抗坏血酸生物传感器的研究及其分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:简要概述生物传感器的工作原理、分类、特点及应用,并对酶生物传感器的研究进展、生物活性组分的固定化方法及抗坏血酸的检测方法作了综述。
     第二章:采用包埋法将抗坏血酸氧化酶(A.O)固定于壳聚糖与鸡蛋壳膜之间制得壳聚糖/抗坏血酸氧化酶/鸡蛋壳膜,将其与溶解氧电极偶联制得抗坏血酸生物传感器,对影响传感器响应性能的溶液pH、温度与缓冲溶液浓度进行了优化。磷酸缓冲溶液的pH 5.0,浓度为100mmol/L,实验温度为室温,此生物传感器的响应性能良好。该生物传感器的响应时间为100s,抗坏血酸浓度在0.07-0.77mmol/L呈现良好的线性关系,检出限为16μmol/L, RSD=4.05%(n=10).间断使用90天后,响应值变为初始值的85.0%。
     第三章:采用包埋-交联法,以戊二醛做交联剂、壳聚糖为包埋剂,制备壳聚糖/抗坏血酸氧化酶/戊二醛/鸡蛋膜,并与氧电极偶联制成抗坏血酸生物传感器。对溶液温度、pH、戊二醛浓度、酶固定量等因素对传感器的影响进行了探索。磷酸缓冲溶液的pH 5.0,戊二醛浓度为15%,酶固定量为6 Units为传感器的最佳实验条件。抗坏血酸浓度在0.02~0.82mmol/L间呈良好的线性关系,检测限为12μmol/L,间断使用90天后,响应值变为初始值的87.6%。
     第四章:通过包埋-交联法将抗坏血酸氧化酶固定于猪膀胱膜上,将固定有酶的膀胱膜紧贴于氧电极表面制得抗坏血酸生物传感器,并考察了影响传感器响应的缓冲溶液pH、浓度、戊二醛浓度、酶固定量等因素。在优化实验条件下,该传感器的响应时间为80s,抗坏血酸浓度在0.01~0.88 mmol/L之间呈现良好线性关系,检出限为, RSD=3.10%(n=20)。而且,此传感器具有良好的使用寿命和贮藏稳定性。实际样品中可能存在的干扰物质对抗坏血酸的测定无干扰。该传感器应用于维生素C饮品中抗坏血酸含量的测定,结果与试剂盒所测结果基本吻合。此外,进行了回收率实验,回收率为97.1-104%。结果表明:膀胱膜比一般天然膜材料透气性和韧性更好,制备出的传感器具有响应速度快、灵敏度高、线性范围宽、检测限低、重现性好、检测结果准确、使用寿命长等优点,为食品药品中抗坏血酸的检测提供了一种准确、可靠的新方法。
     第五章:基于金属卟啉的化学稳定性、良好的生物和电催化活性,制备金属铁卟啉纳米粒子,并将其应用于抗坏血酸生物传感器的研制,制得以金属铁卟啉纳米粒子为电子媒介体的抗坏血酸生物传感器。对实验条件的优化进行了初步探索。
Chapter 1:A biosensor, a analytical device composed of a recognition element of biological origin and a physico-chemical transducer, becomes one of the important research fields of analytical chemistry. The biological element is capable of sensing the presence, activity or concentration of a chemical analyte in solution. The conception, basal constitution, working principles, types, characteristic and application of biosensors were summarized. In addition, research status of enzyme biosensor and detecting methods of L-ascorbic acid were reviewed.
     Chapter 2:A L-ascorbic acid biosensor using a chitosan/ascorbate oxide/ eggshell membrane as a biological molecular recognition component and a dissolved oxygen electrode as a transducer has been fabricated. The ascorbate oxidase was entrapped between chitosan and eggshell membrane. The effect of phosphate buffer concentration, pH and temperature on the response of the L-ascorbic acid biosensor has been studied in detail. The resulting sensor exhibited a fast response of 100 s, high sensitivity and good storage stability. The linear response is 0.07-0.77 mmol/L of L-ascorbic acid concentration with a detection limit of 16μmol/L
     Chapter 3:A L-ascorbic acid biosensor using an enzyme-immobilized eggshell membrane and oxygen electrode for L-ascorbic acid determination has been fabricated. Ascorbate oxidase was covalently immobilized on an eggshell membrane by chitosan with glutaraldehyde as a cross-linking agent. In the optimization studies of the biosensor, the most suitable enzyme and glutaraldehyde concentration were found to be 6 units and 15%(w/v), respectively. The phosphate buffer of pH 5.0 was chosen as the optimum working condition. The biosensor response has a linear range of L-ascorbic acid concentration between 0.02 mmol/L and 0.82 mmol/L with a detection limit of 12μmol/L (S/N=3). Compare with the membrane without glutaraldehyde, enzyme of the proposed biosensor was immobilized firmly。In the characterization studies of the glucose biosensor, some parameters such as interference effects and storage stability were investigated in detail.
