银杏GbPAL和GbANS基因的克隆与表达及ALA对类黄酮含量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏叶类黄酮具有重要的药用价值,提高其含量已成为银杏研究的热点与难题。研究表明,采用生理生化途径调控银杏叶类黄酮含量是一种有效的方法;利用植物基因工程技术提高银杏叶类黄酮含量也具有良好的前景。然而,银杏类黄酮生物合成途径在分子水平上的报道还较少。为深入研究银杏类黄酮的合成途径,并为今后利用基因工程技术提高银杏类黄酮含量奠定基础,本文首次克隆并研究了银杏类黄酮合成途径中的两个重要的基因,它们分别是苯丙氨酸解氨酶基因(GbPAL)和花色素合成酶基因(GbANS)。针对生理生化途径,本文研究了5-氨基乙酰丙酸(ALA)处理对银杏叶片类黄酮含量影响,以期为提高银杏叶类黄酮含量提供理论依据。其主要研究内容与结果如下:
     (1)银杏苯丙氨酸解氨酶基因的克隆、性质以及表达模式研究。利用RACE技术从银杏中克隆获得一个苯丙氨酸解氨酶基因GbPAL的cDNA和基因组全长(GenBank Accession No. EU071050)。GbPAL基因基因组序列与cDNA序列一样,无内含子。GbPAL基因cDNA全长为2886 bp,含有一个2172 bp的开放阅读框(ORF),编码724个氨基酸。蛋白质同源比对分析表明,GbPAL与其它植物的PAL蛋白高度同源,且包含苯丙氨酸解氨酶所必需的保守氨基酸位点和保守模式。用同源建模的方法得到GbPAL蛋白的三维模型,这个模型与欧芹PAL(PcPAL)的三维结构高度相似。PAL基因的系统进化树分析结果表明,GbPAL与裸子植物的PAL具有更近的亲缘关系。Southern blot结果表明,GbPAL基因属于一个多基因家族。实时定量PCR(real-time PCR)分析表明,GbPAL基因在银杏不同器官中组成型表达,但在茎和叶中的表达相对较高。Real-time PCR分析结果显示,GbPAL基因的表达受UV-B、机械损伤、水杨酸和低温的诱导,暗示GbPAL基因参与了银杏对逆境胁迫的抗性。线性回归分析结果表明银杏叶类黄酮含量与GbPAL基因表达量之间存在显著正相关关系,表明GbPAL基因可能是银杏叶类黄酮合成途径中的关键基因之一。
     (2)银杏花色素合成酶基因的克隆、功能分析及响应非生物胁迫的表达模式。利用RACE技术首次从裸子植物银杏中克隆得到一个花色素合成酶基因GbANS的cDNA全长(EU600206)和基因组序列(EU600205)。GbANS基因全长cDNA为1441 bp,含有一个1062 bp的ORF,编码354个氨基酸。蛋白序列多重比对结果表明,GbANS蛋白与其它植物的ANS蛋白具有很高的相似性,GbANS存在结合亚铁离子和酮戊二酸的保守位点。GbANS基因含有三个外显子和两个内含子。通过基因组步移的方法获得了GbANS基因的5'侧翼序列,该区域含有包括TATA盒在内的启动子必需元件,序列预测表明,这个区域还含有光、冷、水杨酸、乙烯和脱落酸应答等顺式作用元件。同源建模产生的GbANS三维结构与功能已知的、拟南芥ANS(AtANS)的三维结构一样,具有2-ODD酶特征性的扭曲果冻状结构。类黄酮特异2-ODD酶进化树分析表明,GbANS与其它植物的ANS具有共同的祖先。Southern blot结果显示,GbANS基因属于一个多基因家族。Real-time PCR分析表明,GbANS基因的表达水平在不同器官以及器官不同时期均有差异性,在成熟果中的表达量最高,胚珠和雄蕊,茎和根中未检测到有表达,花青苷在各器官中的含量显示了与GbANS基因器官与发育表达图谱良好的一致性。real-time PCR分析结果显示GbANS基因的表达水平受UV-B、脱落酸、低温、水杨酸、乙烯以及蔗糖上调,这一结果与GbANS基因启动子序列预测分析的结果相吻合,表明GbANS基因可能参与银杏对上述逆境胁迫下的抗性。原核表达的重组GbANS蛋白的分子量大小和通过生物信息学预测的分子量大小相同。Western blot试验结果表明,重组GbANS蛋白的N末端含有6×His标签,说明GbANS基因编码的GbANS蛋白可以在大肠杆菌中正确的表达。利用HPLC分析纯化的重组GbANS蛋白体外酶活性,结果表明重组GbANS蛋白具有两种功能,即(1)催化无色花青素生成花青素,(2)催化二氢槲皮素生成槲皮素。
     (3) ALA对银杏类黄酮含量的影响。以3年生盆栽银杏实生苗为试材,研究了叶面处理浓度分别为10、100 mg/L的ALA对银杏叶光合作用、叶绿素含量、可溶性糖含量、类黄酮含量、总多酚含量、花青苷、黄酮合成相关的酶(PAL、CHS和CHI)活性的影响。结果表明,在处理后的第4天,相对对照而言,ALA处理的银杏叶的光合速率显著提高,ALA的这种促进作用一直稳定维持到处理后的第16天。ALA处理能显著提高银杏叶的叶绿体和可溶性糖含量,且随着处理时间的延长增幅加大,但对于叶绿体a/叶绿体b的比值无显著性差异。总酚、类黄酮以及花青苷含量在ALA的处理下迅速增加,其增加速率显著高于对照。ALA处理下PAL、CHS和CHI的活性变化与类黄酮含量的变化趋势相似,表明ALA可显著诱导PAL、CHS和CHI的活性。上述处理效果均具有浓度效应,以100mg/L ALA的效果较佳。
