基于无机纳米片构筑第三代电化学生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于酶在电极上直接电子转移的第三代电化学生物传感器是当前生物传感器的研究热点,而纳米材料所具有的独特物理化学性质为第三代电化学生物传感器的构建提供了一条崭新的途径。纳米片是一类新型的纳米材料,它具有各向异性、聚电解质等性质,可形成稳定高浓度的胶体溶液。本论文采用纳米片(磷酸锆纳米片、水滑石纳米片和氧化钛纳米片)固定肌红蛋白(Mb)或葡萄糖氧化酶(GOD),实现酶的直接电化学,构筑第三代电化学生物传感器。研究内容包括以下三部分:
     1.采用磷酸锆纳米片(ZrPNS)作为固定Mb的载体,固定后的Mb活性中心没有泄漏。利用ZrPNS固定Mb修饰玻碳电极,电化学研究发现,ZrPNS促进了Mb与电极间快速有效的直接电子转移。修饰电极具有良好的热稳定性,对底物H_2O_2、O_2、NaNO_2和三氯乙酸具有较好的催化行为。同时,修饰电极也具备较好的抗干扰性、重现性、操作稳定性和储存稳定性。
     2.采用水滑石纳米片(LDHNS)作为固定GOD的载体,LDHNS固定的GOD保持了良好的生物活性。利用LDHNS固定GOD修饰玻碳电极,电化学研究发现,LDHNS能够显著促进GOD的直接电化学反应,而对比实验发现,剥层前体层状水滑石固定的GOD在电极上仅能实现十分微弱的直接电化学行为。
     3.采用氧化钛纳米片(TNS)利用层层组装法固定Mb,TNS固定化的Mb仍保持着良好的生物活性。在玻碳电极表面构筑TNS与Mb的层层组装膜,膜中的Mb实现了有效稳定的直接电子转移。层层组装膜中的Mb对底物O_2和H_2O_2具有良好的催化效应,催化效率较高。修饰电极具有良好的重现性和储存稳定性。
Much attention has been devoted to the development of the third-generation electrochemical biosensor based on direct electrochemistry of enzymes, and nanomaterials provide a new way to construct the third-generation biosensor. Nanosheets, a novel class of nanoscale materials, possess anisotropic morphology, polyelectrolytic and colloidal nature. It is significative that nanosheets are used to improve the direct electrochemistry between enzymes and electrodes.
     In this thesis, the nanosheets (zirconium phosphate nanosheets, layered double hydroxide nanosheets and titania nanosheets) were used to immobilize myoglobin (Mb) or glucose oxidase (GOD) and investigate the electrochemical properties. The main contents of the thesis are given as follows:
     1. Zirconium phosphate nanosheets (ZrPNS) were firstly applied to the immobilization of Mb as a support matrix. Mb almost retained bioactivity in the film. In ZrPNS film on the glassy carbon electrode, Mb realized its direct electrochemistry and displayed good thermal stability. The catalytic abilities of the protein toward the reduction of H_2O_2, O_2, NaNO_2 and trichloroacetic acid were also studied and a third-generation biosensor was subsequently fabricated. The biosensor also exhibited acceptable anti-interferant ability, reproducibility and stability.
     2. Layered double hydroxide nanosheets (LDHNS) were firstly applied to the immobilization of GOD as a support matrix. GOD almost retained bioactivity in the film. The electrochemical results revealed that LDHNS could improve greatly the direct electrochemistry of GOD, while layered double hydroxide nanoparticles (LDHNP) can only achieve the direct electrochemistry of GOD in a very small extent.
     3. Titania nanosheets (TNS) were applied to the immobilization of Mb via layer-by-layer (LBL) technology. Mb retained good bioactivity in the LBL film and realized effective direct electrochemistry behavior. The biosensor displayed high catalytic efficiency towards O_2 and H_2O_2, and possessed good reproducibility and stability.
