K, Jain M K, Bhunya P K, et al. Field applicability of the SCS-CN-basedMishra-Singh general model and its variants[J]. Water Resources Management,2005,19(1):37-62.
    [41] Mishra S K, Jain M K, Pandey R P, et al. Catchment area-based evaluation of theAMC-dependent SCS-CN-based rainfall-runoff models[J]. Hydrological Processes,2005,19(14):2701-2718.
    [42] Mishra S K, Sahu R K, Eldho T I, et al. An improved Ia-S relation incorporatingantecedent moisture in SCS-CN methodology[J]. Water Resources Management,2006,20(5):643-660.
    [43] Mishra S K, Tyagi J V, Singh V P, et al. SCS-CN-based modeling of sedimentyield[J]. Journal of Hydrology,2006,324(1-4):301-322.
    [44] Tyagi J V, Mishra S K, Singh R, et al. SCS-CN based time-distributed sedimentyield model[J]. Journal of Hydrology,2008,352(3-4):388-403.
    [45] Bhunya P K, Jain S K, Singh P K, et al. A simple conceptual model of sedimentyield[J]. Water Resources Management,2010,24(8):1697-1716.
    [46] Huang M B, Gallichand J, Wang Z L, et al. A modification to the Soil ConservationService curve number method for steep slopes in the Loess Plateau of China[J].Hydrological Processes,2006,20(3):579-589.
    [47] Huang M B, Gallichand J, Dong C Y, et al. Use of soil moisture data and curvenumber method for estimating runoff in the Loess Plateau of China[J].Hydrological Processes,2007,21(11):1471-1481.
    [48]罗鹏,宋星原.基于栅格的分布式SCS产流模型研究[J].水土保持通报,2010,30(4):138-142.
    [49]夏立忠,李运东,马力,等.基于SCS模型的浅层紫色土柑桔园坡面径流的计算参数确定[J].土壤,2010,42(6):1003-1008.
    [50]郑长统,梁虹,舒栋才,等.基于GIS和RS的喀斯特流域SCS产流模型应用[J].地理研究,2011,30(1):185-194.
    [51]李丽,王加虎,郝振纯,等. SCS模型在黄河中游次洪模拟中的分布式应用[J].河海大学学报:自然科学版,2012,40(1):104-108.
    [52] Linsley R K, Kohler M A, Paulhus J L H. Hydrology for engineers[M]. New York:McGraw-Hill,1982.223-225.
    [53] Nash J E. A unit hydrograph study, with particular reference to Britishcatchments[J]. Proceedings of the Institution of Civil Engineers,1960,17(3):249-282.
    [54] Boyd M J. A storage-routing model relating drainage basin hydrology andgeomorphology[J]. Water Resources Research,1978,14(5):921-928.
    [55] Rosso R. Nash model relation to Horton order ratios[J]. Water Resources Research,1984,20(7):914-920.
    [56]芮孝芳,刘宁宁,哲凌,等.单位线的发展及启示[J].水利水电科技进展,2012,32(2):1-5.
    [57] Rui Xiaofang, Yu Mei, Liu Fanggui, et al. Calculation of watershed flowconcentration based on the grid drop concept[J]. Water Science and Engineering,2008,1(1):1-9.
    [58]詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社,2000.96.
    [59]熊立华,彭定志.基于数字高程模型的等流时线推求与应用[J].武汉大学学报(工学版),2003,36(3):1-3,12.
    [60] Maidment D. Developing a spatially distributed unit hydrograph by using GIS[C].In: Proceedings of Vienna Conference. Vienna. IAHS.1993,211:181-192.
    [61] Olivera F, Maidment D. Geographic Information Systems (GIS)-based spatiallydistributed model for runoff routing[J]. Water Resources Research,1999,35(4):1155-1164.
    [62] Liu Y B, Gebremeskel S, De Smedt F, et al. A diffusive transport approach for flowrouting in GIS-based flood modeling[J]. Journal of Hydrology,2003,283(1-4):91-106.
    [63] Pilgrim D H, Cordery I. Flood runoff, Handbook of Hydrology[M]. New York:McGraw-Hill,1993.
