纳米材料在新型酶传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有大的比表面积、高的表面活性、强吸附能力及高催化效率等优异特性,可在增加生物分子(酶、抗原或抗体等)的吸附量和稳定性的同时提高生物分子(酶)的催化活性,使传感器的响应灵敏度得到提高。本研究论文通过发展新型的生物纳米材料并将其应用于生物分子的固定,以达到提高传感器灵敏度的目的。以此为出发点分别研制出一系列新型酶传感器。
     1.研制了一种以多壁碳纳米管(MWCNTs),纳米CeO2,壳聚糖(CHIT)有机-无机复合膜作为固定基质的酶生物传感器。该复合膜结合了无机多壁碳纳米管(MWCNTs),纳米CeO2和有机材料CHIT的优点,固定的辣根过氧化物酶(HRP)更好的保持了其生物活性(第2章);
     2.以多壁碳纳米管为模板,利用简单的电沉积法合成了花状的纳米ZnO,直接得到了MWCNTs/ZnO复合膜,这种结构有效地增加了电极的面积,使酶高效地固定在电极表面。MWCNTs和纳米ZnO的协同效应极大地提高了生物传感器的性能。同时此法将纳米材料的制备和固定结合起来,操作简单(第3章);
     3.用电沉积法制备了铂纳米线阵列并用于固定尿酸酶研制了一种新型尿酸酶传感器。利用铂纳米线阵列有效的表面积和对尿酸的氧化产物H2O2直接电催化性,实现尿酸酶与电极之间直接电子传递。制成的传感器具有较高的灵敏度、较宽的线性范围和较低的检测下限(第4章)。
Nano-materials, exhibiting a large surface area with diameter less than 100 nm, high surface-activity, good biocompatibility, strong adsorption and great efficiency of catalysis, might be favorable for constructing biosensor. This thesis focuses on synthesizing new nano-biomaterials and using them to immobilize biomolecular in biosensor-fabricating for the purpose of improving the performance and sensitivity of biosensors. Therefore, a series of novel enzyme biosensors was developed.
     1. A HRP biosensor was developed using multi-walled carbon nanotubes, nanoporous CeO2 and chitosan inorganic-organic composite film as immobilization matrix with good stability. This material combined the advantage of inorganic species CeO2, multi-walled carbon nanotubes, and organic polymer chitosan, and immobilized HRP can keep the activity of biomolecules (Chapter 2);
     2. Zinc oxide nanoflowers were produced by electrodeposition onto multiwalled carbon nanotubes (MWCNTs) film. The MWCNTs/ZnOnano film can increase the area of the electrode effectively, and immobilize the enzyme on the electrode surface steadily. The synergistic effects of MWCNTs and ZnO improved the performance of the biosensor. Simultaneously, this simple method could combine preparation with immobilization of nano-materials (Chapter 3);
     3. Platinum nanowires array were prepared by electrodeposition in polycarbonate membrane (PC) and were used to construct a uric acid biosensor. With effective surface area and direct electrocatalytic to H2O2, which is oxidation production of uric acid, Platinum nanowires array could achieve the direct electron transfer between enzyme and electrode. The result showed that uric acid biosensor displayed high sensitivity, wider linear range and better detection limit (Chapter 4).
引文
[1]J. Wang, B. Tian, K.R. Rogers. Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label [J]. Analytical Chemistry,1998,70(9):1682-1685.
    [2]O. Niwa, Y. Xu, H.B. Halsall, et al. Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay [J]. Analytical Chemistry,1993,65(11):1559-1563.
    [3]J. Wang, L. Chen, S.B. Hocevar, et al. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose [J]. The Analyst,2000,125(8): 1431-1434.
    [4]M. Hedenmo, A. Narvaez, E. Dominguez, et al. Improved mediated tyrosinase amperometric enzyme electrode [J]. Journal of Electroanalytical Chemistry,1997,425(1):1-11.
    [5]M. Vanderlaan, B.E. Watkins, L. Stanker. Environmental monitoriby immunoassar [J]. Environmental Science and Technology,1998,22(2):247-254.