The flavonoids of Ginkgo biloba have many beneficial pharmaceutical properties for human health. The studies on increasing the content of flavonoids in G. biloba had been more and more popular and important. Until now, many methods had been carried out to increase the content of G. biloba flavonoids, and it was available method via physiological and biochemical to increase flavonoid content. In addition, it will be an effective method by genetic engineering to increase flavonoid content in the near future. However, the overall biosynthetic pathway of flavonoids in G. biloba is unclear at molecular genetic level. In order to deepen the research in this area, and to lay a groundwork for increasing the content of ginkgo flavonoids by using bioengineering, cloning and characterization of two key genes GbPAL and GbANS, which encoding phenylalanine ammonia-lyase and anthocyanidin synthase, involved in the biosynthetic pathway of flavonoids, are presented in this text for the first time. Moreover, to provide a new theory basis and practical reference for promoting the accumulation of flavonoids of ginkgo leaves, the effects of 5-aminolevulinic acid (ALA), a key precursor in the biosynthesis of porphyrins, in a low level (10 and 100 mg/l) on photosynthesis, flavonoids accumulation in ginkgo leaves were also first investigated in this research. The main contents and results in the present study are as following:
     (1) Molecular cloning, characterization and expression of phenylalanine mmonia-lyase gene from G. biloba.
     A full-length cDNA and genomic DNA of phenylalanine ammonia-lyase gene, which catalyzes the first step in the flavonoid biosynthetic pathway, were isolated from G. biloba for the first time (designated as GbPAL, GenBank Accession No. EU071050). The cDNA and genomic sequences of GbPAL were the same; in other words, this gene is intronless. The coding region of the gene was 2172 bp long, and its deduced protein consists of 724 amino acids with a predicted molecular mass of 79.1 kDa and a pI of 5.96. The deduced GbPAL protein showed high identities to other plant PALs. Southern hybridization analysis indicated that GbPAL belonged to a small multi-gene family. Tissue expression analysis by real-time PCR revealed that GbPAL constitutively expressed in all the tested tissues, especially highly in leaf and stem. GbPAL was also observed to be induced by a variety of stresses including UV-B, wounding, cold and salicylic acid. Temporal expression profiling analyses showed that the transcription levels of GbPAL were significantly correlated with flavonoid accumulation, suggesting that GbPAL might play a regulatory role in flavonoid biosynthesis in leaves of G. biloba at the transcriptional level.
     (2) Molecular cloning and function analysis of anthocyanidin synthase gene from G. biloba, and its expression in abiotic stress responses.