引文
[1]司士辉.生物传感器[M].第一版.北京:化学工业出版社,2003.1
    [2]Clark LC Jr,Lyons C.Electrode systems for continuous monitoring in cardiovascular surgery[J].Ann.NY Acad.Sci.,1962,102:29-45
    [3]张先恩.生物传感器[M].第一版.北京:化学工业出版社,2006.7
    [4]吴金玲.层状纳米材料增强电化学生物传感器的研究[D].北京:北京化工大学,2006
    [5]张玲.无机纳米材料、溶胶凝胶材料在电化学生物传感器中的研究[D].合肥:中国科学技术大学,2007
    [6]布莱恩R.埃金斯著,罗瑞贤,陈亮寰,陈蔼璠译.化学传感器与生物传感器[M].第一版.北京:化学工业出版社,2005.103
    [7]黎雪莲.新型生物分子固定技术用于构建生物传感器的研究[D].重庆:西南大学,2006
    [8]谢宗红.新型纳米材料在酶生物传感器中的研究及应用[D].上海:华东师范大学,2007
    [9]耿信笃,白泉,王超展.蛋白折叠液相色谱法[M].第一版.北京:科学出版社,2006.9-15
    [10]王廷华,邹晓莉.蛋白质理论与技术[M].第一版.北京:科学出版社,2005.25
    [11]肖寒.基于二氧化锰纳米片的电化学生物传感器的研究[D].北京:北京化工大学,2007
    [12]江西食品发酵工业科学研究所.酶制剂生产和在食品工业中的应用[M].第一版.北京:轻工业出版社,1977.269
    [13]郑裕国.抗氧化剂的生产及应用[M].第一版.北京:化学工业出版社,2004.222
    [14]贾士荣.转基因棉花[M].第一版.北京:科学出版社,2001.253
    [15]周文龙.酶在纺织中的应用[M].第一版.北京:中国纺织出版社,2002.294
    [16]鞠熀先.电分析化学与生物传感技术[M].第一版.北京:科学出版社,2006.262
    [17]董绍俊,车广礼,谢远武.化学修饰电极[M].修订版.北京:科学出版社,2003.456
    [18]Yeh P,Kuwana T.Reversible electrode reaction of cytochrome c[J].Chem.Lett.,1977,6:1145-1148
    [19]缪煜清,刘仲明,官建国.纳米技术在生物传感器中的应用[J].传感器技术,2002,21(11):61-64
    [20]Feng JJ,Zhao G,Xu JJ,Chen HY.Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan[J].Anal.Biochem.,2005,342:280-286
    [21]Wu YH,Hu SS.Direct electrochemistry of glucose oxidase in a colloid Au-dihexadecylphosphate composite film and its application to develop a glucose biosensor[J].Bioelechem.,2006,71:37-43
    [22]Liu SQ,Ju HX.Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles[J].Electroanal.,2003,15:1488-1493
    [23]Gao FX,Yuan R,Chai YQ,Tang MY,Cao SR,Chen SH.Amperometric third-generation hydrogen peroxide biosensor based on immobilization of Hb on gold nanoparticles/cysteiine/poly(p-aminobenzene sulfonic acid)-modified platinum disk electrode[J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2007, 295: 223-227
    [24] Gan X, Liu T, Zhong J, Liu XJ, Li GX. Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin[J]. Chem. Bio. Chem., 2004,5: 1686-1691
    [25] Zhao S, Zhang K, Sun YY, Sun CQ. Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: direct electrochemistry and electrocatalysis[J]. Bioelechem., 2006, 69: 10-15
    [26] Xu YX, Hu CG, Hu SS. A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in Hb-Ag films[J]. Sens. Actuators B: Chem., 2008,130: 816-822
    [27] Liu Q, Lu XB, Li J, Yao X, Li JH. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes[J].Biosens. Bioelectron., 2007, 22: 3203-3209
    [28] Huang YX, Zhang WJ, Xiao H, Li GX. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode[J]. Biosens. Bioelectron., 2005, 21:817-821
    [29] Shi CG, Xu JJ, Chen HY. Electrogenerated chemiluminescence and electrochemical bi-functional sensors for H_2O_2 based on CdS nanocrystals/hemoglobin multilayers[J]. J.Electroanal. Chem., 2007, 610: 186-192
    [30] Salimi A, Hallaj R, Soltanian S. Immobilization of hemoglobin on electrodeposited cabalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity[J]. Biophys.Chem., 2007, 130: 122-131
    [31] Viticoli M, Curulli A, Cusma A, Kaciulis S, Nunziante S, Pandolfi L, Valentini F,Padeletti G Third-generation biosensors based on TiO_2 nanostructured films[J]. Mater.Sci. Eng. C, 2006, 26: 947-951
    [32] Topoglidis E, Campbell CJ, Cass AEG, Durrant JR. Nitric oxide biosensors based on the immobilization of hemoglobin on mesoporous titania electrodes[J]. Electroanal., 2006,18: 882-887
    [33] Zhu XL, Yuri I, Gan X, Suzuki I, Li GX. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation[J]. Biosens. Bioelectron., 2007, 22: 1600-1604
    [34] Lvov Y, Munge B, Giraldo O, Ichinose I, Suib SL, Rusling JF. Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption[J].Langmuir, 2000, 16: 8850-8857