    [6]吴礼光,刘茉娥,朱长乐.生物传感器研究进展[J].化学进展,1995,7(4):287-301
    [7]S. J. Updike, G. P. Hicks. The enzyme electrode [J]. Nature,1967,214(6):986-988.
    [8]H.S. Lee, Y.A. Kim, et al. Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor [J]. ChemosPhere,2002,46(4):571-576.
    [9]S. Holger, D. Rolf. Rapid detection of neurotoxic insecticides in food using disposable acetyicholinesterase-biosensors and simple solvent extraction [J]. Analytical and Bioanalytical Chemistry,2002,372(2):268-272.
    [10]鞠熀先.电分析化学与生物传感技术[M].北京:科学出版社,2006,178
    [11]谢宗红.新型纳米材料在酶生物传感器中的研究及应用[D].上海:华东师范大学,2007
    [12]C. P. McMahon, G. Rocchitta, P.A. Serra, et al. Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate [J]. Analytical Chemistry,2006, 78(7):2352-2359.
    [13]S. Uchiyama, R. Tomita, N. Sekioka, et al. Application of polymaleimidostyrene as a convenient immobilization reagent of enzyme in biosensor [J]. Bioelectrochemistry,2006,68(2):119-125.
    [14]X.H. Yang, Q.F. Xiang, K.M. Wang, et al. Doped sol-gel method for immobilizing enzyme and its application in hypoxanthine biosensor based on liquid droplets [J]. Chinese Journal of Analytical Chemistry,2006,34(4):451-454.
    [15]G.M. Zhang, D.S. Liu, S.M. Shuang, et al. A homocysteine biosensor with eggshell membrane as an enzyme immobilization platform [J]. Sensors and Actuators B-Chemical,2006,114(2): 936-942.
    [16]P. Kotzian, P. Brazdilova, S. Rezkova, et al. Amperometric glucose biosensor based on rhodium dioxide-modified carbon ink [J]. Electroanalysis,2006,18(15):1499-1504.
    [17]C. Michel, A. Ouerd, F. Battaglia-Brunet, et al. Cr (VI) quantification using an amperometric enzyme-based sensor:Interference and physical and chemical factors controlling the biosensor
    response in ground waters [J]. Biosensors & Bioelectronics,2006,22(2):285-290.
    [18]H. Tatsumi, H. Katano, T. Ikeda. Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor [J].Analytical Biochemistry,2006,357(2): 257-261.
    [19]G.G. Guilbaul, J.G. Montalvo. An enzyme electrode for substrate urea [J]. Journal of the American Chemical Society,1970,92(8):2533-2534.
    [20]D.P. Nikolelis, U.J. Krull. Establishment and control of artificial ion-conductive zones for lipid-membrane biosensor development [J]. Analytica Chimica Acta,1992,257(2):239-245.
    [21]GA. Zhylyak, S.V. Dzyadevich, Y.I. Korpan, et al. Application of urease conductometric biosensor for heavy-metal ion determination [J]. Sensors and Actuators B-Chemical,1995, 24(1-3):145-148.
    [22]池其金,董绍俊.酶直接电化学与第三代生物传感器[J].分析化学,1994,22(10):1065-1072
    [23]钱军民,李旭祥.介体型电流式酶传感器中电子媒介体的研究进展.化工进展,2001,21(6):11-15
    [24]阳明辉.纳米线阵列、碳纳米管纳米复合物制备及其在电化学生物传感器中的应用[D].长沙:湖南大学,2007.
    [25]J. Wang, D.S. Park, P.V. Pamidi. Tailoring the macroporosity and performance of sol-gel derived carbon composite glucose sensors [J]. Journal of Electronanalytical Chemistry,1997,434(1-2): 185-189.
    [26]Y. Degani, A. Heller. Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme [J]. Journal of Physical Chemistry,1987,91(6):1285-1289.
    [27]J.B. Jia, B.Q. Wang, A.G. Wu, et al. Amethod to construct a third-generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional sol-gel network [J]. Analytical Chemistry,2002,74(9):2217-2223.