     Anthocyanidin synthase (ANS, leucoanthocyanidin oxygenase), a 2-oxoglutarate iron-dependent oxygenase, catalyzed the penultimate step in the biosynthesis of the anthocyanin class of flavonoids, from the colorless leucoanthocyanidins to the colored anthocyanidins. The full-length cDNA (EU600206) and genomic DNA (EU600205) sequences of ANS gene (designated as GbANS) were isolated from G. biloba for the first time. The full-length cDNA of GbANS contained a 1062-bp open reading frame (ORF) encoding a 354-amino-acid protein. The genomic DNA sequence analysis showed that GbANS gene had three exons and two introns. The 5′flanking region of GbANS was isolated by genome walking method, and some main cis-acting elements including TATA box and stress-responsiveness elements were predicted and analyzed. The deduced GbANS protein showed high identities to other plant ANSs. The conserved amino acids ligating ferrous iron (H-X-D) and residues participating in 2-oxoglutarate binding (R-X-S) were found in GbANS at the similar positions like other ANSs. 3D structure modeling showed that GbANS had a jellyroll motif in the enzyme core consisted ofβ-sheet, a typical structure shared by all 2-oxoglutarate-dependent dioxygenases including ANSs. Phylogenetic tree analysis revealed that GbANS shared the same ancestor with other ANSs. Southern blot analysis indicated that GbANS belonged to a multi-gene family. The expression analysis by real-time PCR showed that GbANS expressed in a tissue-specific manner in G. biloba, which were in good agreement with the pattern of anthocyanins accumulation in G. biloba. GbANS was also found to be up-regulated by all of the six tested abiotic stresses, namely UV-B, abscisic acid, sucrose, salicylic acid, cold and ethylene, consistent with the promoter region analysis of GbANS. The in vitro enzyme activity assay by HPLC indicated that recombinant GbANS protein could catalyze the formation the cyanidin from leucocyanidin and conversion of dihydroquercetin to quercetin, suggesting GbANS is a bifunctional enzyme within the anthocyanidin and flavonol biosynthetic pathway.
     (3) Effect of 5-aminolevulinic acid on flavonoids accumulation in the leaves of G. biloba. The effects of 5-aminolevulinic acid (ALA), a key precursor in the biosynthesis of porphyrins, in the low levels (10 and 100 mg/l) on photosynthesis, flavonoids accumulation and the activities of three enzymes involved in flavonoids biosynthesis in Ginkgo biloba leaves were investigated. The results showed that photosynthetic rates of leaves that treated with both concentrations of ALA, increased significantly at day 4 compared with that of control and remained so for 16 days. ALA at concentrations of 10 and 100 mg/l significantly increased the contents of chlorophyll and soluble sugar (P<0.05) at day 4 and these increments kept increase tendency until day 16, while the ratio of Chl a/b remained constant after ALA treatment. ALA-treatment enhanced the contents of total polyphenols, flavonoids and anthocyanins, as well as PAL, CHS and CHI activities from day 4 to 16. The effects on those determined targets mentioned above were all concentration-dependent, and 100mg/L ALA had greater effect than 10 mg/L ALA. These results suggestted that foliar treatment with the low concentration of ALA might provide a useful means of improving pharmacological properties in G. biloba leaves.
引文
[1]蔡荣,许锋,陈柳吉,程水源.银杏不同组织的总RNA提取方法的改进.生物技术, 2007, 17(4): 38-41
    [2]陈俊杰,李裕林.黄酮类化合物地合成方法.厦门大学学报(自然科学版), 1992, 31(6): 651-656
    [3]陈新,万德光,严铸云,裴瑾.银杏苯丙氨酸解氨酶(PAL)的基因克隆.成都中医药大学学报, 2004, 27(1): 32-34
    [4]陈学森,邓秀新,章文才.银杏组织培养与黄酮生产的研究.中国农业科学, 1997a, 30(6): 55-60