    [35] Feng JJ, Xu JJ, Chen HY. Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide[J]. Electrochem. Commun.,2006, 8: 77-82
    [36] Zhao G, Feng JJ, Xu JJ, Chen HY. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO_2 film[J]. Electrochem. Commun., 2005, 7:724-729
    [37] Zong SZ, Cao Y, Zhou YM, Ju HX. Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide[J]. Langmuir, 2006,22: 8915-8919
    [38] Zong SZ, Cao Y, Zhou YM, Ju HX. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix[J]. Biosens. Bioelectron., 2007, 22: 1776-1782
    [39] Salimi A, Sharifi E, Noorbakhsh A, Soltanian S. Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles[J]. Electrochem. Commun., 2006, 8:1499-1508
    [40] Salimi A, Sharifi E, Noorbakhsh A, Soltanian S. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide[J]. Biophys. Chem., 2007, 125: 540-548
    [41] Salimi A, Sharifi E, Noorbakhsh A, Soltanian S. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity[J]. Biosens. Bioelectron., 2007, 22: 3146-3153
    [42] Li QW, Luo GA, Feng J, Zhou Q, Zhang L, Zhu YF. Amperometric detection of glucose with glucose oxidase absorbed on porous nanocrystalline TiO_2 film[J]. Electroanal.,2001,13:413-416
    [43] Zhang JD, Feng ML, Tachikawa H. Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes[J]. Biosens.Bioelectron., 2007, 22: 3036-3041
    [44] Zhao GC, Zhang L, Wei XW, Yang ZS. Myoglobin on multi-walled carbon nanorubes modified electrode: direct electrochemistry and electrocatalysis[J]. Electrochem.Commun., 2003, 5: 825-829
    [45] Zhang Q, Zhang L, Li JH. DNA-hemoglobin-multiwalls carbon nanotube hybrid material with sandwich structure: preparation, characterization, and application in bioelectrochemistry[J]. J. Phys. Chem. C, 2007, 111: 8655-8660
    [46] Davis JJ, Coles RJ, Hill HAO. Protein electrochemistry at carbon nanotube electrodes[J]. J. Electroanal. Chem., 1997,440: 279-282
    [47] Zhao LY, Liu HY, Hu NF. Electroactive films of heme protein-coated multiwalled carbon nanotubes[J]. J. Colloid. Interf. Sci., 2006, 296: 204-211
    [48] Zhao GC, Yin ZZ, Zhang L, Wei XW. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H_2O_2.[J] Electrochem. Commun., 2005, 7: 256-260
    [49] Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes[J]. Electrochem. Commun., 2003, 5: 408-411
    [50] Wang L, Wang JX, Zhou FM. Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes[J]. Electroanal., 2004, 16: 627-632
    [51] Wang M, Shen Y, Liu Y, Wang T, Zhao F, Liu B, Deng S. Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes[J]. J. Electroanal.Chem.,2005, 578: 121-127
    [52] Liu Y, Wang MK, Zhao F, Xu ZA, Dong SJ. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix[J]. Biosens.Bioelectron., 2005, 21: 984-988
    [53] Male KB, Hrapovic S, Santini JM, Luong JHT. Biosensor for arsenite using arsenite oxidase and multiwalled carbon nanotube modified electrodes[J]. Anal. Chem., 2007, 79:7831-7837
    [54]Zhao GC,Zhang L,Wei XW,Yang ZS.Myoglobin on multi-walled carbon nanotubes modified electrode:direct electrochemistry and electrocatalysis[J].Electrochem.Commun.,2003,5:825-829
    [55]Jia NQ,Wang L J,Liu L,Zhou Q,Jiang ZY.Bamboo-like CN_x nanotubes for the immobilization of hemoglobin and its bioelectrochemistry[J].Electrochem.Commun.,2005,7:349-354
    [56]Zhang YJ,Shen YF,Han DX,Wang ZJ,Song JX,Li F,Niu L.Carbon nanotubes and glucose oxidase bionanocomposite bridged by ionic liquid-like unit:preparation and electrochemical properties[J].Biosens.Bioelectrion.,2007,23:438-443
    [57]Liu AH,Wei MD,Honma I,Zhou HS.Direct electrochemistry of myoglobin in titanate manotubes film[J].Anal.Chem.,2005,77:8068-8074