    [64] Muzik I. Lumped modeling and GIS in food prediction. In: Singh, V.P., Fiorentino,M.(Eds.), Geographical Information Systems in Hydrology[M]. Netherlands:Kluwer Academic Publishers,1996.269-301.
    [65] Ross C N. The calculation of flood discharges by the use of a time contour plan[J].Transactions of the Institution of Engineers, Australia,1921,2:85-92.
    [66]芮孝芳.水文学原理[M].北京:中国水利水电出版社,2004.
    [67] Rodríguez-Iturbe I,Valdés J B. The geomorphologic structure of hydrologicresponse[J]. Water Resources Research,1979,15(6):1409-1420.
    [68]芮孝芳. Muskingum法及其分段连续演算的理论探讨[J].水科学进展,2002,13(6):682-688.
    [69]芮孝芳,石朋.基于地貌扩散和水动力扩散的流域瞬时单位线研究[J].水科学进展,2002,13(4):439-444.
    [70]芮孝芳.由流路长度分布律和坡度分布律确定地貌单位线[J].水科学进展,2003,14(5):602-606.
    [71]刘金涛,张佳宝.结合地形及土地利用信息的流域汇流研究[A].第五届中国水论坛论文集[C].南京,2007.
    [72] Du J, Xie H, Hu Y, et al. Development and testing of a new storm runoff routingapproach based on time variant spatially distributed travel time method[J]. Journalof Hydrology,2009,369(1-2):44-54.
    [73] Beven K J. Rainfall-runoff modelling-the primer[M]. Chichester, England: JohnWiley&Sons, Ltd.,2001.
    [74] Leopold L B, Maddock T J. The Hydraulic Geometry of stream channels and somephysiographic implications[M]. Washington D.C.: United States GovernmentPrinting office,1953.1-57.
    [75]马元旭,许炯心.无定河及其各支流的断面水力几何形态[J].地理研究,2009,28(2):345-353.
    [76] Carlston C W. Downstream variations in the hydraulic geometry of streams; specialemphasis on mean velocity[J]. American Journal of Sciences,1969,267(4):499-509.
    [77] Park C C. World-wide variations in hydraulic geometry exponents of streamchannels: An analysis and some observations[J]. Journal of Hydrology,1977,33(1-2):133-146.
    [78] Parker G. Hydraulic geometry of active gravel rivers[J]. Journal of the HydraulicsDivision,1979,105(9):1185-1201.
    [79] Merigliano M F. Hydraulic geometry and stream channel behavior:an uncertainlink[J]. Journal of the American Water Resources Association,1997,33(6):1327-1336.
    [80] Knighton A D. Variation in width-discharge relation and some implications forHydraulic Geometry[J]. Geological Society of America Bulletin,1974,85(7):1069-1076.
    [81] Torri D, Poesen J, Borselli L, et al. Channel width-flow discharge relationships forrills and gullies[J]. Geomorphology,2006,76(3-4):273-279.
    [82] Sanchis M P S, Torri D, Borselli L, et al. Estimating parameters of the channelwidth-flow discharge relation using rill and gully channel junction data[J]. EarthSurface Processes and Landforms,2009,34(15):2023-2030.
    [83] Savenije H H G. The width of a bankfull channel; Lacey's formula explained[J].Journal of Hydrology,2003,276(1-4):176-183.
    [84] Castro J M, Jackson P L. Bankfull discharge recurrence intervals and regionalhydraulic geometry relationships: patterns in the pacific northwest, USA[J]. Journalof the American water resources association,2001,37(5):1249-1262.
    [85] Chong S E. The width, depth and velocity of Sungei Kimla, Perak[J]. Geographica,1970,6:63-72.
    [86] Thornes J B. The Hydraulic Geometry of stream channels in the Xingu-Araguaiaheadwaters[J]. The Geographical Journal,1970,136(3):376-382.
    [87] Richards K S. Hydraulic geometry and channel roughness; a non-linear system[J].American Journal of Science,1973,273(10):877-896.
    [88] Knighton A D. Comments on log-quadratic relations in hydraulic geometry[J].Earth Surface Processes,1979,4(3):205-209.