     Chapter 4:A L-ascorbic acid biosensing assay was developed using the enzyme-immobilized pig bladder membrane and dissolved oxygen electrode. The ascorbate oxidase immobilized with chitosan was bound to bladder membrane by glutaraldehyde as a crosslinking agent. The phosphate buffer (100 mM, pH=5.0), glutaraldehyde concentration (15%), and 0.035 mg enzyme loading were established as the optimum test conditions. This biosensor exhibited a response time of 80 s, a generous linear range of 0.010 mM to 0.88 mM with a detection limit of 10μM, repeatbility (3.1%, n=20), recoveries (98.7-102%), and good stability with a shelf-life of more than 3 months. The reproducibility of fabrication of the biosensors was investigated by using three different membranes (R.S.D.=3.0%). The comparison of the analytical performance between the published and the proposed biosensor methods was made. This biosensor has been applied to determine the L-ascorbic acid content in real samples, and the results were agreement with those obtained by a commercial colorimetric ascorbic acid assay kit.
     Chapter 5:Porphyrins are recognized as perfect host for molecular recognition owing to their diversity, rigid molecular structures, the position and direction of the substitutes on the porphyrin ring being controllable, Metalloporphyrin is a prototype of metal hexacyanoferrates with remarkable electro-, catalytic-, photo-and biochemical properties. In this paper, a type of iron (Ⅲ)-porphyrin (FeTPP) nanoparticles was prepared and applied for the fabrication of L-ascorbic acid biosensor. The effects of experimental conditions on biosensors'response have been investigated.
引文
[1]CLARK L. C., ANN C., LYONS N.Y. Electrode systems for continuous monitoring in cardiovascular surgery [J].Acad. Sci.,1962,102:29-45.
    [2]UPDIKE S.J., HICKS G.P. The enzyme electrode [J]. Nature,1967,214:986-988.
    [3]潘涛,生物传感器的概述和研究进展[J].江苏广播电视大学学报,2002,6(12):55-56.
    [4]SBRANA F., PARODI M.T., RICCI D., et al. Langmurir films of thiolated gold nanoparticles transferred onto functionalized substrate:2-D local organization[J]. Material Science and Engineering C,2002,22:187-191.
    [5]MUKHOPADHYAY K., PHADTARE S., VINOD V.P, et al. Gold nanoparticles assembled on amine-functionalized na-y zeolite:a biocompatible surface for enzyme immobilization[J]. Langmurir,2003,19:3858-3863.
    [6]JANATA J. Potentiometric Microsensors. Chem. Rev,1990,90(5):691.
    [7]李颖娇,张荣全,叶非,生物传感器在农药残留分析中的应用[J].农药群学与管理,2003,24(8):11-13.
    [8]刘志华,文孟良,王昌益,生物传感器的研究近况与前景[J].云南化工,1998,1:1-6
    [9]伍林,曹淑超等,酶生物传感器的研究进展[J].传感器技术,2005,24(7):4-9.
    [10]HALE P.D., INAGAKI T., LEE S. H., et al. Amperometric glycolate sensors based on glycolate oxidase and polymeric electron transfer mediators[J]. Anal. Chim. Acta,1990, 228:31-37.
    [11]张国林,潘献华,阚锦晴等,导电复合材料葡萄糖氧化酶传感器的研究[J].物理化学学报,2003,19(6):533-537.
    [12]ZHOU H.H., JIAO S.Q., CHEN J.H.. Relationship between preparation conditions, morphology and electrochemical properties of polyaniline prepared by pulse gayanostatic method (PGM) [J]. Thin Solid Films,2004,450 (2):233-239.
    [13]TSAKOVA V., BORISSOV D., IVANOV S.. Role of polymer synthesis conditions for the copper electrodeposition in polyaniline [J]. Electrochem. Commun.,2001,3 (6):312-316.