    [58]Mu C,Zhao Q,Xu DS,Zhnang QK,Shao YH.Silicon nanotube array/gold electrode for direct electrochemistry of cytochrome c[J].J.Phys.Chem.,2007,111:1491-1495
    [59]Lu XB,Wen ZH,Li JH.Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors[J].Biomater.,2006,27:5740-2747
    [60]Patolsky F,Zheng GF,Lieber CM.Nanowire-based biosensors[J].Anal.Chem.,2006,78:4261-4269
    [61]Patel AC,Li SX,Yuan JM,Wei Y.Peroxidase in electrospun porous silica fibers for potential biosensor applications[J].Nano Lett.,2006,6:1042-1046
    [62]Li MX,Li NQ,Gu ZN,Zhou XH,Sun YL,Wu YQ.Electrocatalysis by a C60-γ-cyclodextrin(1:2)and nation chemically modified electrode of hemoglobin[J].Anal.Chim.Acta,1997,356:225-229
    [63]Wu LN,Zhang XJ,Ju HX.Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential[J].Anal.Chem.,2007,79:453.458
    [64]Wu LN,Zhang XJ,Ju HX.Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanotiber[J].Biosens.Bioelectron.,2007,23:479-484
    [65]Brack B,David WG,Steen EV.Synthesis of resorcinol from meta-phenylenediamine in the presence of zirconium phosphates[J].Micropor.Mesopor.Mater.,2000,41:149-159
    [66]张家慧.α-磷酸锆的可控合成及其聚苯胺复合材料的制备与性能研究[D].北京:北京化工大学,2007
    [67]耿利娜,相明辉,李娜,李克安.层状无机化合物——磷酸锆的研究和应用进展[J].化学进展,2004,16(5):717-727
    [68]Ruan CM,Yang F,Xu JS,Lei CH,Deng JQ.Immobilization of methylene blue using α-zirconium phosphate and its application within a reagentless amperometric hydrogen peroxide biosensor[J].Electroanal.,1997,15:1180-1184
    [69]Yang F,Ruan CM,Xu JS,Lei HH,Deng JQ.An amperometric biosensor using toluidine blue as an electron transfer mediator intercalated in α-zirconium phosphate-modified horseradish peroxidase immobilization matrix[J].Fresenius J.Anal.Chem.,1998,361:115-118
    [70]Malinauskas A,Ruzgas T,Gorton L.Electrocatalytic oxidation of coenzyme NADH at carbon paste electrodes,modified with zirconium phosphate and some redox mediators[J].J.Colloid Interf.Sci.,2000,224:325-332
    [71]张国荣,王艳玲.新型纳米银-磷酸锆-中性红复合膜修饰电极对过氧化氢电催化还原[J].分析化学,2003,31(12):1421-1424
    [72]Feng J J,Xu J J,Chen HY.Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode[J].J.Electroanal.Chem.,2005,585:44-50
    [73]沈家骢.超分子层状结构:组装与功能[M].第一版.北京:科学出版社,2004.2-53,125-127
    [74]Ren LL,He J,Evans DG,Duan X,Ma RY.Some factors affecting the immobilization of penicillin G acylase on calcined layered double hydroxide[J].J.Mol.Catal.B:Enzym.,2001,16:65-71
    [75]Ren LL,He J,Zhang SC,Evans DG,Duan X,Ma RY.Immobilization of penicillin G acylase in layered double hydroxides pillared by glutamate ions[J].J.Mol.Catal.B:Enzym.,2002,18:3-11
    [76]Mignani A,Scavetta E,Tonelli D.Electrodeposited glucose oxidase/anionic clay for glucose biosensor design[J].Anal.Chim.Acta,2006,577:98-106
    [77]De Melo JV,Cosnier S,Mousty C,Martelet C,Jaffrezic-Renault N.Urea biosensors based on immobilization of urease into two oppositely charged clays(laponite and Zn-Al layered double hydroxides)[J].Anal.Chem.,2002,74:4037-4043
    [78]Shah D,Cosnier S,Mousty C.Layered double hydroxides:an attractive material for electrochemical biosensor design[J].Anal.Chem.,2003,75:3872-3879
    [79]Shan D,Mousty C,Cosnier S.Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors[J].Anal.Chem.,2004,76:178-183
    [80]Shah D,Yao WJ,Xue HG.Amperometic detection of glucose with glucose oxidase immobilized in layered double hydroxides[J].Electroanal.,2006,18:1485-1491
    [81]王燕娜,单丹,朱明娟,薛怀国.基于无机新型材料类水滑石(LDHs)的黄嘌呤生物传感器[A].见:第十四次全国电化学会议论文集[C].2007,1011-1012
    [82]Shan D,Cosnier S,Mousty C.HRP/[Zn-Cr-ABTS]redox clay-based biosensor:design and optimization for cyanide detection[J].Biosens.Bioelectron.,2004,20:390-396
    [83]Shan D,Cosnier S,Mousty C.HRP wiring by redox active layered double hydroxides:application to the mediated H_2O_2 detection[J].Anal.Lett.,2003,36:909-922
