纳米材料的合成、表征及其在生物传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的出现为生物传感器的发展提供了很好的平台。利用纳米材料独特的物理和化学性质,基于纳米材料的生物传感器的性能目前已被提高到一个新的水平,如具有灵敏度高、响应速度快、检测范围宽、选择性好和稳定性高等优点。本论文通过调控纳米材料的组成、结构、尺寸和形状,制备出新颖的纳米生物传感器,使用TEM、SEM、XRD、EDS、FTIR、UV-vis、EIS、CV等表征手段对纳米材料及其生物传感器的组成、结构、尺寸、形貌、晶体结构和性能等进行了表征。本论文获得的主要成果如下:
     1.用水热法制备了形状新颖的钛酸铋纳米片亚微球(NBTSMs)。借助氢键和静电相互作用,NBTSMs和蛋白质可以有序地组装在玻碳电极上,从而制备出高性能的生物传感器。研究发现,NBTSMs材料对酶有很好的生物相容性;能够实现酶与电极间的直接电子转移;对H_2O_2有较好的电催化性能,如宽的检测范围(2-430μM)、低的检测限(0.46μM)、小的米氏常数(204μM)、高的稳定性和好的可重复性。
     2.通过二次生长的方法合成了以ZnO纳米棒为主轴,SnO_2纳米棒为枝丫的ZnO/SnO_2复合纳米材料。将ZnO/SnO_2复合纳米材料与血红蛋白(Hb)、壳聚糖(Chi)一起构筑了新颖的纳米生物传感器。研究发现,ZnO/SnO_2复合纳米材料具有很好的生物相容性;能够实现酶与电极间的直接电子转移;对H2O_2有较好的电催化性能,如宽的检测范围(2-370μM)、低的检测限(0.57μM)、高的稳定性和好的可重复性。
     3.将立方形的AucoreCo_3O_(4shell)纳米材料与聚丙烯酸(PAA)、辣根过氧化物酶(HRP)一起构筑了新的纳米生物传感器。通过紫外可见谱、电化学阻抗和循环伏安测量发现,AucoreCo_3O_(4shell)-PAA-HRP复合膜具有很好的生物相容性和电化学性质。复合膜中的HRP在磷酸缓冲溶液(PBS)中有一对可逆的氧化还原峰;对H_2O_2有较好的电催化性能,如宽的检测范围(2-370μM)、高的动力学常数(7.4 s~(-1))和比较小的米氏常数(0.91 mM)。
Nanomaterials have offered a good platform for the development of electrochemical biosensors. Now, the performance of biosensors has greatly improved through using nanomaterials because nanomaterials possess unique physical and chemical properties. for example, these biosensors based on nanomaterials have high sensitivity, fast response, wide linear range, well selectivity and high stability. The major results of the thesis are as follows:
     1. Nanoplated bismuth titanate sub-microspheres (NBTSMs) were for the first time synthesized by a facile hydrothermal synthesis strategy. The NBTSMs were employed as a supporting matrix to explore a novel immobilization and biosensing platform of redox proteins through a combined hydrogen bond and electrostatic assembly process. The NBTSMs-based composite film has good biocompabiliity, direct electron transfer capacity, and good electrocatalytic properties such as wide linear range (2-430μM), low detection limit (0.46μM), low Michaelis-Menten constant (204μM), and good stability and reproducibility.
     2. ZnO/SnO_2 Composite nanomaterials were prepared with SnO_2 nanorods as the template via a secondary growth methode. A completely new biosensor composed of ZnO/SnO_2 composite nanomaterials, chitosan, and hemoglobin was fabricated. The ZnO/SnO_2-based composite film has good biocompabiliity, direct electron transfer capacity, and good electrocatalytic properties such as wide linear range (2-370μM), low detection limit (0.57μM), and good stability and reproducibility.
     3. A new biosensor composed of cube-shaped AucoreCo_3O_(4shell) nanoparticles, polyacrylic acid (PAA), and horseradish peroxidase (HRP) was fabricated. The biocompatibility and electrochemical properties of the resulting AucoreCo_3O_(4shell)-PAA-HRP composite film were studied by UV-visible spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The immobilized HRP shows a pair of quasi-reversible redox peaks at -0.31 V in 20 mM PBS (pH 7.0), and the biosensor shows a fast amperometric response to hydrogen peroxide with a linear range of 2-370μM. The kinetic parameters such as ks (electron transfer rate constant) and KM (Michaelis–Menten constant) are evaluated to be about 7.4 s~(-1) and 0.91 mM, respectively.