    [5]陈学森,邓秀新,章文才.培养基及培养条件对银杏愈伤组织黄酮产量的影响.园艺学报, 1997b, 24(4): 373-377
    [6]陈学森,章文才,邓秀新.数龄及季节对银杏叶黄酮与萜内酯含量的影响.果树科学, 1997d, 14(4): 226-229
    [7]陈学森,章文才,邓秀新等.叶用银杏资源评价及选优的研究.园艺学报, 1997c, 24(3): 215-219
    [8]程水源.影响银杏叶黄酮形成的主要因子及调控技术的研究.博士论文.山东泰安:山东农业大学; 2001
    [9]程水源,陈昆松,刘卫红,杜何为.植物苯丙氨酸解氨酶基因的表达调控与研究展望.果树学报, 2003, 20(5): 351-357
    [10]程水源,顾曼如,束怀瑞.银杏叶化学成分与药用研究进展.中草药, 1998, 29(增): 16-18
    [11]程水源,顾曼如,束怀瑞.影响银杏叶黄酮的因子及其评价.湖北农学院学报, 1999, 2: 110-112
    [12]程水源,顾曼如,束怀瑞.银杏叶黄酮研究进展.林业科学, 2000, 36(6): 110-115
    [13]程水源,王燕,费永俊,朱桂才.提高银杏叶黄酮含量的措施及其调控机理的研究(英文).果树学报, 2004a, 21(2): 116-119
    [14]程水源,王燕,李俊凯,费永俊,朱桂才.内源激素含量与银杏叶中类黄酮含量的关系.林业科学, 2004b, 40(6): 45-49
    [15]程水源,王燕,李俊凯,顾曼如,束怀瑞.银杏叶黄酮类化合物合成代谢规律的研究.林业科学, 2002, 38(5): 60-63
    [16]程水源,王燕,李俊凯,顾曼如,束怀瑞.银杏叶黄酮含量变化及分布规律的研究.园艺学报, 2001a, 28(4): 353-355
    [17]程水源,王燕,李俊凯,顾曼如,束怀瑞.银杏叶类黄酮合成代谢与叶中有关成分关系的研究.华中农业大学学报, 2001b, 20(5): 474-477
    [18]程水源,王燕,李俊凯,陶宗娅.银杏叶片色素含量与黄酮含量关系的研究.林业科学, 2001c, 37(5): 31-34
    [19]范怡梅,王勇,谭仁祥等.银杏叶黄酮苷含量与生长季节和植物性别的相关性研究.中国中药杂志, 1998, 23(5): 267-269
    [20]房建军,阙国宁.银杏愈伤组织生长与黄酮积累的关系.林业科学研究, 1998, 11(12): 124-129
    [21]郭长禄,陈力耕,何新华,Tori SA.银杏幼胚离体培养再生植株的研究.园艺学报, 2005,32(1): 105-107
    [22]郝岗平,杜希华,史仁玖.NO对银杏悬浮细胞生长及黄酮类物质合成的影响.西北植物学报, 2007, 27(2): 272-277
    [23]何炳辉,钟章成.不同光强与干旱胁迫对银杏枝叶构件生长的影响.广西师范大学学报(自然科学版), 2005, 23(3): 66-69
    [24]姜玲,章文才.银杏悬浮细胞系的建立及其黄酮糖苷的产生.果树科学, 1999, 16(2): 131-134
    [25]姜玲,章文才.植物生长调节剂对银杏悬浮细胞生长和黄酮苷的影响.果树科学, 2000, 17(2): 110-113
    [26]景茂,曹福亮.土壤水分含量对银杏生长及生物量分配的影响.南京林业大学学报(自然科学版), 2005, 29(3): 5-8
    [27]康琅,程云,汪良驹.5-氨基乙酰丙酸对秋季大棚西瓜叶片光合作用及抗氧化酶活性的影响.西北植物学报, 2006, 26(11): 2297-2301
    [28]冷平生,苏淑钗.光强与光质对银杏光合作用及黄酮苷与萜类内酯含量的影响.植物资源与环境学报, 2002, 11(1): 1-4
    [29]刘佳佳,郭勇,郑穗平,张明浩.高产黄酮苷银杏悬浮培养细胞系选育和继代培养稳定性研究.生物工程学报, 2001, 17(1): 94-97
    [30]刘卫红,程水源.光照及机械损伤对银杏叶苯丙氨酸解氨酶活性的影响.湖北农业科学, 2003, 3: 73-75
    [31] [美]J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版).北京:科学出版社; 2002
    [32]欧阳光察,薛应龙.植物苯丙烷代谢的生理意义及调控.植物生理学通讯, 1988, 24(3): 916-920
    [33]庞永珍.银杏黄酮和萜类化合物生物合成途径中重要相关基因的克隆和研究.博士论文.上海:复旦大学; 2005
    [34]史继孔,王发渝,李荣春,等.银杏数龄、性别、繁殖和采叶期对叶片中黄酮、内酯含量的影响.经济林研究, 1998, 16(2): 34-35
    [35]孙视,刘晚苟,潘福生等.生态条件对银杏叶黄酮积累的影响.植物资源与环境学报, 1998, 7(3): 1-7
    [36]孙天恩,李根宝.银杏发根克隆及其培养技术.中草药, 1998, 29(增): 25-28
    [37]汪良驹,姜卫兵,章镇,等.5-氨基乙酰丙酸生物合成、生理活性及其在农业生产中的潜在应用.植物生理学通讯, 2003, 39(3): 185-192
    [38]汪良驹,王中华,李志强,等.5-氨基乙酰丙酸促进苹果果实着色的效应.果树学报, 2004, 21(6): 512-515
    [39]王燕,程水源,费永俊,等.提高银杏叶黄酮含量的调控措施.湖北农业科学, 2002, 5: 103-105
    [40]王燕,李琳玲,许锋,刘卫红,程水源.金属离子对盆栽银杏叶PAL酶活及黄酮含量的影响.南京林业大学学报(自然科学版), 2007, 31: 68-72
    [41]王燕,刘卫红,杜何为,许锋,程水源.底物、末端产物对离体银杏叶苯丙氨酸解氨酶活性的影响.果树学报, 2004, 21(5): 443-446
    [42]王英强,梁红,冯颖竹.广东产银杏叶总黄酮含量变化.中药材, 2001, 24(4): 247-248
    [43]王中华,汤国辉,李志强,汪良驹.5-氨基乙酰丙酸和金雀异黄素促进苹果果皮花青素形成的效应.园艺学报, 2006, 33(5): 1055-1058
    [44]魏刚,王建,周金池.银杏不同营养器官中营养元素含量季节动态的研究.北京林业大学学报, 1999, 21(1): 96-99
    [45]谢宝东,王华田.光质和光照时间对银杏叶片黄酮、内酯含量的影响.南京林业大学学报(自然科学版), 2006, 30(2): 51-54
    [46]谢宝东,王华田,常立华,姜福成.土壤水分含量对银杏叶黄酮和内酯含量的影响.山东林业科技, 2002, 141: 1-3
    [47]杨柳,欧阳绍湘,辜忠春等.银杏生长中黄酮含量变化规律研究初报.湖北林业科技, 1997, 3: 5-7
    [48] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78.
    [49] Akihisa T, Tokuda H, Ukiya M, et al. Chalcones, coumarins, and flavanones from the exudate of Angelica keiskei and their chemopreventive effects. Cancer Lett, 2003, 201: 133-137
    [50] Allwood EG, Davies DR, Gerrish C, Ellis BE, Bolwell GP. Phosphorylation of phenylalanine ammonia-lyase: Evidence for a novel protein kinase and identification of the phosphorylated residue. FEBS Lett, 1999, 457: 47-52
    [51] Almeida JR, D'Amico E, Preuss A, et al. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria x ananassa). Arch Biochem Biophys, 2007, 465: 61-71
    [52] Arnon DI. Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-15