    [84]Mousty C,Vieille L,Cosnier S.Laccase immobilization in redox active layered double hydroxides:a reagentless amperometric biosensor[J].Biosens.Bioelectron.,2007,22:1733-1738
    [85]Vial S,Forano C,Shan D,Mousty C,Barhoumi H,Martelet C,Jaffrezic N.Nanohybrid-layered double hydroxides/urease materials:synthesis and application to urea biosensors[J].Mater.Sci.Eng,C,2006,26:387-393
    [86]Hibino T,Kobayashi M.Delamination of layered double hydroxides in water[J].J.Mater.Chem.,2005,15:653-656
    [87]Sakai N,Ebina Y,Takada K,Sasaki T.Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies[J].J.Am.Chem.Soc.,2004,126:5851-5858
    [88]Takei T,Kobayashi Y,Hata H,Yonesaki Y,Kumada N,Kinomura N,Mallouk TE.Anodic electrodeposition of highly oriented zirconium phosphate and polyaniline-intercalated zirconium phosphate films[J].J.Am.Chem.Soc.,2006,128: 16634-16640
    [89] Alberti G, Casciola M, Costantino U. Inorganic ion-exchange pellicles obtained by delamination of a-zirconium phosphase crystals[J]. J. Colloid Interf. Sci., 1985, 107:256-263
    [90] Bellezza F, Cipiciani A, Costantino U, Negozio ME. Zirconium phosphate and modified zirconium phosphates as supports of lipase. Preparation of the composites and activity of the supported enzyme[J]. Langmuir, 2002, 18: 8737-8742
    [91] Izawa H, Klkkawa S, Koizumi M. Ion exchange and dehydration of layered titanates,Na_2Ti_3O_7 and K_2Ti_4O_9. J. Phys. Chem., 1982, 86: 5023-5026
    [92] Sasaki T, Watanabe M, Hashizume H, Yamada H, Nakazawa H. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it[J]. J. Am. Chem. Soc,1996,118:8329-8335
    [93] Tanaka T, Fukuda K, Ebina Y, Takada K, Sasaki T. Highly organized self-assembled monolayer and multilayer films of titania nanosheets. Adv. Mater., 2004, 16: 872-875
    [94] Adachi-Pagano M, Forano C, Besse JP. Delamination of layered double hydroxides by use of surfactants[J]. Chem. Commun., 2000, 91-92
    [95] Hibino T, Jones W. New approach to the delamination of layered double hydroxides[J].J. Mater. Chem., 2001, 11: 1321-1323
    [96] Liu ZP, Ma RZ, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies[J]. 2006,128: 4872-4880
    [97] Vial S, Prevot V, Leroux F, Forano C. Immobilization of urease in ZnAl layered double hydroxides by soft chemistry routes[J]. Micropor. Mesopor. Mater., 2008, 107: 190-201
    [98] Kumar CV, Chaudhari A. Proteins immobilized at the galleries of layered a-zirconium phosphate: structure and activity studies[J]. J. Am. Chem. Soc, 2000, 122: 830-837
    [99] Chaudhari A, Kumar CV. Intercalation of proteins into a-zirconium phophonates:turning the binding affinities with phosphonate functions[J]. Micropor. Mesopor. Mater., 2005, 77: 175-187
    [100] Bhambhani A, Kumar CV. Protein/DNA/inorganic materials: DNA binding to layered a-zirconium phosphate enhances bound protein structure and activity[J]. Adv. Mater.,2006, 18: 939-942
    [101] Wang QG, Gao QM, Shi JL. Reversible intercalation of large-capacity hemoglobin into in situ prepared titanate interlayers with enhanced thermal and organic medium stabilites[J]. Langmuir, 2004: 20: 10231-10237
    [102] Zhang L, Zhang Q, Lu XH, Li JH. Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets[J]. Biosens.Bioelectron., 2007,23: 102-106
    [103] Zhang L, Zhang Q, Li JH. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry[J]. Adv. Funct. Mater., 2007, 17: 1958-1965
    [104] Gao L, Gao QM. Hemoglobin niobate composite based biosensor for efficient determination of hydrogen peroxide in a broad pH range[J]. Biosens. Bioelectron.,2007,22:1454-1460
    [105]Xiao H,Chen X,Ji LY,Zhang X,Yang WS.Direct electrochemistry of myoglobin in MnO_2 nanosheet film[J].Chem.Lett.,2007,36:772-773