    [14]FOULDS N.C., LOWE C.R.. Enzyme entrapment in electrically conducting polymers[J]. Chem Soc Faraday Trans,1986,82:1259.
    [15]WANG X., WATANABE H., UCHIYAMA S., Amperometric L-ascorbic acid biosensors equipped with enzyme micelle membrane[J]. Talanta,2008,74:1681-1685.
    [16]冯治平,吴平,罗泽友,生物传感器用于葡萄酒中葡萄糖含量测定的研究[J].四川轻化工学院学报,2003,16(1):56.
    [17]ZHANG Y., WEN G., et al. Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane[J]. Biosens. Bioelectron., 2007,22,1791-1797.
    [18]钱军民,奚西峰,黄海燕,李旭祥,我国酶传感器研究新进展[J].石化技术与应用,2002,20(5):333.
    [19]Yadavalli Vamsi K, Koh Won Gun,Lazur Gtorge J,et al. Microfabricated protein2containing poly (et hylene glycol) hydrogel arrays for biosensing[J]. Sens. Actuators:B,2004,97 (223):2902297.
    [20]邹志青,赵建龙,纳米技术和生物传感器[J],传感器世界,2004,12:6-11.
    [21]THEVENOT D.R., STERNBERG R., et al., Enzyme collagen membrane for electrochemical determination of glucose [J].Anal. Chem.,1979,51(1):96-100.
    [22]BLAEDEL W. J., et al., Flow electrolysis on a reticulated vitreous carbon electrode [J].Anal. Chem.,1979,51(7):799-802.
    [23]刘树庭,林朝晖,沈国励,俞汝勤,醋酸纤维膜固定过氧化氢酶电极的研究[J].分析化学,1994,22(10):998.
    [24]孙长清,高茜等,脲素酶电极的研制及应用[J].化学传感器,1989,9(1):13.
    [25]XU X., LIU S., et al., A novel hydrogen peroxide sensor via the direct electrochemistry of horseradish peroxidase immobilized on colloidal gold modified screen-printed electrode [J]. Sensors,2003,3(9):350-360.
    [26]BARTLETT P.N., et al., Electrochemical immobilization of enzymes.3. Immobilization of glucose oxidase in thin films of electrochemically polymerized phenols [J]. Anal. Chem.,1992,64(2):138-142.
    [27]MU S., KAN J., et al., J Electroanal. Chem.,1987,224:37.
    [28]MALITESTA G., et al., Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film [J]. Anal. Chem.1990,62(24):2735-2740.
    [29]罗颖华,郑东升等,聚吡咯电化学固定化胆固醇氧化酶电极的电流响应及应用[J].高等学校化学学报,1991,12(10):1320.
    [30]金利通,赵桂珠,方禹之,聚邻苯二胺修饰电极抗坏血酸氧化酶生物传感器的研究[J].高等学鹇化学学报,1994,15(2):189.
    [31]程琼,蔡丽玲,酶生物传感器的发展和酶的固定化[J],嘉兴高等专科学校学报,1999,12(2):40-43.
    [32]DIVIS C.,Ann. Microbiol.,1975,126A:175.
    [33]KARUBE I., Microbial electrode BOD sensors[J]. Biotechnol Bioeng,1977,19(10): 1535-1547.
    [34]司士辉,生物传感器[M].北京:化学工业出版社,2003.
    [35]谢平会,刘鹰,刘禹,李占胜.微生物传感器[J].传感器技术,2001,20(6):4.
    [36]DEWETTINCK T., HEGE Van K., VERSTRAETE W., Development of a rapid pH-based biosensor to monitor and control the hygienic quality of reclaimed domestic wastewater [J]. Appl. microbiol. biotechnol.,2001,56(5-6):809-815.[37] GEORGIOU D., MELIDIS P., AANIVASIDIS A., Use of a microbial sensor:In hibition effect of azo-reactive days on activated sludge [J], Bioprocess Biosyst,2002,25:79-83.
    [38]温志立,汪世平,沈国励,曾宪芳,免疫传感器的发展与制作[J].免疫学杂志,2001,17(2):146.
    [39]温志立,汪世平,沈国励,免疫传感器的发展概述[J].生物医学工程学杂志,2001,18(4):642.