引文
[1]沈海军.纳米科技概论[M].北京:国防工业出版社, 2007.
    [2]朱宏伟,吴得海,徐才录.碳纳米管[M].北京:机械工业出版社, 2003: 14-25.
    [3] Jia Z.J., Wang Z.Y., Xu C.L., et al. Study on poly (methyl methacrylate): carbon nanotube composites[J]. Mater. Sci. Eng., 1999, 271(1-2): 395-400.
    [4]张春友.跨世纪的高科技—纳米技术[J].湖南冶金, 1994, 1: 50-52.
    [5] Johnson B.F.G. From clusters to nanoparticles and catalysis[J]. Coord. Chem. Rev., 1999, 190: 1269-1285.
    [6]谢宗红.新型纳米材料在酶生物传感器中的研究及应用[D].上海:华东师范大学, 2007.
    [7]李淑娥,唐润清,刘汉忠.纳米材料的分类及其物理性能[J].济宁师范专科学校学报, 2007, 28(3): 10-11.
    [8]许春向.生物传感器及其应用[M].北京:科学出版社, 1993: 4-6.
    [9] Updike S.J., Hicks G.P. The enzyme electrode[J]. Nature, 1967, 214(6): 986-988.
    [10] Turner A.P.F. Current trends in biosensor research and development[J]. Sens. Actuators, 1989, 17(3-4): 433-450.
    [11] Padeste C., Kossek S., Lehmann H.W., et al. Fabrication and characterisation of nanostructured gold electrodes for electrochemical biosensors[J]. J. Electrochem. Soc., 1996, 143(12): 3890-3895.
    [12] Bigelow W.C., Pickett D.L., Zisman W.A. Oleophobic monolayers films adsorbed from solution in non-polar liquids[J]. J. Colliod. Interface. Sci., 1946, 1(6): 513-538.
    [13] Sagiv J. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces[J]. J. Am. Chem. Soc., 1980, 102(1): 92-98.
    [14] Nuzzo R.G., Allara D.L., Adsorption of Bifunctional Organic Disulfides on Gold Surfaces[J]. J. Am. Chem. Soc., 1983, 105(13): 4481-4483.
    [15] Xu S.Y., Tu G.L., Peng B., et al. Self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres for fabrication of a mediatorless biosensor[J]. Anal. Chim. Acta., 2006, 570(2): 151-157.
    [16] Lvov Y., Ariga K., Kunitake T., et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption[J]. J. Am. Chem. Soc., 1995, 117(22): 6117-6123.
    [17] Lu X.B., Wen Z.H., Li J.H. Hydroxyl-containing antimony oxide bromide nanorodscombined with chitosan for biosensors[J]. Biomaterials, 2006, 27(33): 5740-5747.
    [18] Feng J.J., Zhao G., Xu J.J., et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan[J]. Anal. Biochem., 2005, 342(2): 280-286.
    [19] Du D., Huang X., Cai J., et al. Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix[J]. Sens. Actuators, B, 2007, 127(2): 531-535.
    [20] Wang B.Q., Li B., Deng Q. Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material[J]. Anal. Chem., 1998, 70(15): 3170-3174.
    [21] Niu J.J., Lee J.Y. Reagentless mediated biosensors based on polyelectrolyte and sol-gel derived silica matrix[J]. Sens. Actuators, B, 2002, 82(2-3): 250-258.
    [22] Cai W.Y., Xu Q., Zhao X.N., et al. Porous Gold-Nanoparticle-CaCO3 Hybrid Material: Preparation, Characterization, and Application for Horseradish Peroxidase Assembly and Direct Electrochemistry[J]. Chem. Mater., 2006, 18(2): 279-284.
    [23] Wang J.W., Gu M., Di J.W., et al. A carbon nanotube/silica sol-gel architecture for immobilization of horseradish peroxidase for electrochemical biosensor[J]. Bioprocess. Eng., 2007, 30: 289-296.