    [106]Barhoumi H,Maaref A,Rammah M,Martelet C,Jaffrezic N,Mousty C,Vial S,Forano C.Urea biosensor based on Zn_3Al-urease layered double hydroxides nanohybrid coated on insulated silicon structures[J].Mater.Sci.Eng.C,2006,26:328-333
    [107]吴涛,张希.自组装超薄膜:从纳米层状构筑到功能组装[J].高等学校化学学报,2001,22(6):1057-1065
    [108]Araki K,Wagner MJ,Wrighton MS.Layer-by-layer growth of electrostatically assembled multilayer porphyrin films.Langmuir,1996,12:5393-5398
    [109]Richert L,Lavalle P,Vautier D,Senger B,Stoltz JF,Schaaf P,Voegel JC,Picart C.Cell interactions with polyelectrolyte multilayer films[J].Biomacromolecules,2002,3:1170-1178
    [110]Boulmedais F,Ball V,Schwinte P,Frisch B,Schaaf P,Voegel JC.Buildup of exponentially growing multilayer polypeptide films with internal secondary structure[J].Langmuir,2003,19:440-445
    [111]Luo LQ,Liu JY,Wang ZX,Yang XR,Dong S J,Wang EK.Fabrication of layer-by-layer deposited multilayer films containing DNA and its interaction with methyl green[J].Biophys.Chem.,2001,94:11-22
    [112]Yoo P J,Nam KT,Qi J,Lee SK,Park J,Belcher AM,Hammond PT.Spontaneous assembly of viruses on multilayered polymer surfaces[J].Nat.Mater.,2006,5:234-240
    [113]Tang ZY,Wang Y,Podsiadlo P,Kotov NA.Biomedical applications of layer-by-layer assembly:from biomimetics to tissue engineering[J].Adv.Mater.,2006,18:3203-3224
    [114]Zhao W,Xu JJ,Chen HY.Electrochemical biosensors based on layer-by-layer assemblies[J].Electroanal.,2006,18:1737-1748
    [115]Zhang WJ,Huang YX,Dai H,Wang XY,Fan CH,Li GX.Tuning the redox and enzymatic activity of glucose oxidase in layered organic films and its application in glucose biosensor[J].Anal.Biochem.,2004,329:85-90
    [116]Chen XJ,Yan XB,Khor KA,Tay BK.Multilayer assembly of positively charged polyelectrolyte and negative charged glucose oxidase on a 3D Nation netwok for detecting glucose[J].Biosens.Bioelectron.,2007,22:3256-3260
    [117]Xing Q,Eadula SR,Lvov YM.Cellulose fiber-enzyme composites fabricated through layer-by-layer nanoassembly[J].Biomacromolecules,2007,8:1987-1991
    [118]Coche-Guerente L,Desbrieres J,Fatisson J,Labbe P,Rodriguez MC,Rivas G.Physicochemical characterization of the layer-by-layer self-assembly of polyphenol oxidase and chitosan on glassy carbon electrode[J].Electrochim.Acta,2005,50:2865-2877
    [119]Missora SA,Desbrieres J,Barrera GD,Labbe P,Rivas AG.Glucose biosensor based on the layer-by-layer self-assembling of glucose oxidase and chitosan derivatives on a thiolated gold surface[J].Anal.Chim.Acta,2006,578:137-144
    [120]Rivas GA,Miscoria SA,Desbrieres J,Barrera GD.New biosensing platforms based on the layer-by-layer self-assembling of polyelectrolytes on Nation/carbon nanotubescoated glassy carbon electrodes[J].Talanta,2007,71:270-275
    [121]Shen L,Hu NE Electrostatic adsorption of heine proteins alternated with polyamidoamine dendrimes for layer-by-layer assembly of electroactive films[J]. Biomacromolecules, 2005, 6: 1475-1483
    [122] Zucolotto V, Pinto APA, Tumolo T, Moraes ML, Baptista MS, Riul A Jr, Araujo APU,Oliveira ON Jr. Catechol biosensing using a nanostructured layer-by-layer film containing Cl-catechol 1,2-dioxygenase[J]. Biosens. Bioelectron., 2006, 21: 1320-1326
    [123] Weidinger IM, Murgida DH, Dong WD, Mohwald H, Hildebrandt P. Redox processes of cytochrome c immobilized on solid supported polyelectrolyte multilayers[J]. J. Phys.Chem. B,2006, 110:522-529
    [124] Yang SM, Li YM, Jiang XM, Chen ZC, Lin XF. Horseradish peroxidase biosensor based on layer-by-layer technique for the determination of phenolic compounds[J].Sens. Actuators B: Chem., 2006, 114: 774-780
    [125] Yu X, Sotzing GA, Papadimitrakopoulos F, Rusling JF. Wiring of enzymes to electrodes by ultrathin conductive polyion underlayers: enhanced catalytic response to hydrogen peroxide[J]. Anal. Chem., 2003, 75: 4565-4571