    [40]孙艳,孙峰,杨玉孝,潭玉山,用于纳米生物膜层厚度测试的光纤生物传感器[J].光子学报,2002,6:657-661.
    [41]钟桐生,刘国东,沈国励,俞汝勤,电化学免疫传感器研究进展[J].化学传感器,2002,22(1):7.
    [42]JANATA J.J., Immunoelectrode[J]. Am. Chem. Soc.,1975,97(10):2914-2916.
    [43]STRACHAN G, CAPLE S., MACIEL H., Application of cellular and immunological biosensor techniques to assess herbicide toxicity in soils[J]. Eur J Soil, Sd,2002,53(1): 37-44.
    [44]刘艳,牛卫芬,纳米金在电化学免疫传感器中的应用[J].长红大学学报,2010,7(3):460-462.
    [45]WILLNER I., LAPIDOT N., RIKLIN A., et al., Electron transfer communication in glutathione reductase assemblies:Electrocatalytic, Photocatalytic, and catalytic systems for the reduction of oxidized glu tathi one[J]. J Am. Chem. Soc.,1994, (116):1428-1441.
    [46]ZHOU Y., YUAN R., CHAI Y.Q., et al., Amperometric enzyme immunosensors based on layer by layer assembly of gold nanoparticles and thionine on nation modified electrode surface for a-1-fetoprotein determinations[J]. Sensor Actual B:chem,2006,114: 631-639.
    [47]Singh K., Rahman M. A., Son J. I., et al. An amperometric immunosensor for osteoproteoger in based on gold nanoparticles deposited conducting polymer [J]. Biosens. Bioelectron.2008,23:1595-1601.
    [48]王艳,甄生航,郑军等,一种新型唾液sIgA电流型纳米免疫生物传感器的制备[J].传感器与微系统,2010,29(8):107-110.
    [49]RECHNITZ G. A., Biochemical electrode uses tissue slices [J]. Chem. Eng. News, 1978,56(41):16.
    [50]KURIYAMA S. J., Membrane Sci.,1983,12:269.
    [51]谢平会,刘鹰,许春向,细胞传感器[J].传感技术学报,2000,3:237.
    [52]许改霞,吴一聪,李蓉,王平,严伟民等,细胞传感器的研究进展[J].科学通报,2002,47(15):1126.
    [53]POPE L.H., ALLEN S., DAVIES M.C., et al., Probing DNA duplex formation and DNA-drug interactions by the quartz crystal microbalance technique [J]. Langmuir,2001, 17(26):8300-8304.
    [54]VERCOUTERE W., AKESON M., Biosensors for DNA sequence detection[J]. Biology,2002,6(6):816-822.
    [55]黄智伟,黄琛,DNA生物传感器的进展[J].传感器技术,2001,20(1):4-6.
    [56]马丽,白燕,刘仲明,刘芳,电化学DNA传感器研究进展[J].传感器技术,2002,21(3):58-60.
    [57]高志贤,晁福寰,分析化学,压电式脱氧核糖核酸传感器的研究进展[J].2000, 28(11):1421-1427.
    [58]黄琛,黄智伟,光纤DNA生物传感器的研究动向[J].传感器技术,2002,21(2):59-62.
    [59]蔡宏,新型DNA电化学生物传感器的研制及纳米材料在其中的应用研究[D].上海:华东师范大学,2003:94-95.
    [60]曹瑞国,朱斌等,寡聚酰胺为探针的DNA生物传感器[J].物理化学学报,2010,29(4):1119-1123.
    [61]KARUBE I., MATSUNAGA T., MITSUDA S., SUZUKI S., Microbial electrode BOD sensors[J]. Biotechnol Bioeng,1977,19(10):1535-1547.
    [62]李海燕,王乐恒,黄延,一种BOD生物传感器微生物膜的研究[J].北京建筑工程学院学报,2006,2:20-23.
    [63]TIMUR S., ANIK U., ODACI D., et al., Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes [J]. Electrochem. Commun.,2007,9(8): 1810-1815.
    [64]赵涛,郝红等,生物传感器研究及应用进展[J].化学研究与应用,2009,21(11):1481-1485.
    [65]PASTORINO L., CANEVA S.F., GIACOMINI M., et al., Development of a piezoelectric immunosensor for the measurement of paclitaxel [J]. Journal of Immunological Methods,2006,313(1):191-198.