    [28]M.A. Aronld. Enzyme-based fiber optic sensor [J]. Analytical Chemistry,1985,57(2):565-566.
    [29]刘宝红,邓家祺.以γ-氧化铝固定尿酸氧化酶的尿酸传感器研究[J].分析化学研究报告.25(1)19-24.
    [30]E. Topoglidis, A.E.G. Cass, G. Gilardi, et al. Protein adsorption on nanocrystalline TiO2 films:an immobilization strategy for bioanalytical devices [J]. Analytical Chemistry,1998,70(23): 5111-5114.
    [31]U. Wollenberger, V. Bogdanovskayn, S. Bobrin, et al. Enzyme electrodes using bioelectrocatalytic reduction of hydrogen peroxide [J]. Analytical Letter,1990,23(10):1795-1808.
    [32]F. Palmisano, GE.D. Benedetto, C.G. Zambonin. Lactate amperometric biosensor based on an electrosynthesized bilayer film with covalently immobilized enzyme [J]. The Analyst,1997, 122(4):365-369.
    [33]L. Doretti, D. Ferrara, P. Gattolin, et al. Covalently immobilized enzymes on biocompatible polymers for amperometric sensor applications [J]. Biosensors & Bioelectronics,1996,11(4): 365-373.
    [34]L. Doretti, D. Ferrara, S. Lora, et al. Amperometric biosensor involving covalent immobilization of choline oxidase and butyrylcholinesterase on a meteacrylate-vinylene carbonate co-polymer. Biotechnol [J]. Applied Biochemistry,1999,29(1):67-72.
    [35]V. Sacks, I. Eshkenazi, T. Neufeld, et al. Immobilized parathion hydrolase:an amperometric sensor for parathion [J]. Analytical Chemistry,2000,72(9):2055-2058.
    [36]A.N. Ivanov, GA. Evtugyn, R.E. Gyurcsanyi, et al. Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination [J]. Analytical Chimica Acta,2000,404(1): 55-65.
    [37]J. Wang, L. Fang, D. Lopez. Amperometric biosensor for phenols based on a tyrosinase graphite-epoxy biocomposite [J]. The Analyst,1994,119(3):455-458.
    [38]Z.E. Zhang, H.Y. Liu, J.Q. Deng. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode [J]. Analytical Chemistry,1996,68(9):1632-1638.
    [39]G.E.D. Benedetto, F. Palmisano, P.G. Zambonin. Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes:a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer [J]. Biosensors & Bioelectronics, 1998,13(1):103-112
    [40]Y.F. Yang, S.L. Mu. Bioelectrochemical responses of polyaniline horseradish peroxidase electrodes [J].Journal of Electroanal Chemistry,1997,432(1-2):71-78.
    [41]董绍俊,车广礼,谢远斌,等.化学修饰电极[M].北京:科学出版社,2003.
    [42]S. Iijima. Helical microtubules of graphitic Carbon [J]. Nature,1991,354(6348):56-58.
    [43]J. Wang, M. Musameh, Y.H. Lin. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors [J]. Journal of the American Chemical Society,2003, 125(9):2408-2409.
    [44]J.M. Moon, A. Wei. Uniform gold nanorod arrays from polyethylenimine-coated alumina templates [J]. Journal of Physical Chemistry B,2005,109(49):23336-23341.
    [45]S.J. Lee, A.R. Morrill, M. Moskovits. Hot Spots in Silver Nanowire Bundles for Surface-Enhanced Raman Spectroscopy [J]. Journal of the American Chemical Society,2006, 128(7):2200-2201.
    [46]D. Xu, Y. Xu, D. Chen, et al. Preparation of CdS Single-Crystal Nanowires by Electrochemically Induced Deposition [J]. Advanced Materials,2000,12(7):520-522.
    [47]B.A. Hernandez, K.S. Chang, E.R. Fisher, et al. Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes [J]. Chemistry of Materials,2002,14(2):480-482.