    [24] Di J.W., Peng S.H., Shen C.P., et al. One-step method embedding superoxide dismutase and gold nanoparticles in silica sol-gel network in the presence of cysteine for construction of third-generation biosensor[J]. Biosens. Bioelectron., 2007, 23(1): 88-94.
    [25] Liu S.Q., Ju H.X. Electrocatalysis via Direct Electrochemistry of Myoglobin Immobilized on Colloidal Gold Nanoparticles[J]. Electroanalysis, 2003, 15(18): 1488-1493.
    [26] Topoglidis E., Lutz T., Willis R.L., et al. Protein adsorption on nanoporous films: a novel approach TiO2 to studying photoinduced protein/electrode transfer reactions[J]. Faraday Discuss., 2000, 116(116): 35-46.
    [27] Topoglidis E., Campbell C.J., Cass A.E.G., et al. Factors that Affect Protein Adsorption on Nanostructured Titania Films. A Novel Spectroelectrochemical Application to Sensing[J]. Langmuir, 2001, 17(25): 7899-7906.
    [28] Zhang Y., He P.L., Hu N.F. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis[J]. Electrochim. Acta., 2004, 49(12): 1981-1988.
    [29] Bartlett P.N., Cooper J.M. Applications of electroactive polymers in bioelectrochemistry and bioelectronics[J]. Electroact. Polym. Electrochem., 1994, 363(2): 233-267.
    [30] Zhou Y., Yuan R., Chai Y.Q. A reagentless amperometric immunosensor based on gold nanoparticles/thionine/Nafion-membrane-modified gold electrode for determination ofα-1-fetoprotein[J]. Electrochem. Commun., 2005, 7: 355-360.
    [31] Rusling J.F. Enzyme Bioelectrochemistry in Cast Biomembrane-like Films[J]. Acc. Chem. Res., 1998, 31(6): 363-369.
    [32] Jia J.B., Wang B.Q., Wu A.G., et al. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network[J]. Anal. Chem., 2002, 74 (9): 2217-2223.
    [33] Liu S.Q., Dai Z.H., Chen H.Y., et al. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor[J]. Biosens. Bioelectron., 2004, 19(9): 963-969.
    [34] Paolucci-Jeanjean D., Belleville M.P., Rios G.M. Biomolecule Applications for Membrane-Based Phase Contacting Systems: Distribution, Separation and Reaction-A First State of the Art[J]. Chem. Eng. Res. Des., 2005, 83(3): 302-308.
    [35] Iwasaki Y., Nakagawa C., Ohtomi M., et al. Novel biodegradable polyphosphate cross-linker for making biocompatible hydrogel[J]. Biomacromolecules, 2004, 5(3): 1110-1115.
    [36] Simionescu C., Popa M.I., Dumitriu S. Bioactive polymers XXX. Immobilization of invertase on the diazonium salt of 4-aminobenzoylcellulose[J]. Biotechnol. Bioeng., 1987, 29(3): 361-365.
    [37] Akyilmaz E., Sezginturk M.K., Dinckaya E. A biosensor based on urate oxidase-peroxidase coupled enzyme system for uric acid determination in urine[J]. Talanta, 2003, 61(2): 73-79.
    [38] Emregul E., Sungur S., Akbulut U. Immobilization of glucose oxidase onto gelatin for biosensor construction[J]. J. Biomat. Sci. Polym. Ed., 2005, 16(4): 505-519.
    [39] Umar A., Rahman M.M., Vaseem M., et al. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles[J]. Electrochem. Commun., 2009, 11(1): 118-121.
    [40] Wang Y., Qian W.P., Tan Y., et al. Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells[J]. Talanta, 2007, 72(3): 1134-1140.
    [41] Cai C.X., Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode[J]. Anal. Biochem., 2004, 325(2): 285-292.
    [42] Zhao G.C., Zhang L., Wei X.W., et al. Myoglobin on multi-walled carbon nanotubesmodified electrode: direct electrochemistry and electrocatalysis[J]. Electrochem. Commun., 2003, 5(9): 825-829.
    [43] Yu X., Chattopadhyay D., Galeska I., et al. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes[J]. Electrochem. Commun., 2003, 5(5): 408-411.
    [44] Yang M.H., Qu F.L., Li Y.J., et al. Direct electrochemistry of hemoglobin in gold nanowire array[J]. Biosens. Bioelectron., 2007, 23(3): 414-420.