    [ 126] Sun H, Hu NF. Electroactive layer-by-layer films of heme protein-coated polystyrene latex beads with poly(styrene sulfonate)[J]. Analyst, 2005, 130: 76-84
    [127] Beissenhirtz MK, Scheller FW, Stocklein WEM, Kurth DG, Mohwald H, Lisdat F.Electroactive cytochrome c multilayers within a polyelectrolyte assembly[J]. Angew.Chem. Int. Ed., 2004,43: 4357-4360
    [128] Lvov YM, Lu ZQ, Schenkman JB, Zu XL, Rusling JF. Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions[J]. J. Am. Chem. Soc, 1998, 120: 4073-4080
    [129] Liu LJ, Jin X, Yang SM, Chen ZC, Lin XF. A high sensitive biosensor with (Con A/HRP)n multilayer films based on layer-by-layer technique for the detection of reduced thiols[J]. Biosens. Bioelectron., 2007, 22: 3210-3216
    [130] Guo W, Lu HY, Hu NF. Comparative bioelectrochemical study of two types of myoglobin layer-by-layer films with alumina: vapor-surface sol-gel deposited Al_2O_3 films versus Al_2O_3 nanoparticles films[J]. Electrochim. Acta, 2006, 52: 123-132
    [131] Lu HY, Yang J, Rusling JF, Hu NF. Vapor-surface sol-gel deposition of titania alternated with protein adsorption for assembly of electroactive, enzyme-active films[J].Electroanalysis, 2006, 18: 379-390
    [132] Wang GX, Lu HY, Hu NF. Electrochemically and catalytically active layer-by-layer films of myoglobin with zirconia formed by vapor-surface sol-gel deposition[J]. J.Electroanal. Chem., 2007, 599: 91-99
    [133] Liu HY, Hu NF. Comparative bioelectrochemical study of core-shell nanocluster films with ordinary layer-by-layer films containing heme proteins and CaCO_3 nanoparticles[J]. J. Phys. Chem. B, 2005, 109: 10464-10473
    [ 134] Zhang H, Lu NF, Hu NF. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes[J]. J. Phys. Chem. B, 2006, 110: 2171-2179
    [135] Wu BY, Hou SH, Yin F, Li J, Zhao ZX, Huang JD, Chen Q. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan,gold nanoparticls and glucose oxidase modified Pt electrode[J]. Biosens. Bioelectron.,2007,22:838-844
    [136] Tang LH, Zhu YH, Xu LH, Yang XL, Li CZ. Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubesfJ]. Talanta, 2007, 73: 438-443
    [137] Zhao G, Xu JJ, Chen HY. Fabrication, characterization of Fe_3O_4 multilayer film and its application in promoting direct electron transfer of hemoglobin[J]. Electrochem.Commun., 2006, 8:148-154
    [138] Xu JJ, Zhao W, Luo XL, Chen HY. A sensitive biosensor for lactate based on layer-by-layer assembling MnO_2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors[J]. Chem. Commun., 2005, 5: 792-794
    [139] Wang YD, Joshi PP, Hobbs KL, Johnson MB, Schmidtke DW. Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers[J]. Langmuir, 2006, 22: 9776-9783
    [140] Wang J, Liu GD, Liu YH. Amperometric choline biosensor fabricated through electrostatic assembly of bienzyme/polyelectrolyte hybrid layers on carbon nanotubesfJ]. Analyst, 2006, 131: 477-483
    [141] Yan XB, Chen XJ, Tay BK, Khor KA. Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase[J].Electrochem. Commun., 2007, 9: 1269-1275
    [142] Zhang JD, Feng ML, Tachikawa H. Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubesfJ]. Biosens.Bioelectron., 2007, 22: 3036-3041
    [143] Zhou YL, Li Z, Hu NF, Zeng YH, Rusling JF. Layer-by-layer assembly of ultrathin films of hemoglobin and clay nanoparticles with electrochemistry and catalytic activity[J]. Langmuir, 2002, 18: 8573-8579
    [144] Liu Y, Liu HY, Hu NF. Core-shell nanocluster films of hemoglobin and clay nanoparticle: direct electrochemistry and electrocatalysis[J]. Biophys. Chem., 2005,117:27-37