    [48]S.M. Liu, L.M. Gan, L.H. Liu, et al. Synthesis of single-crystalline TiO2 nanotubes [J]. Chemistry
    of Materials,2002,14(3):1391-1397.
    [49]C.M. Zelenski, P.K. Dorhout. Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2 [J]. Journal of the American Chemical Society,1998,120(4):734-742.
    [50]B.D. Yao, N.Wang. Carbon nanotube arrays prepared by MWCVD [J]. Journal of Physical Chemistry B,2001,105(46):11395-11398.
    [51]M. Trau, D.A. Saville, I.A. Aksav. Field-induced layering of colloidal crystals [J]. Science,1996, 272(5262):706-709.
    [52]M. Trau, D.A. Saville, I.A. Aksav. Assembly of colloidal crystals at electrode interfaces [J]. Langmuir,1997,13(24):6375-6381.
    [53]P.V. Braun, P. Wiltzius. Microporous materials-electrochemically grown photonic crystals [J]. Nature,1999,402(6762):603-604.
    [54]Y.A. Vlasov, K. Luterova, I. Pelant, et al. Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals [J]. Applied Physics Letters,1997,71(12): 1616-1618.
    [55]J. F. Hicks, F.P. Zamborini, A. Osisek, et al. The dynamics of electron self-exchange between nanoparticles [J]. Journal of the American Chemical Society,2001,123(29):7048-7053.
    [56]A.N. Shipway, M. Lahav, I. Willner. Nanostructured gold colloid electrodes [J]. Advanced Materials,2000,12(13):993-998.
    [57]J. Zhao, R.W. Henkens, J.G. Stonehuerner, et al. Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes [J]. Journal of Electroanal Chemistry,1992, 327(1-2):109-119.
    [58]A.L. Crumbliss, S.C. Perine, J.G. Stonehuerner, et al. Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of the enzyme electrodes by electrodeposition [J]. Biotechnol Bioeng,1992,40(5):483-490.
    [59]A.L. Crumbliss, J.G. Stonehuerner, R.W.A. Henkens, et al. Carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utilizing immobilized horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood [J]. Biosensors & Bioelectronics,1993,8(6):331-337.
    [60]S. Bharathi, M. Nogami. A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme [J]. The Analyst,2001,126(11):1919-1922.
    [61]S.H. Lim, J. Wei, J.Y. Lin, et al. A glucose biosensor on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode [J]. Biosensors & Bioelectronics,2005,20(11):2341-2346.
    [62]Y. Xiao, H.X. Ju, H.Y. Chen. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer [J]. Analytical Chimica Acta,1999,391(1):73-82.
    [63]Y.H. Yang, H.F. Yang, M.H. Yang, et al. Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/Chitosan composite film as immobilization matrix [J].Analytica Chimica Acta,2004,525(2):213-220.
    [64]F.F. Zhang, X.L. Wang, S.Y. Ai, et al. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor [J].Analytica Chimica Acta,2004,519(2):155-160.
    [65]Y.H. Lin, F. Lu, Y. Tu, et al. Glucose biosensors based on carbon nanotube nanoelectrode ensembles [J]. Nano Letters,2004,4(2):191-195.
    [66]F. Patolsky, Y. Weizmann, I. Willner. Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors [J]. Angewandte Chemie International Edition,2004,43(16):2113-2117.
    [67]M.H. Yang, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu. Platinum nanowire nanoelectrode array for the fabrication of biosensors [J]. Biomaterials,2006,27(35):246-255.
    [68]D. Moscone, D. D'Ottavi, D. Compagnone, et al. Construction and analytical characterization of Prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors [J]. Analytical Chemistry,2001,73(11):2529-2535.
    [69]Y. Liu, T. Yu. Polymers and enzyme biosensors. J.M.S.-Rev [J]. Macromolecular Chemistry and Physics,1997, C37:459-500.
    [70]I. Gill, A. Ballesteros. EncapsμLation of biologicals within silicate, siloxane, and hybrid sol-gel polymers:an efficient and generic approach [J].Journal of American Chemistry Society,1998, 120 (34):8587-8598.