    [45] Umar A., Rahman M.M., Al-Hajry A., et al. Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets[J] Electrochem. Commun., 2009, 11(2): 278-281.
    [46] Lu X.B., Zhang H.J., Ni Y.W., et al. Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors[J]. Biosens. Bioelectron., 2008, 24(1): 93-98.
    [47] Zhang L., Zhang Q., Li J.H. Layered Titanate Nano-Sheets Intercalated with Myoglobin for Direct Electrochemistry[J]. Adv. Funct. Mater., 2007, 17(12): 1958-1965.
    [48] Kafi A.K.M., Wu G., Chen A. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays[J]. Biosens. Bioelectron., 2008, 24(4): 566-571.
    [49] Xie J.S., Feng X.M., Hu J.Q., et al. Al3+-directed self-assembly and their electrochemistry properties of three-dimensional dendriform horseradish peroxidase/polyacrylamide/platinum/single-walled carbon nanotube composite film[J]. Biosens. Bioelectron., 2010, 25(5): 1186-1192.
    [50] Armstrong F.A., Hill H.A.O., Walton N.J. Direct electrochemistry of redox proteins[J]. Acc. Chem. Res., 1988. 21, 407-413.
    [51] Kong T., Chen Y., Ye Y.P., et al. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes[J]. Sens. Actuators, B, 2009, 138(1): 344-350.
    [52] Ivnitski D., Branch B., Atanassov P., et al. Glucose oxidase anode for biofuel cell based on direct electron transfer[J]. Electrochem. Commun., 2006, 8(8): 1204-1210.
    [53] Jia W.Z., Guo M., Zheng Z., et al. Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4nanowalls electrode: Toward H2O2 detection[J]. J. Electroanal. Chem., 2009, 625: 27-32.
    [54] Pal S., Alocilja E.C., Downes F.P. Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species[J]. Biosens. Bioelectron., 2007, 22(9-10): 2329-2336.
    [55] Rinehart J.P., Li A.Q., Yocum G.D., et al. Up-regulation of heat shock proteins is essentail for cold survival during insect diapause[J]. P. Natl. Acad. Sci. USA, 2007, 104(27): 1130-1137.
    [56] Heller A. Electrical wiring of redox enzymes[J]. Acc. Chem. Res., 1990, 23(5): 128-134.
    [57] Liu Y., Wang M.K., Zhao F., et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix[J]. Biosens. Bioelectron., 2005, 21(6): 984-988.
    [58] Wang F., Chen X.X., Xu Y.X., et al. Enhanced electron transfer for hemoglobin entrapped in a cationic gemini surfactant films on electrode and the fabrication of nitric oxide biosensor[J]. Biosens. Bioelectron., 2007, 23(2): 176-182.
    [59] Li J.W., Fan C., Xiao F., et al. In?uence of ionic liquids on the direct electrochemistry of glucose oxidase entrapped in nanogold-N, N-dimethylformamide-ionic liquid composite film[J]. Electrochim. Acta., 2007, 52(20): 6178-6185.
    [60] Sinha R., Ganesana M., Andreescu S., et al. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides[J]. Anal. Chim. Acta., 2010, 661(2): 195-199.
    [61] Qiu J.D., Peng H.P., Liang R.P., et al. Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry[J]. Biosens. Bioelectron., 2010, 25(6):1447-1453.
    [62] Yang J., Xu Y., Zhang R.Y., et al. Direct Electrochemistry and Electrocatalysis of the Hemoglobin Immobilized on Diazonium-Functionalized Aligned Carbon Nanotubes Electrode[J]. Electroanalysis, 2009, 21(5): 1672-1677.
    [63] Chen X., Fu C.L., Yang W.S. Graphite nanosheet-based composites for mediator-free H2O2 biosensor[J]. Analyst., 2009, 134(10): 2135-2140.
    [64] Hong J.M., Dai Z.H. Amperometric biosensor for hydrogen peroxide and nitrite based on hemoglobin immobilized on one-dimensional gold nanoparticle[J]. Sens. Actuators, B, 2009, 140(1): 222-226.
    [65] Wang Y.Y., Chen X.J., Zhu J.J. Fabrication of a novel hydrogen peroxide biosensor based on the AuNPs-C@SiO2 composite[J]. Electrochem. Commun., 2009, 11(2): 323-326.