    [53] Awad MA, de Jager A. Formation of flavonoids, especially anthocyanin and chlorogenic acid in 'Jonagold' apple skin: influences of growth regulators and fruit maturity. Sci Hortic, 2002, 93: 257-266
    [54] Awad MA, Wagenmakers PS, de Jager A. Effects of light on flavonoid and chlorogenic acid levels in the skin of‘Jonagold’apples. Sci Hortic, 2001, 88: 289-298
    [55] Bagchi D, Bagchi M, Stohs SJ, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology, 2000, 148: 187-197
    [56] Blankenship SM, Unrath CR. PAL and ethylene content during maturation of Red and Golden Delicious apples. Phytochemistry, 1988, 27: 1001-1003
    [57] Boonkaew T. In vitro culture of Ginkgo biloba L. Dissertation of Ph. D. Clemson, South Carolina USA: Clemson University; 2001
    [58] Boss PK, Davies C, Robinson SP. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol, 1996, 32: 565-569
    [59] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
    [60] Brinkman JA, Boerner REJ. Nitrogen fertilization effects on foliar nutrient dynamics and autumnal resorption in maidenhair tree (Gingko biloba L.). J Plant Nutr, 1994, 17: 433-443
    [61] Buchel AS, Brederode FT, Bol JF, Linthorst HJM. Mutation of GT-1 binding sites in thePr-1A promoter influences the level of inducible gene expression in vivo. Plant Mol Biol, 1999, 40: 387-396
    [62] Burbulis IE, Winkel-Shirley B. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Nati Acad Sci USA, 1999, 96: 12929-12934
    [63] Campos-Vargas R, Saltveit ME. Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiol Plant, 2002, 114: 73-84
    [64] Cheng L, Xu Y, Grotewold E, et al. Characterization of anthocyanidin synthase (ANS) gene and anthocyanidin in rare medicinal plant-Saussurea medusa. Plant Cell Tiss Organ Cult, 2007, 89: 63-73
    [65] Christie PJ, Alfenito MR, Walbot V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta Med, 1994, 194: 541-549
    [66] Clarke BC, Moran LB, Appels R. DNA analysis in wheat breeding. Genome, 1989, 32: 334-339
    [67] Cook NC, Samman S. Flavonoids-chemistry, metabolism, cardioprotective effects and dietary sources,. J Nutr Biochem, 1996, 7: 66-76
    [68] Cools HJ, Ishii H. Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiol Mol Plant Pathol, 2002, 61: 273-280
    [69] Cosio EG, Mcclure JW. Kaempferol glycosides ande enzymes of flavonol biosynthesis in leaves of a soybean strain with low photosynthetic rates. Plant Phyisol, 1984, 74: 877-881
    [70] Cui Y, Magill R, Frederiksen R, Magill C. Chalcone synthase and phenylalanine ammonia-lyase mRNA levels following exposure of sorghum seedlings to three fungal pathogens. Physiol Mol Plant Pahol, 1996, 48: 187-199
    [71] Dangl JL, Hahlborock K, Schell J. Regulation and structure of chalcone synthase genes. I.K. Vasil, J. Schell ed. New York: Academic Press; 1989
    [72] Dixon RA, Maxwell CA, Weiting N, Oommen A, Paiva NL. Genetic Engineering of Plant Secondary Metabolsim. Ellis BE, Kuroki GW, Stafford HH ed. USA, New York: Plenum Press; 1994
    [73] Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7: 1085-1097
    [74] Dixon RA, Steele CL. Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends in Plant Sci, 1999, 4: 394-400
    [75] Dixon RA, Xie DY, Sharma SB. Proanthocyanidins--a final frontier in flavonoid research? New Phytol, 2005, 165: 9-28
    [76] Dourtoglou VG, Mamalous A, Makris DP. Storage of olives (Olea europaea) under CO2 atmosphere: Effect on anthocyanins, phenolics, sensory attributes and invitro antioxidant properties. Food Chem, 2006, 99: 342-349
    [77] DupréP, Lacoux J, Neutelings G, et al. Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens. Physiol Plant, 2000, 108: 413-479