    [71]Y.Q. Miao, S.W. Tan. Amperometric hydrogen peroxide biosensor based on immobilization of peroxidase in chitosan matrix cross-linked with glutaraldehyde [J]. The Analyst,2000,125 (9): 1591-1594.
    [72]李春香,阳明辉,沈国励,俞汝勤,基于2,6-吡啶二甲酸聚合膜固定纳米金胶的过氧化氢传感器的研究[J].化学学报,2004,62(17),1663.
    [73]K.T. Lau. Interfacial bonding characteristics of nanotube/polymer composites [J]. Chemical Pyhsics Letters,2003,370 (3-4):399-405.
    [74]孔祥晋,潘湛昌,肖楚民,张环华,纳米氧化铈催化作用研究探讨[J].化学与生物工程,2005,22(2),1-6.
    [75]H. Okuma, E. Watanabe. Flow system for fish freshness determination based on double multi-enzyme reactor electrodes [J]. Biosensors and Bioelectronics,2002,17(5):367-372.
    [76]K.C. Grabar, R.G. Freeman, M.B. Hommer. Preparation and characterization of Au colloid monolayers [J]. Analytical Chemistry,1995,67(4):735-743.
    [77]W. Oungpipat, P.W. Alexander, P. Southwell-Keely. A reagentless amperometric biosensor for hydrogen peroxide determination based on asparagus and ferrocene mediation [J]. Analytical Chimica Acta,1995,309(1-3):35-45.
    [78]Y.T. Wang, J.Z. Zhu, R.J. Zhu, et al. Chitosan/Prussian blue-based biosensors [J]. Measurement Science & Technology,2003,14 (6):831-836.
    [79]J.X. Huang., S. Virji, B.H. Weiller, R.B. Kaner. Polyaniline nanofibers:facile synthesis and chemical sensors [J]. Journal of the American Chemical Society,2003,125(2):314-315.
    [80]X.Y. Zhang, S.K. Manohar. Narrow pore-diameter polypyrrole nanotubes [J]. Journal of the American Chemical Society,2005,127(41):14156-14157.
    [81]B.K. Jena, C.R. Raj. Electrochemical Biosensor Based on Integrated Assembly of Dehydrogenase Enzymes and Gold Nanoparticles [J]. Analytical Chemistry,2006,78(18):6332-6339.
    [82]K. Yang, H. Wang, K. Zou, X.H. Zhang. Gold nanoparticle modified silicon nanowires as biosensors [J]. Nanotechnology.2006,17 (S276-S279):276-279
    [83]X.L. Ren, X.W. Meng, D. Chen, F.Q. Tang, J. Jiao. Using silver nanoparticle to enhance current response of biosensor [J]. Biosensors & Bioelectronics,2005,21(3):433-437.
    [84]S. Hrapovic, Y.I. Liu, B.M. Keith, H.T.L. John. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J]. Analytical Chemistry,2004,76(4):1083-1088.
    [85]Z.L. Wang. Zinc oxide nanostructures:growth, properties and applications [J]. J. Phys.:Condens Matter,2004,16(25):829-858.
    [86]A.P.A. Oliveira, J.F. Hochepied, F. Grillon, M.H. Berger. Controlled Precipitation of Zinc Oxide Particles at Room Temperature [J]. Chem.Mater.2003,15(16):3202-3207.
    [87]M. Yin, Y. Gu, I.L. Kuskovsky, T. Andelman, Y.M. Zhu, G.F. Neumark, S. O Brien. Zinc oxide quantum rods [J]. Journal of the American Chemical Society,2004,126(20):6206-6207.
    [88]K. Yamamoto, K. Nagasawa, T. Ohmori. Preparation and characterization of ZnO nanowires [J]. Physica,2004,24 (E):129-132.
    [89]Z.Q. Li., Y.J. Xiong, Y. Xie. Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route [J]. Inorganic Chemistry,2003,42(24):8105-8109.
    [90]M. Izaki, T. Omi, Transparent zinc oxide films prepared by electrochemical reaction [J]. Applied Physics Letters.,1996,68(17):2439-2440.