    [66] Zheng W., Zheng Y.F., Jin K.W., et al. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films[J]. Talanta, 2008, 74(5):1414-1419.
    [67] Xu S.Y., Peng B., Han X.Z. A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres[J]. Biosens. Bioelectron., 2007, 22(8): 1807-1810.
    [68] Guo C.X., Hu F.P., Li C.M., et al. Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor[J]. Biosens. Bioelectron., 2008, 24(4): 819-824.
    [69] Cheng G.F., Zhao J., Tu Y.H., et al. A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole[J]. Anal. Chim. Acta., 2005, 533(1): 11-16.
    [70] Qiao Y.B., Jian F.F., Bai Q., Bioconjugation of zirconium uridine monophosphate: Application to myoglobin direct electrochemistry[J]. Biosens. Bioelectron., 2008, 23(8): 1244-1249.
    [71] Yang Q.B., Li Y.X., Yin Q.R., et al. Bi4Ti3O12 nanoparticles prepared by hydrothermal synthesis[J]. J. Eur. Ceram. Soc., 2003, 23(1): 161-166.
    [72] Villegas M., Moure C., Fernandez J.F., et al. Low-Temperature Sintering of Submicronic Randomly Oriented Bi4Ti3O12 Materials[J]. Ceram. Intern., 1996, 22(1): 15-22.
    [73] Nagaoka T., Yoshino T. Surface Properties of Electrochemically Pretreated Glassy Carbon[J]. Anal. Chem., 1986, 58(6): 1037-1042.
    [74] Shi K., Hu K., Wang S., et al. Structural studies of electrochemically activated glassy carbon electrode: Effects of chloride anion on the redox responses of copper deposition[J]. Electrochim. Acta., 2007, 52(19): 5907-5913.
    [75] Wang H.S., Ju H.X., Chen H.Y. Adsorptive Stripping Voltammetric Detection of Single-Stranded DNA at Electrochemically Modified Glassy Carbon Electrode[J]. Electroanalysis, 2002, 14(23): 1615-1620.
    [76] Chen X., Fu C.L., Wang Y. Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni-Al layered double hydroxide nanosheets[J]. Biosens. Bioelectron., 2008, 24(3): 356-61.
    [77] Theorell H., Ehrenberg V. Acta. SPectro Photometric, magnetic, and titrimetric studies on the heme-linked groups in myoglobin[J]. Chem. Scand., 1951, 5: 823-826.
    [78] Kauppinen J.K., Moffate D.J., Mantsch H.H., et al. Fourier self-deconvolution-a method for resolving intrinsically overlapped bands[J]. Appl. Spectrosc., 1981. 35(3), 271-276.
    [79] Pei R.J., Cheng Z.L., Wang E.K., Yang X.R., Amplification of antigen–antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy[J]. Biosens. Bioelectron., 2001, 16(6): 355-361.
    [80] Yang J., Pang F.Y., Zhang R.Y., et al. Electrochemistry and Electrocatalysis of Hemoglobin on 1-Pyrenebutanoic Acid Succinimidyl Ester/Multiwalled Carbon Nanotube and Au Nanoparticle Modified Electrode[J]. Electroanal., 2008, 20(19):2134-2140.
    [81] Dai Z.H., Bai H.Y., Hong M., et al. A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres[J]. Biosens. Bioelectron., 2008, 23(12): 1869-1873.
    [82] Qi H.L., Zhang C.X., Li X.R. Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin Sensor[J]. Actuat. B Chem., 2006, 114(1): 364-370.
    [83] Salimi A., Sharifi E., Noorbakhsh A., et al. Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles[J]. Electrochem. Commun., 2006, 8(9): 1499-1508.
    [84] Cao D.F., Hu N.F. Direct electron transfer between hemoglobin and pyrolytic graphite electrodes enhanced by Fe3O4 nanoparticles in their layer-by-layer self-assembly films[J]. Biophys. Chem., 2006, 121: 209-217.
    [85] Dai Z.H., Liu S.Q., Ju H.X., et al. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix[J]. Biosens. Bioelectron., 2004, 19: 861-867.
    [86] Wang J., Carbon-nanotube based electrochemical biosensors: A review[R]. Electroanalysis, 2005, 17(1): 7-14.