    [145] Kendrew DJC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC. A three-dimensional model of the myogolbin molecule obtained by X-Ray analysis[J].Nature, 1958,181:662-666
    [146] Clearfield A, Wang Z. Organically pillared microporous zirconium phosphates[J]. J.Chem. Soc. Dalton Trans., 2002, 2: 2937-2947
    [147] Liu HY, Hu NF. Interaction between myogolbin and hyaluronic acid their layer-by-layer assembly: quartz crystal microbalance and cyclic voltammetry studies[J]. J. Phys.Chem. B., 2006, 110: 14494-14502
    [148] de Groot MT, Merkx M, Koper MTM. Heme release in myoglobin-DDAB films and its role in electrochemical NO reduction[J]. J. Am. Chem. Soc, 2005, 127: 16224-13232
    [149] Guto PM, Rusling JF. Myoglobin retains iron heme and near-native conformation in DDAB films prepared from pH 5 to 7 dispersions[J]. Electrochem. Commun., 2006, 8:455-459
    [150] de Groot MT, Merkx M, Koper MTM. Additional evidence for heme release in myoglobin-DDAB films on pyrolitic graphite[J], Electrochem. Commun., 2006, 8:999-1004
    [151] Wu YH, Shen QC, Hu SS. Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film[J]. Anal. Chim. Acta, 2006, 558: 179-186
    [152] Liu HH, Tian ZQ, Lua ZX, Zhang ZL, Zhang M, Pang DW. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films[J].Biosens.Bioelectron.,2004,20:294-304
    [153]Laviron E.General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J].J.Electroanal.Chem.,1979,101:19-28
    [154]Zong SZ,Cao Y,Zhou M,Ju HX.Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix[J].Biosens.Bioelectron.,2007,22:1776-1782
    [155]Zhao G,Xu J J,Chen HY,Interfacing myoglobin to graphite electrode with on electrode posted nanoporous ZnO film[J].Anal.Biochem.,2006,350:145-150
    [156]Meites L.Polarographic techniques[M].2nd ed,Wiley,1965
    [157]Bond AM.Modern polarographic methods in analytical chemistry[M].Marcel Dekker,1980
    [158]Dai ZH,Xu XX,Ju H.Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix[J].Anal.Biochem.,2004,332:23-31
    [159]Lin R,Bayachou M,Greaves J,Farmer PJ.Nitrite reduction by myoglobin in surfactant films[J].J.Am.Chem.Soc.,1997,119:12689-12690
    [160]Wang QL,Lu GX,Yang BJ.Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on carbon paste electrode by a silica sol-gel film[J].Sens.Actuators B:Chem.,2004,99:50-57
    [161]沈星灿,梁宏,何锡文,王新省.圆二色光谱分析蛋白质构象的方法及研究进展[J].分析化学,2004,32(3):388-394
    [162]Dai GL,Li JR,Jiang L.Difference in enzyme activity and conformation of glucose oxidase before and after purification[J].Colloids Surf.B,2002,24:171-176
    [163]Dai ZH,Ni J,Huang XH,Lu GF,Bao JC.Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix[J].Bioelectrochemstry,2006,70:250-256
    [164]Liu SQ,Ju HX.Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode[J].Biosens.Bioelectron.,2003,19:177-183
    [165]孙冬梅,蔡称心,邢巍,陆天虹.葡萄糖氧化酶在活性炭上的固定及直接电化学[J].无机化学学报,2005,21(3):405-408
    [166]Cai CX.Chen J.Direct electron transfer of glucose oxidase promoted by carbon nanotubes[J].Anal.Biochem.,2004,332:75-83
    [167]He PL,Hu NF.Electrocatalytic properties of heme proteins in layer-by-layer films assembled with SiO_2 nanoparticles[J].Electroanalysis,2004,16:1122-1131
    [168]Shi GY,Sun ZY,Liu MC,Zhang L,Liu Y,Qu YH,Jin LT.Electrochemidtry and electrocatalytic properties of hemoglobin in layer-by-layer films of SiO_2 with vapor-surface sol-gel deposition[J].Anal.Chem.,2007,79:3581-3588
    [169]Lu HY,Hu NE Loading behavior of {chitosan/hyaluronic acid}n layer-by-layer assembly films toward myoglobin:an electrochemical study[J].J.Phys.Chem.B,2006,110:23710-23718
    [170]Zhang L,Zhao GC,Wei XW,Yang ZS.A nitric oxide biosensor based on myoglobin adsorbed on multi-walled carbon nanotubes[J].Electroanalysis,2005,17:630-634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700