    [89] Navratil O, Albert M B. Non-linearity of reach hydraulic geometry relations[J].Journal of Hydrology,2010,388(3-4):280-290.
    [90]余新晓,陈丽华.人工降雨条件下的入渗实验研究[J].水土保持学报,1989,3(4):15-22.
    [91] Mishra S K, Tyagi J V, Singh V P. Comparison of infiltration models[J].Hydrological Processes,2003,17(13):2629-2652.
    [92] Haghighi F, Gorji M, Shorafa M, et al. Evaluation of some infiltration models andhydraulic parameters[J]. Spanish Journal of Agricultural Research,2010,8(1):210-217.
    [93]刘汗,雷廷武,赵军.土壤初始含水率和降雨强度对黏黄土入渗性能的影响[J].中国水土保持科学,2009,7(2):1-6.
    [94]黄明斌,李玉山,康绍忠.坡地单元降雨产流分析及平均入渗速率计算[J].土壤侵蚀与水土保持学报,1999,5(1):63-68.
    [95]余新晓.降雨入渗及产流问题的研究进展和评述[J].北京林业大学学报,1991,13(4):88-94.
    [96]蒋定生,范兴科,黄国俊.黄土高原坡耕地水土保持措施效益评价试验研究: I.坡耕地水土保持措施对降雨入渗的影响[J].水土保持学报,1990,4(2):1-9.
    [97]刘贤赵,康绍忠.黄土高原沟壑区小流域土壤入渗分布规律的研究[J].吉林林学院学报,1997,13(4):203-208.
    [98]吴发启,赵西宁,佘雕.坡耕地土壤水分入渗影响因素分析[J].水土保持通报,2003,23(1):16-18.
    [99]冯绍元,丁跃元,姚彬.用人工降雨和数值模拟方法研究降雨入渗规律[J].水利学报,1998,(11):17-20,25.
    [100]袁建平,蒋定生.黄土丘陵沟壑区小流域降雨入渗产流点面转化[J].地理科学,2001,21(3):262-266.
    [101]袁建平,雷廷武,郭索彦,等.黄土丘陵区小流域土壤入渗速率空间变异性[J].水利学报,2001,(10):88-92.
    [102]高鹏,穆兴民.黄土丘陵区不同土地利用方式下土壤水分入渗的对比试验[J].中国水土保持科学,2005,(4):27-31.
    [103]高鹏,穆兴民,刘普灵,等.降雨强度对黄土区不同土地利用类型入渗影响的试验研究[J].水土保持通报,2006,26(3):1-5.
    [104]李毅,邵明安.雨强对黄土坡面土壤水分人渗及再分布的影响[J].应用生态学报,2006,17(12):2271-2276.
    [105]王月玲,蒋齐,蔡进军,等.半干旱黄土丘陵区土壤水分入渗速率的空间变异性[J].水土保持通报,2008,28(4):52-55,74.
    [106]张书函,康绍忠,蔡焕杰,等.天然降雨条件下坡地水量转化的动力学模式及其应用[J].水利学报,1998,(4):55-62.
    [107]袁艺,史培军,刘颖慧,等.土地利用变化对城市洪涝灾害的影响[J].自然灾害学报,2003,12(3):6-13.
    [108]韩洁春.罗玉沟流域土地利用变化的水文响应研究[D].北京:北京林业大学,2011.
    [109] Zheng M G, Cai Q G, Cheng Q J. Modelling the runoff-sediment yield relationshipusing a proportional function in hilly areas of the Loess Plateau, North China[J].Geomorphology,2008,93(3-4):288-301.
    [110]原翠萍.黄土高原小流域治理对径流泥沙过程影响及模型研究[D].北京:中国农业大学,2010.
    [111]周淑梅,雷廷武.黄土丘陵沟壑区典型小流域SCS-CN方法初损率取值研究[J].中国农业科学,2011,44(20):4240-4247.
    [112]李志林,朱庆平.数字高程模型[M].武汉:武汉测绘科技大学出版社,2000.
    [113]刘学军,晋蓓,王彦芳. DEM流径算法的相似性分析[J].地理研究,2008,27(6):1347-1357.
    [114]刘学军,卢华兴,卞璐,等.基于DEM的河网提取算法的比较[J].水利学报,2006,37(9):1134-1141.