    [78] El-Kereamya A, Chervin C, Roustan J, et al. Exogenous ethylene stimulates thelong-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol Plant, 2003, 119: 175-182
    [79] Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39: 783-791
    [80] Finkelstein RR, Lynch TJ. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12: 599-609
    [81] Fiona CC, Laurence BD, Norman GL. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry, 2004, 65: 1557-1564
    [82] Fischer TC, Gosch C, Pfeiffer J, et al. Flavnoid genes of pear (Pyrus communis). Trees, 2007, 21: 521-529
    [83] Fofana B, Mcnally DJ, LabbéC, et al. Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiol Mol Plant Pahol, 2002, 61: 121-132
    [84] FouchéSD, Dubery IA. Chalcone isomerase from Citrus sinensis: purification and characterization. Phytochemistry, 1994, 37: 127-132
    [85] Fraissinet-Tachet L, Baltz R, Chong J, et al. Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid. FEBS Lett, 1998, 437: 319-323
    [86] Fritze K, Stiger D, Czaja I, et al. Developmental and UV light regulation of the snapdragon chalcone synthase promoter. Plant Cell, 1991, 3: 893-905
    [87] Gaffney T, Friedrich L, Vernooij B, et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 1993, 261: 754-756
    [88] Gail L, Varsha W, Kenneth L, et al. Phenylp ropanoid compounds and disease resistance in transgenic tobacco with altered expression of phenylalanine ammonia-lyase. Phytochemistry 2003, 64: 153-161
    [89] Given NK, Venis MA, Grierson D. Phenylalanine ammonia-lyase activity and anthocyanin synthesis in ripening strawberry fruit. J Plant Physiol, 1988, 133: 25-30
    [90] Gollop R, Farhi S, Perl A. Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Sci, 2001, 161: 579-588
    [91] Graham TL. Flavonoid and flavonol glycoside metabolsim in Arabidopsis. Plant Physiol Biochem, 1998, 36: 135-144
    [92] Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol, 2006, 57: 761-780
    [93] Harborne JB, Baxter H. Handbook of Natural Flavonoids. Wiley, Chichester; 1999,
    [94] Harborne JB, Williams CA. Anthocyanins and other flavonoids. Nat Prod Rep, 2001, 18: 310-333
    [95] Hasler A, Gross G-A, Meier B, Sticher O. Complex flavonol glycosides from the leaves of Ginkgo biloba. Phytochemistry, 1992, 31: 1391-1394
    [96] Hiratsuka S, Onodera H, Kawai Y, et al. ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro. Sci Hortic, 2001, 90: 121-130
    [97] Hirner AA, Veit S, Seitz HU. Regulation of anthocyanin biosynthesis in UV-A-irradiated cell cultures of carrot and in organs of intact carrot plants. Plant Sci,2001, 161: 315-332
    [98] Holton TA, Cornish EC. Genetic and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071-1083
    [99] Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul, 1997a, 22: 109-144
    [100] Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M. New physiological effects of 5-aminolevulinic acid in plants: the increased photosynthesis, chlorophyll content, and plant growth. Biosci Biotechnol Biochem, 1997b, 61: 2025-2028
    [101] Hrazdina G, Wagner GJ. Metabolic pathway as enzyme complexes: evidence for the synthesis of phyenylpropanoids and flavonoids on membrance associated enzyme complexes. Arch Biochem Biophy, 1985, 237: 88-100
    [102] Ilag LL, Kumar AM, S?ll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinic acid formation in Arabidopsis. Plant Cell, 1994, 6: 265-275
    [103] Jaakola L, M??tt? K, K?renlampi S, Hohtola A. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta, 2004, 218: 721-728