    [66]WU Z. Y.,WU J.,WANG S.P., et al., An amplified mass piezoelectric immunosensor for schistosoma japonicum [J]. Biosens. Bioelectron.,2006,22 (2):207-212.
    [67]ZAWICK L., et al., Przem Spozyw,1993, (8):219.
    [68]MULLETT W.L., et al., Immunoassay of Fumonisins by a Surface Plasmon Resonance Biosensor[J].Anal. Biochem,1998,258(2):161-167.
    [69]VOLPE E., CAPPELLI G, GRASSI M., et al., Gene expression profiling of human macrophages at late time of infection with mycobacterium tuberculosis [J]. Immunology, 2006,118(4):449-460.
    [70]许文娟,焦晨旭,生物传感器的发展及应用前景[J].化工中间体,2010,11:15-19.
    [71]BOGNAR A; DAOOD H. G., Simple in line postcolumn oxidation and derivatization for the simultaneous analysis of ascorbic and dehydroascorbic acids in foods[J].J. Chromatogr. Sei.2000,38:162-168.
    [72]KALL, M. A.; ANDERSEN, C, Improved method for simultaneous determination of ascorbic acid and dehydroascorbic acid, isoascorbic acid and dehydroisoascorbic acid in food and biological samples[J] J. Chromatogr. B.1999,730:101-111.
    [73]BRAUSE A. R.; WOOLLARD D. C.; INDYK H. E., Determination of total Vitamin C in fruit juices and related products liquid chromatography:Interlaboratory study [J]. Journal of AOAC International 2003,86:367-374.
    [74]FONTANNAZ P.; KILINC T.; HEUDI O. HPLC-UV determination of total vitamin C in a wide range of fortified food products[J]. Food Chem.2006,94:626-631.
    [75]FERNANDES G.; NETO O.; KUBOTA L. T. Use of column with modified silica for interfering retention in a FIA spectrophotometric method for direct determination of vitamin C in medicine[J]. Anal. Chim. Acta.1998,366:11-22.
    [76]DIZA A.; MEDINA A., et. al., Flow injection-solid-phase spectrofluorimetric determination of pyridoxine in presence of group B-vitamins[J]. Anal Chem.1999,363: 265-269.
    [77]BESADA A., A facile and sensitive spectrophotometric determination of ascorbic acid[J]. Talanta 1987,34:731.
    [78]ARAY S. P.; MAHAJAN M.; JAIN P., Spectrophotometric determination of vitamin C with iron(II)-4-(2-pyridylazo)resorcinol complex[J]. Anal. Chim. Acta.2001,427: 245-251.
    [79]TUTEM E.; APAK R., Spectrophotometric determination of ascorbic acid in pharmaceutical products with the copper(Ⅱ)-rhodanine reagent[J]. Anal. Lett.1992,25: 471-484.
    [80]BAKER W. L.; LOWE T., Sensitive ascorbic acid assay for the analysis of pharmaceutical products and fruit juices[J]. Analyst 1985,110:1189-1191.
    [81]Ascorbic Acid in Vitamin preparations and Juices; AOAC Official Methods of Analysis:Vitamins and Other Nutrients 2005,45:19-20.
    [82]VOLOTOVSKY V.; KIM N., Ascorbic acid determination with an ion-sensitive field effect transistor-based peroxidase biosensor[J]. Anal. Chim. Acta.1998,359:143-148.
    [83]VOLOTOVSKY V.; KIM N., Determination of glucose, ascorbic and citric acids by two-ISFET multienzyme sensor[J]. Sens. Actuat. B 1998,49:253-257.
    [84]VERMEIR S.; NICOLAI B. M.; VERBOVEN P., Microplate Differential Calorimetric Biosensor for Ascorbic Acid Analysis in Food and Pharmaceuticals[J]. Anal. Chem.2007,79:6119-6127.
    [85]YAMANAKA H.; FERTONANI F. L. Ecl. Quim.:Sao Paulo 2005,30:37-43.
    [86]LI C., et. al. Highly sensitive and selective electrochemical determination of dopamine and ascorbic acid at Ag/Ag2S modified electrode[J].Electrochim. Acta,2011,56: 1955-1959.
    [87]CHAUHAN N., et. al., Fabrication of an amperometric ascorbate biosensor using egg shell membrane bound Lagenaria siceraria fruit ascorbate oxidase[J]. J. Mol. Catal. B: Enzym.,2010,67:66-71.