    [115]谢媛媛,余新晓,张满良.基于GIS的桥子沟流域土壤侵蚀初步分析[J].水土保持研究,2005,12(5):263-266.
    [116] Zhang X, Yu X, Wu S, et al. Response of land use/coverage change to hydrologicaldynamics at watershed scale in the Loess Plateau of China[J]. Acta EcologicaSinica,2007,27(2):414-423.
    [117]李毅,王全九,邵明安,等. Green-Ampt入渗模型及其应用[J].西北农林科技大学学报(自然科学版),2007,35(2):225-230.
    [118] Green W H, Ampt G A. Studies on soil physics, part I, The fow of air and waterthrough soils[J]. Journal of Agricultural Science,1911,4(4):1-24.
    [119] Kostiakov A H. On the dynamics of the coefficient of water percolation in soils andon the necessity of studying it from a dynamic point of view for purpose ofamelioration[C]. In: Transactions6th Congress of the International Society of SoilScience. Moscow, Russia,1932.7-21.
    [120] Philip J R. The theory of infiltration:7[J]. Soil Science,1958,85(6):333-337.
    [121] Aron G, Lakatos D F, Miller A C. Infiltration formula based on SCS curvenumber[J]. Journal of the Irrigation and Drainage Division,1977,103(4):419-427.
    [122]赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42-45.
    [123]王维汉,陈晓东,缴锡云,等.土壤入渗参数的估算方法及其变异性研究进展[J].中国农学通报,2011,(6):272-275.
    [124]雷廷武,潘英华,刘汗,等.产流积水法测量降雨侵蚀影响下坡底土壤入渗性能[J].农业工程学报,2006,22(8):7-11.
    [125] Hjelmfelt J A T. Curve number procedure as infiltration method[J]. Journal of theHydraulics Division,1980,106(HY6):1107-1111.
    [126] Chen C L. Infiltration formulas by curve number procedure[J]. Journal of theHydraulics Division,1982,108(7):823-829.
    [127] Michel C, Andréassian V, Perrin C. Soil Conservation Service Curve Numbermethod: How to mend a wrong soil moisture accounting procedure?[J]. WaterResources Research,2005,41(2):1-6.
    [128] Sahu R K, Mishra S K, Eldho T I, et al. An advanced soil moisture accountingprocedure for SCS curve number method[J]. Hydrological Processes,2007,21(21):2872-2881.
    [129] Sahu R K, Mishra S K, Eldho T I. An improved AMC-coupled runoff curve numbermodel[J]. Hydrological Processes,2010,24(20):2834-2839.
    [130] Sahu R K, Mishra S K, Eldho T I. Improved Storm Duration and AntecedentMoisture Condition Coupled SCS-CN Concept-Based Model[J]. Journal ofHydrologic Engineering,2012,17(11):1173-1179.
    [131]高蕴珏,许有鹏. SCS遥感水文模型在曹娥江流域应用研究[J].南京大学学报(自然科学版),1992,28(1):150-159.
    [132]穆宏强. SCS模型在石桥铺流域的应用研究[J].水利学报,1992,(10):79-84.
    [133]孙三祥,王彦斌. SCS模型在悖牛川流域的应用研究[J].水资源与水工程学报,1993,4(1):26-31.
    [134]程江,杨凯,刘兰岚,等.上海中心城区土地利用变化对区域降雨径流的影响研究[J].自然资源学报,2010,25(6):914-925.
    [135]刘贤赵,康绍忠,刘德林,等.基于地理信息的SCS模型及其在黄土高原小流域降雨-径流关系中的应用[J].农业工程学报,2005,21(5):93-97.
    [136] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I-Adiscussion of principles[J]. Journal of Hydrology,1970,10(3):282-290.
    [137] Esteves M, Faucher X, Galle S, et al. Overland flow and infiltration modelling forsmall plots during unsteady rain: numerical results versus observed values[J].Journal of Hydrology,2000,228(3-4):265-282.
    [138] Loague K, Green R E. Statistical and graphical methods for evaluating solutetransport models: Overview and application[J]. Journal of Contaminant Hydrology,1991,7(1-2):51-73.