    [87] Laviron E. Adsorption autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry[J]. J. Electroanal. Chem., 1974, 52(3): 355-393.
    [88] Deng C.Y., Chen J.H., Chen X.L., et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode[J]. Biosens. Bioelectron., 2008, 23(8): 1272-1277.
    [89] Huang H., Hu N.F., Zeng Y.H., et al. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films[J]. Anal. Biochem., 2002, 308: 141-151.
    [90] Kamin R.A., Wilson G.S. Rotating ringdisk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer[J]. Anal. Chem., 1980, 52(8): 1198-1205.
    [91] Xu J.M., Li W., Yin Q.F., et al. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode[J]. J. Colloid Interf. Sci., 2007, 315: 170-176.
    [92] Cheng G., Wu K., Zhao P.T., et al. Solvothermal controlled growth of Zn-doped SnO2 branched nanorod clusters[J]. J. cryst. Growth, 2007, 309(1): 53-59.
    [93] Lieber C.M. Nanoscale science and technology: Building a big future from smallthings[J]. MRS Bull, 2003, 28(7): 486-491.
    [94] Huang M.H., Mao S., Feick H., et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899.
    [95] Xia Y., Yang P., Sun Y., et al. One-Dimensional Nanostructures: Synthesis, Characterization and Applications[J]. Adv. Mater., 2003, 15(5): 353-358.
    [96] Gudiksen M.S., Lauhon L.J., Wang J., et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature, 2002, 415(6872): 617-620.
    [97] Elangovan E., Ramamurthi K. Effect of substrate temperature on electrical and optical properties of spray deposited SnO2: Sb thin films[J]. J. Optoelectron. Adv. Mater., 2003, 5(2): 415-420.
    [98] Law M., Kind H., Messer B., et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature[J]. Angew. Chem. Int. Ed., 2002, 41(13): 2405-2408.
    [99] Park N.G., Kang M.G., Kim K.M., et al. Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO2 and TiO2 cores[J]. Langmuir, 2004, 20(10): 4246-4253.
    [100] Ferrere S., Zaban A., Gregg B.A. Dye sensitization of nanocrystalline tin oxide by perylene derivatives[J]. J. Phys. Chem. B, 1997, 101(23): 4490-4493.
    [101] Pan Z.W., Dai Z.R., Wang Z.L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949.
    [102] Hu J.Q., Bando Y., Golberg D. Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons[J]. Chem. Phys. Lett., 2003, 372(5-6): 758-762.
    [103] Duan J.H., Yang S.G., Liu H.W., et al. Single crystal SnO2 zigzag nanobelts[J]. J. Am. Chem. Soc., 2005, 127 (17): 6180-6181.
    [104] Ravichandran K., Sakthivel B., Philominathan P. Nanocrystalline transparent SnO2-ZnO films fabricated at lower substrate temperature using a low-cost and simplified spray technique[J]. Cryst. Res. Technol., 2010, 45(3): 292-298.
    [105] Yang Z.J., Lv L.L., Dai Y.L., et al. Synthesis of ZnO-SnO2 composite oxides by CTAB-assisted co-precipitation and photocatalytic properties[J]. Appl. Surf. Sci., 2010, 256(9): 2898-2902.
    [106] Luo X.L., Xu J.J., Zhang Q., et al. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly[J]. Biosens. Bioelectron., 2005, 21(1): 190-196.
    [107] Chen H.J., Dong S.J. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived ceramic-carbon nanotube nanocomposite film[J]. Biosens. Bioelectron., 2007, 22(8): 1811-1815.
    [108] Wang S.F., Chen T., Zhang Z.L., et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids [J]. Langmuir, 2005, 21(20): 9260-9266.
    [109] Zhou Y.L., Hu N.F., Zeng. Y.H., et al. Heme protein-clay films: Direct electrochemistry and electrochemical catalysis[J]. Langmuir, 2002, 18(1): 211-219.
    [110] Wang J. Electrochemical Glucose Biosensors[R]. Chem. Rev., 2008, 108(2): 814-825.
    [111] Liu G.Z., Paddon-Row M.N., Gooding J.J. A molecular wire modified glassy carbon electrode for achieving direct electron transfer to native glucose oxidase[J]. Electrochem. Commun., 2007, 9: 2218-2223.