    [91]J. Wang, M. Musameh, Y.H.Lin, Sclubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors [J]. Journal of the American Chemical Society,2003, 125(9):2408-2409.
    [92]Y.H. Lin, F. Lu, Y. Tu, Z.F. Ren. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles [J]. Nano Letter,2004,4(2):191-195..
    [93]J. Wang, J.H. Dai, T. Yarlagadda. Carbon Nanotube-Conducting-Polymer Composite [J]. Nanowires Langmuir,2005,21(1):9-12.
    [94]Y.L. Liu, Y.H. Yang, H.F. Yang, Z.M. Liu, G.L. Shen, R.Q. Yu. Nano-sized Flower-like ZnO Synthesized by a Simple Hydrothermal Method and Applied as Matrix for Horseradish Peroxidase Immobilization for Electro-biosensing [J]. Journal of Inorganic Biochemistry,2005,99(10): 2046-2053.
    [95]Y. Leprince-Wang, G.Y. Wang, X.Z. Zhang, D.P. Yuc. Study on the microstructure and growth mechanism of electrochemical deposited ZnO nanowires [J]. Crystal Growth,2006,287(1):89-93.
    [96]L.D. Mello, M.D.P.T. Sotomayor, L.T. Kubota. HRP-based amperometric biosensor for the polyphenols determination in vegetables extract [J]. Sensors and Actuators B,2003,96:636-645.
    [97]B.Q. Wang, B. Li, Q. Deng, et al. Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material [J]. Analytical Chemistry,1998,70 (15):3170-3174.
    [98]J.H. Yu, H.X. Ju. Preparation of porous titania matrix for immobilization of horseradish peroxidase by vaporous deposition sol-gel method [J]. Analytical Chemistry,2002,74(14): 3579-3583.
    [99]J.M. Elliott, P.R. Birkin, P.N. Bartlett, et al. Platinum microelectrodes with unique high surface areas [J]. Langmuir,1999,15(22):7411-7415.
    [100]S.A.G. Evans, J.M. Elliott, L.M. Andrews, et al. Detection of hydrogen peroxide at mesoporous platinum microelectrodes [J]. Analytical Chemistry,2002,74(6):1322-1326.
    [101]L.A. Pachla, D.L. Reynolds, D.S. Wright, et al. Analytical methods for measuring uric acid in biological samples and food products [J]. Journal-Association of Official Analytical Chemists, 1987,70(1):1-14.
    [102]铃木周-主编,霍纪文,姜远海译.生物传感器[M].北京:科学出版社,1988.
    [103]朱献军刘建国,黎高翔.尿酸氧化酶基因的克隆、表达及其产物的应用[J].生物工程学报,2001,17(1):68-72.
    [104]卢旭晓,杜霞,薛玲,白慧萍,等,碳纳米管和纳米氧化锌修饰的尿酸传感器的研制[J].云南大学学报,2007,29(S1):216-221.
    [105]H. Tomonori, S. Hidkazu, A. Jun-ichi. Amperometric uric acid sensors based on polyelectrolyte multilayer films [J]. Talanta.2003,3 (61):363-368.
    [106]王晓丽,张芬芬,陈燕,等,碳纳米管修饰的尿酸传感器的研制及应用[J].化学传感器,2003,23(3):55-61.
    [107]O.M.M. Castillo, D.E. Rodriguez, J.C. Encinas, et al. Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly (n-butyl methacrylate) composites [J]. Sensors and Actuators B:Chemical,2002,85(1-2):19-25.
    [108]X.Y. Wang, T. Hagiwara, S. Uchiyama. Immobilization of uricase within polystyrene using polymaleimidostyrene as a stabilizer and its application to uric acid sensor [J]. Analytica Chimica Acta,2007,587(1),41-46.
    [109]A. Riklin, I. Willner. Glucose and acetylcholine sensing multiplayer enzyme electrode of controlled enzyme layer thickness [J], Analytical Chemistry,1995,67 (22):4118-4126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700