    [139] Willmott C J. Some comments on the evaluation of model performance[J]. Bulletinof the American Meteorological Society,1982,63(11):1309-1313.
    [140]梁睿. HEC-HMS水文模型在北张店流域的应用研究[D].太原:太原理工大学,2012.
    [141] Chu S T. Infiltration during an unsteady rain[J]. Water Resources Research.,1978,14(3):461-466.
    [142]王玉宽,王占礼,周佩华.黄土高原坡面降雨产流过程的试验分析[J].水土保持学报,1991,5(2):25-31.
    [143]李裕元,邵明安.降雨条件下坡地水分转化特征实验研究[J].水利学报,2004,(4):48-53.
    [144] Pilgrim D H, Chapman T G, Doran D G. Problems of rainfall-runoff modelling inarid and semiarid regions[J]. Hydrological Sciences-Journal-des SciencesHydrologiques,1988,1(33):379-400.
    [145]王全九,来剑斌,李毅. Green-Ampt模型与Philip入渗模型的对比分析[J].农业工程学报,2002,18(2):13-16.
    [146] Mishra S K, Pandey R P, Jain M K, et al. A Rain duration and modifiedAMC-dependent SCS-CN procedure for long duration rainfall-runoff events[J].Water Resources Management,2008,22(7):861-876.
    [147] Woodward D E, Hawkins R H, Jiang R, et al. Runoff curve number method:examination of the initial abstraction ratio[C]. In: Proceedings of the SecondFederal Interagency Hydrologic Modeling Conference,Las Vegas, Nevada. U.S.Geological Survey, Lakewood, Colorado. CD-ROM.2002
    [148] Shi Z H, Chen L D, Fang N F, et al. Research on the SCS-CN initial abstractionratio using rainfall-runoff event analysis in the Three Gorges Area, China[J].Catena,2009,77(1):1-7.
    [149] Lim K J, Engel B A, Muthukrishnan S, et al. Effects of initial abstraction andurbanization on estimated runoff using CN technology[J]. Journal of the AmericanWater Resources Association,2006,42(3):629-643.
    [150] Baltas E A, Dervos N A, Mimikou M A. Technical note: Determination of the SCSinitial abstraction ratio in an experimental watershed in Greece[J]. Hydrology andEarth System Sciences,2007,11(6):1825-1829.
    [151] Hadley J L. Near real-time runoff estimation using spatially distributed radarrainfall data[D]. Texas: Texas A&M University,2003.
    [152] Govers G. Relationship between discharge, velocity and flow area for rills erodingloose, non-layered materials[J]. Earth Surface Processes and Landforms,1992,17(5):515-528.
    [153] Abrahams A D, Parsons A J, Luk S-H. Field measurement of the velocity ofoverland flow using dye tracing[J]. Earth Surface Processes and Landforms,1986,11(6):653-657.
    [154] Dunkerley D. Estimating the mean speed of laminar overland flow using dyeinjection-uncertainty on rough surfaces[J]. Earth Surface Processes and Landforms,2001,26(4):363-374.
    [155] Nienow P W, Sharp M, Willis I C. Velocity-discharge relationships derived fromdye tracer experiments in glacial meltwaters:implications for subglacial flowconditions[J]. Hydrological Processes,1996,10(10):1411-1426.
    [156] Lei T W, Xia W S, Zhao J, et al. Method for measuring velocity of shallow waterflow for soil erosion with an electrolyte tracer[J]. Journal of Hydrology,2005,301(1-4):139-145.
    [157] Lei T W, Chuo R Y, Zhao J, et al. An improved method for shallow water flowvelocity measurement with practical electrolyte inputs[J]. Journal of Hydrology,2010,390(1-2):45-56.
    [158] Tsubaki R, Fujita I, Tsutsumi S. Measurement of the flood discharge of asmall-sized river using an existing digital video recording system[J]. Journal ofHydro-environment Research,2011,5(4):313-321.
    [159] Carollo F G, Ferro V, Termini D. Flow velocity measurements in vegetatedchannels[J]. Journal of Hydraulic Engineering,2002,128(7):664-673.