    [1]ARRIGONI O., TULLIO C.D., Ascorbic acid:much more than just an antioxidant [J]. Biochim. Biophy. Acta (BBA)-General Subjects,2002,1569:1-9.
    [2]SHAKKTHIVEL, P.; CHEN, S. M. Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode [J]. Biosens. Bioelectron.2007,22:1680-1687.
    [3]TULLIO, C.D., ARRIGONI, O.. Ascorbic acid:much more than just an antioxidant [J]. Biochim. Biophy. Acta (BBA)-General Subjects,2002,1569(1-3):1-9.
    [4]IJERI V.S., JAISWAL P.V., Chemically modified electrodes based on macrocyclic compounds for determination of Vitamin C by electrocatalytic oxidation [J]. Anal. Chim. Acta,2001,439:291-297.
    [5]LOPES P., DRINKINE J., Determination of 1-ascorbic acid in wines by direct injection liquid chromatography using a polymeric column [J]. Anal. Chim. Acta,2006,555: 242-245.
    [6]TANG B, WANG Y, Catalytic spectrophotometric determination of ascorbic acid in tea drink with 1,5-bis(p-hydroxybenzaldene)thiocarbohydrazone as the substrate for horseradish peroxidase [J]. J. Agric. Food Chem,.2003,51:4198-4201.
    [7]WANG X., UCHIYAMA S., Amperometric 1-ascorbic acid biosensors equipped with enzyme micelle membrane [J]. Talanta,2008,74:1681-1685.
    [8]MU S., XUE H.. Bioelectrochemical characteristics of glucose oxidase immobilized in a polyaniline film [J]. Sens. Actuators B:Chem.1996,31:155-160.
    [9]JULIO C.B., FERNANDES L.T.K., GRACILIANO O.N.. Potentiometric biosensor for L-ascorbic acid based on ascorbate oxidase of natural source immobilized on ethylene-vinylacetate membrane [J].Anal. Chim. Acta,1999,385:3-12.
    [10]ZHANG Y., WEN G.M, ZHOU Y.H., SHUANG S.M., DONG C., CHOI M.M.F.. Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane [J]. Biosens. Bioelectron.,2007,22:1791-1797.
    [11]YANG X.F., ZHOU Z.D., XIAO D., CHOI M.M.F., A fluorescent glucose biosensor based on immobilized glucose oxidase on bamboo inner shell membrane [J]. Biosens. Bioelectron.,2006,21:1613-1620.
    [12]WANG F., YAO J., RUSSEAL M., CHEN A H., CHENA K., ZHOU A Y., CECCANTIB B., ZARAYC G., CHOI M.M.F., Development and analytical application of a glucose biosensor based on glucose oxidase/O-(2-hydroxyl) propyl-3-trimethylammonium chitosan chloride nanoparticle-immobilized onion inner epidermis [J]. Biosens. Bioelectron.,2010,25:2238-2243.
    [13]MUZZARELLI R.A.A., TARSI R., FILIPPINI O., Antimicrobial properties of N-carboxybutyl chitosan [J]. Antimicrob. Agents Chemother,1990,34:2019-2023.
    [14]WANG X.D., ZHOU T.Y., CHEN X., WONG K.Y, WANG X.R., An optical biosensor for the rapid determination of glucose in human serum[J]. Sens. Actuators B, 2008,129:866-873.
    [15]WU B., ZHANG G., SHUANG S., CHOI M.M.F., Biosensors for determination of glucose with glucose oxidase immobilized on an eggshell membrane[J], Talanta,2004,64: 546-553.
    [16]WU B., ZHANG G., ZHANG Y, Measurement of glucose concentrations in human plasma using a glucose biosensor [J].Anal. Biochem.,2005,340:181-183.
    [1]曹晓妹,罗立强,丁亚平,壳聚糖在生物传感器中的应用进展[J].理化检验-化学分册,2009,45:877-879.
    [2]BEPPU M.M., VIEIRA R.S., AIMOLI C.G., SANTANA C.C., Crosslinking of chitosan membranes using glutaraldehyde:Effect on ion permeability and water absorption, J. Membrane. Sci.301 (2007) 126-130.
    [3]GUPTA K.C., FAWZI H. J., Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman[J]. Carbohydrate Research 2006, 341:744-756.
    [4]GUPTA K.C. et al. Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman[J]. Carbohydr. Res.,2006,341:744-756.