    [104] Jaakola L, M??tt? K, Pirttil? AM, et al. Expression of gene involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Phyisol, 2002, 130: 729-739
    [105] Jansson S, Meyer-Gauen G, Cerff R, Martin W. Nucleotide distribution in gymnosperm nuclear sequence suggests a model for GC-content change in land-plant nuclear genomes. J Mol Evol, 1994, 39: 34-46
    [106] Jez MJ, Noel JP. Reaction mechanism of chalcone isomerase. J Biol Biochem, 2002, 277: 1361-1369
    [107] Joos HJ, Hahlbrock K. Phenylalanine ammonia-lyase in potato (Solanum tuberosum L.) Genomic complexity, structural comparison of two selected genes and modes of expression. Eur J Bichem, 1992, 204: 621-629
    [108] Ju ZG, Liu CL, Yuan YB. Activities of chalcone synthase and UDPGal: flavonoid-3-O-glucosyltransferase in relation to anthocyanin synthesis in apple. Sci Hortic, 1995a, 63: 175-185
    [109] Ju Z, Yuan Y, Liou C, Xin S. Relationships among phenylalanine ammonia-lyase activity, simple phenol concentrations and anthocyanin accumulation in apple. Sci Hortic, 1995b, 61: 215-226
    [110] Kanellis AK, Roubelakis-Angelakis KA. Grape. The Biochemistry of Fruit Ripening ed. London: Chappman and Hall; 1993
    [111] Kervinen T, Peltonen S, Utriainen M, et al. Cloning and characterization of cDNA clones encoding phenylalanine ammonia-lyase in barley. Plant Sci, 1997, 123: 143-150
    [112] Kervinen T, Peltonen S, Teeri TH, et al. Differential expression phenylalanine ammonia-lyase genes in barley induced by fungal infection or elicitors. New Phytol, 1998, 139: 293-300
    [113] Kim S, Bang H, Yoo K, Pike LM. Identification of the fourth allele of the ANS (anthocyanidin synthase) gene and its effect on red color intensity in onions (Alliumcepa). Euphytica, 2006, 149: 45-51
    [114] Kim S, Binzel ML, Yoo KS, Park S, Pike LM. Pink (P), a new locus responsible for a pink trait in onions (Allium cepa) resulting from natural mutations of anthocyanidin synthase. Mol Genet Genomics, 2004, 272: 18-27
    [115] Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta, 2002, 215: 924-933
    [116] Koes R, Verweij W, Qwattrocchio F. Flavnoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 2005, 10: 236-242
    [117] Koukol J, Conn EE. The metabolism of aromatic compounds in higher plants. Purification and properties of the L-phenylalanine deaminase of Herdeum vulagare. J Biol Chem, 1961, 236: 2692~2698
    [118] Kubasek WL, Shirley BW, McKillop A, et al. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell, 1992, 4: 1229-1236
    [119] Kumar A, Ellis BE. The phenylalanine ammonia-lyase gene family in raspberry. Sturcture, expression, and evolution. Plant Physiol 2001, 127: 230-299
    [120] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in bioinformatics, 2004, 5: 150-163
    [121] Lee SW, Robb J, Nazar RN. Truncated phenylalanine ammonia-lyase expression in tomato (Lycopersicon esculentum). J Biol Chem, 1992, 267: 11824-11830
    [122] Lescot M, Dehais P, Thijs G, et al. PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327
    [123] Lesnick ML, Chandler VL. Activation of the maize anthocyanin gene a2 is mediated by an element conserved in many anthocyanin promoters. Plant Physiol, 1998, 117: 437-445
    [124] Li F-X, Jin Z-P, Zhao D-X, et al. Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry, 2006, 67: 553-560
    [125] Li Z, Gemma H, Iwahori S. Stimulation of 'FuJi'apple skin color by ethephon and phosphorus-calcium mixed compounds in relation to flavonoid synthesis. Sci Hortic, 2002, 94: 193-199
    [126] Liang X, Dron M, Cramer CL, Dixon RA, Lamb CJ. Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environment cues. J Biol Chem 1989, 264: 14486-14492.