    [112] Chen X.H., Hu J.Q., Chen Z.W., et al. Nanoplated bismuth titanate sub-microspheres for protein immobilization and their corresponding direct electrochemistry and electrocatalysis[J]. Biosens. Bioelectron., 2009, 24(12): 3448-3454.
    [113] Dai Z.H., Liu K., Tang Y.W., et al. A novel tetragonal pyramid-shaped porous ZnO nanostructure and its application in the biosensing of horseradish peroxidase[J]. J. Mater. Chem., 2008, 18(16): 1919-1926.
    [114] Shi W.L., Zeng H., Sahoo Y., et al. A general approach to binary and ternary hybrid nanocrystals[J]. Nano. Lett., 2006, 6(4): 875-881.
    [115] Hu J.Q., Wen Z.H., Wang Q., et al. Controllable synthesis and enhanced electrochemical properties of multifunctional AucoreCo3O4shell nanocubes[J]. J. Phys. Chem. B, 2006, 110(48): 24305-24310.
    [116] Ivnitski D., Artyushkova K., Rincon R.A., et al. Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: Glucose oxidase-catalyzed direct electron transfer[J]. Small, 2008, 4(3): 357-364.
    [117] Langell M.A., Anderson M.D., Carson G.A., et al. Valence-band electronic structure of Co3O4 epitaxy on CoO(100)[J]. Phys. Rev. B, 1999, 59(7): 4791-4798.
    [118] Wang X., Chen X.Y., Gao L.S., et al. One-dimensional arrays of Co3O4 nanoparticles: Synthesis, characterization, and optical and electrochemical properties[J]. J. Phys. Chem. B, 2004, 108(42): 16401-16404.
    [119] Resnick D.A., Gilmore K., Idzerda Y.U., et al. Magnetic properties of Co3O4 nanoparticles mineralized in Listeria innocua Dps[J]. J. Appl. Phys., 2006, 99(8): 08Q501.
    [120] Zhou L.P., Xu J., Miao H., et al. Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4 nanocrystals with molecular oxygen[J]. Appl. Catal. A: Gen.,2005, 292: 223-228.
    [121] Wang R.M., Liu C.M., Zhang H.Z., et al. Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic properties[J]. Appl. Phys. Lett., 2004, 85(11): 2080-2082.
    [122] Feng J., Zeng H.C. Size-controlled growth of Co3O4 nanocubes[J]. Chem. Mater., 2003, 15(14): 2829-2835.
    [123] He T., Chen D.R., Jiao X.L. et al. Co3O4 nanoboxes: Surfactant-templated fabrication and microstructure characterization[J]. Adv. Mater., 2006, 18(8): 1078-1082.
    [124] Ding Y.S., Xu L.P., Chen C.H., et al. Syntheses of nanostructures of cobalt hydrotalcite like compounds and Co3O4 via a microwave-assisted reflux method[J]. J. Phys. Chem. C, 2008, 112(22): 8177-8183.
    [125] Meng Y.D., Chen D.R., Jiao X.L. Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites[J]. J. Phys. Chem. B, 2006, 110(31): 15212-15217.
    [126] Natile M.M., Glisenti A. New NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts: Synthesis and characterization[J]. Chem. Mater., 2003, 15(13): 2502-2510.
    [127] Tak Y., Yong K. A novel heterostructure of Co3O4/ZnO nanowire array fabricated by photochemical coating method[J]. J. Phys. Chem. C, 2008, 112(1): 74-79.
    [128] Bromley K.M., Patil A.J., Seddon A.M., et al. Bio-functional mesolamellar nanocomposites based on inorganic/polymer intercalation in purple membrane (bacteriorhodopsin) films[J]. Adv. Mater., 2007, 19(18): 2433-2438.
    [129] Fujimori Y., Gotoh Y., Tamaki N., et al. Introduction of copper iodide fine particles into a poly(acrylic acid) matrix via a complex of polymer-polyiodide ions[J]. J. Mater. Chem., 2005, 15(45): 4816-4822.
    [130] Raitman O.A., Katz E., Buckmann A.F., et al. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems[J]. J. Am. Chem. Soc., 2002, 124(22): 6487-6496.
    [131] Wang S.F., Chen T., Zhang Z.L., et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids[J]. Langmuir, 2005, 21(20): 9260-9266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700