    [5]OYRTON A.C. et al. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system[J]. Int. J. Biol. Macromol.,1999,26:119-128.
    [6]POZZO A.D., VANINI L., FAGNONI M., GUERRINI M., BENEDITTIS A., MUZZARELLI R.A.A., Preparation and characterization of polyethylene glycol cross-linked reacetylated chitosans [J]. Carbohydrate Polym.,2000,42:201-206.
    [7]WU B., ZHANG G., SHUANG S., CHOI M.M.F., Biosensors for determination of glucose with glucose oxidase immobilized on an eggshell membrane, Talanta 64 (2004) 546-553.
    [1]ZHANG Y., WEN G.M., ZHOU Y.H., SHUANG S.M., DONG C., CHOI M.M.F., Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane[J], Biosens. Bioelectron.2007,22:1791-1797.
    [2]WANG F., YAO J., RUSSELA M., CHENA H., CHENA K., ZHOUA Y, CECCANTIB B., ZARAYC G., CHOI M.M.F., Development and analytical application of a glucose biosensor based on glucose oxidase/O-(2-hydroxyl) propyl-3-trimethylammonium chitosan chloride nanoparticle-immobilized onion inner epidermis[J], Biosens. Bioelectron.2010,25:2238-2243.
    [3]WANG X., UCHIYAMA S., Amperometric 1-ascorbic acid biosensors equipped with enzyme micelle membrane[J],Talanta,2008,74:1681-1685.
    [1]DUJARDIN E., PEET C., STUBBS G., CULVER J.N., MARM S., Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates [J]. Nano Lett.,2003,3(3): 413-417.
    [2]KEIMETH R.B., AUDREY P.F., MIEHEAL J.N., Am.Chem,1996,118:1154.
    [3]WANG J., LIU G, POLSKY R., MERKOGI A., Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags [J]. Eleetrochem.Commun. 2002,4(9):722-726.
    [4]XU W., GUO H., AKINS D. L., Aggregation of Tetrakis(p-sulfonatophenyl)porphyrin within Modified Mesoporous MCM-41 [J]. J.Phys.Chem.B.,2001,105(8):1543-1546.
    [5]FENDLER J. H., Self-Assembled Nanostructured Materials [J]. Chem. Mater.1996, 8(8):1616-1624.
    [6]HUTEHISON J.E., POSTLETHWAITE T.A., et al., Molecular films of thiol-derivatized tetraphenylporphyrins on gold:film formation and electrocatalytic dioxygen reduction [J]. Langmuir,1993,9(11):3277-3283.
    [7]谢先宇,任奇志,马紫峰,金属卟啉制备及其电化学特性[J].化工学报,2004,55:2086.
    [8]QUINTINO M.S.M., WINNISCHOFER H., et al., Amperometric sensor for glucose based on electrochemically polymerized tetraruthenated nickel-porphyrin [J] Anal.Chim.Acta.2005,539:215-222.
    [9]AZEVEDO C.M.N., Araki K., et al., Electroanalysis,1998,10:467.
    [10]YAMADA T., KIKUSHIMA S., et al., Chem. Lett.2000:644.
    [11]刘育,尤长城,张衡益,超分子化学,天津:南开大学出版社,2001,131-131.
    [12]侯长军,张红英,霍丹群,吉永超,卟啉传感器研究进展[J],传感器与微系统,2008,27(3):1-4.
    [13]YEAGER E. Electrocatalysts for O2 reduction [J]. Electrochim Acta.,1984,29(11): 1527-1537.
    [14]李早英,张悦宁,朱训进等.新型金属卟啉的合成及其仿酶活性研究[J].高等学校化学学报,2002,23(5):756-762.
    [15]GIUSEPPE M., ROBERT D.S., GIUSEPPE V., et al. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(Ⅱ)-porphyrin or Cu(Ⅱ)-phthalocyanine [J]. Journal of Catalysis,2003, 217(2):334-342.
    [16]GUO C., LI H., ZHANG X.. Study on synthesis, characterization and biological activity of some new nitrogen heterocycle porphyrins [J]. Bioorganic and Medicinal Chemistry,2003,11(8):1745-1751.
    [17]谢宗红,李晓华,李陈鑫,阂红,金利通.金属铁叶琳纳米粒子修饰的生物传感器及其用于鼠脑中葡萄糖测定的研究[J].化学传感器,2005,4,37-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700