    [160] Shirai K, Pfister T, Büttner L, et al. Highly spatially resolved velocitymeasurements of a turbulent channel flow by a fiber-optic heterodynelaser-Doppler velocity-profile sensor[J]. Experiments in Fluids,2006,40(3):473-481.
    [161] Ball S J, Ashforth-Frost S, Jambunathan K, et al. Appraisal of a hot-wiretemperature compensation technique for velocity measurements in non-isothermalflows[J]. International Journal of Heat and Mass Transfer,1999,42(16):3097-3102.
    [162] Wondzell S M, Gooseff M N, McGlynn B L. Flow velocity and the hydrologicbehavior of streams during baseflow[J]. Geophysical Research Letters,2007,34(L24404):1-5.
    [163] Singh K P, Broeren S M. Hydraulic Geometry of streams and stream habitatassessment[J]. Journal of Water Resources Planning and Management,1989,115(5):583-597.
    [164] McConkey S A, Singh K P. Alternative approch to the formulation of basinHydraulic Geometry equations[J]. Journal of the American Water ResourcesAssociation,1992,28(2):305-313.
    [165] Phillips P J, Harlin J M. Spatial dependency of hydraulic geometry exponents in asubalpine stream[J]. Journal of Hydrology,1984,71(3-4):277-283.
    [166] Singh V P. On the theories of Hydraulic Geometry[J]. International Journal ofSediment Research,2003,18(3):196-218.
    [167] Rosso R. An introduction to spatially distributed modeling of basinresponse[A].In:Eosso R.Advances in distributed hydrology[C]. Bergamo:WaterResources Publication,1994.3-30.
    [168] Weiler M, McGlynn B L, McGuire K J, et al. How does rainfall become runoff? Acombined tracer and runoff transfer function approach[J]. Water ResourcesResearch.,2003,39(11):1315.
    [169] Al-Wagdany A S, Rao A R. Estimation of the velocity parameter of theGeomorphologic Instantaneous Unit Hydrograph[J]. Water Resources Management,1997,11(1):1-16.
    [170] Grimaldi S, Petroselli A, Alonso G, et al. Flow time estimation with spatiallyvariable hillslope velocity in ungauged basins[J]. Advances in Water Resources,2010,33(10):1216-1223.
    [171] Lange J, Leibundgut C, Greenbaum N. A noncalibrated rainfall–runoff model forlarge, arid catchments[J]. Water Resources Research,1999,35(7):2161-2172.
    [172] Fu S, Zhang G, Wang, et al. Initial abstration ratio in the SCS-CN method in theLoess Plateau of China[J]. Transactions of the American Society of Agriculturaland Biological Engineers,2011,54(1):163-169.
    [173] Zhou S M, Lei T W, Warrington D N, et al. Does watershed size affect simplemathematical relationships between flow velocity and discharge rate at watershedoutlets on the Loess Plateau of China[J]. Journal of Hydrology,2012,444-445:1-9.
    [174] Melesse A M, Graham W D. Storm runoff prediction based on a spatiallydistributed travel time method utilizing remote sensing and GIS[J]. Journal of theAmerican Water Resources Association,2004,40(4):863-879.
    [175] Harbor J M. A pratical method for estimating the impact of land-use change onsurface runoff, groundwater recharge and wetland hydrology[J]. Journal of theAmerican Planning Association,1994,60(1):95-108.
    [176] Flanagan D C, Nearing M A. Sediment particle sorting on hillslope profiles in theWEPP model[J]. Transactions of the American Society of Agricultural Engineers,2000,43(3):573-583.
    [177]王辉,雷廷武,赵军,等.坡面径流量与含沙量动态测量系统[J].农业机械学报,2005,36(1):79-82.
    [178]高佩玲,雷廷武,邵明安,等.小流域土壤侵蚀及径流过程自动测量系统的实验应用[J].农业工程学报,2005,21(10):164-166.
    [179]高佩玲.流域土壤侵蚀及径流过程自动测量系统研究[J].中国水土保持,2006,(12):25-27.
    [180]刘琳,屈丽琴,雷廷武,等.径流小区产流过程量水堰自动测量系统[J].农业工程学报,2011,27(12):79-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700