    [127] Liu S, Sun T, Li G. Transformation of ginkgo hairy root and establishment of its suspension culture clone. Wuhan University Journal of Natural Sciences, 1997, 2: 493-495
    [128] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2△△CT method. Methods, 2001, 25: 402-408
    [129] Lobstein A, Rietsch-Jako L, Haag-Berrurier M, Anton R. Seasonal variations of the flavonoid content from Ginkgo biloba leaves. Planta Med, 1991, 57: 430-433
    [130] Lois R, Dietrich A, Hahlbrock K, Schulz W. Phenylalanine ammonia-lyase gene fromparsley: Structure, regulation and identification of elicitor- and light-responsive cis-acting elements. EMBO J, 1989, 8: 1641-1648
    [131] Lu BB, Du Z, Ding RX, et al. Cloning and characterization of a differentially expressed phenylalanine ammonia-lyase gene (IiPAL) after genome duplication from tetraploid Isatis indigotica Fort. J Integr Plant Biol, 2006, 48: 1439-1449
    [132] Lukacin R, Britsch L. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3b-hydroxylase. Eur J Biochem, 1997, 249: 748-757
    [133] Maclennan KM, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol, 2002, 67: 235-257
    [134] Marles MA, Ray H, Gruber MY. New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry, 2003, 64: 367-383
    [135] Mato M, Onozaki T, Ozeki Y, et al. Flavonois biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Sci Hortic, 2000, 84: 333-347
    [136] McMahon LR, McAllister TA, Berg BP, et al. A review of the efforts of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Canad J Plant Sci, 2000, 80: 469-485
    [137] Minami E, Ozeki Y, Matsuoka M, Koizuka N, Tanaka Y. Structure and some characterization of the gene for phenylalanine ammonialyase from rice plants. Eur J Biochem, 1989, 185: 19-25
    [138] Mol J, Grotewold E, Koes R. How genes paint flowers and seeds. Trends Plant Sci, 1998, 3: 212-217
    [139] Montrucchio G, Alloatti G, Camussi G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev, 2000, 80: 1669-1699
    [140] Mori K, Sugaya S, Gemma H. Decreased anthocyanin bisynthesis in grape berries grown under elevated night temperature condition. Sci Horti, 2005, 105: 319-330
    [141] Moustafa E, Wong E. Purification and properties of chalcone-flavanone isomerase from soy bean seed. Phytochemistry, 1967, 6: 625-632
    [142] Muir SR, Collins G, Robinson S, et al. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol, 2001, 19: 470-474
    [143] Nakatsuka T, Nishihara M, Mishiba K, Yamamura S. Two different mutations are involved in the formation of white-flowered gentian plants. Plant Sci, 2005, 169: 949-958
    [144] Nishihara E, Kondo K, Parvez MM, et al. Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). . J Plant Physiol, 2003, 160: 1085-1091
    [145] Nishihara E, Takahashi K, Nakata N, Tanaka K, Watanabe K. Effect of 5-aminolevulinic acid (ALA) on photosynthetic rate, hydrogen peroxide content, antioxidant level and active oxygen-scavenging enzymes in spinach (Spinacia oleracea L.). J Japan Soc Hort Sci, 2001, 70: 346-352
    [146] Obinata N, Yamakawa T, Takamiya M, et al. Effects salicylic acid on the production of procyanidin and anthocyanin in cultured grape cells. Plant Biotechnol, 2003, 20:105-111
    [147] Ohl S, Hedrick SA, Choy J, Lamb CJ. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell, 1990, 2: 837-848
    [148] Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol, 2007, 145: 601-615
    [149] Pang Y, Shen G, Liu C, et al. Molecular cloning and sequence analysis of a novel chalcone synthase cDNA from Ginkgo biloba. DNA Sequence, 2004, 15: 283-290
    [150] Pang Y, Shen G, Wu W, et al. Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Sci, 2005, 168: 1525-1531
    [151] Parejo I, Viladomat F, Bastida J, et al. Bioguided isolation and identification of the nonvolatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) waste. J Agric Food Chem, 2004, 52: 1890-1897
    [152] Paul A, Tony A, Jeremy J. Characterization of a phenylalanine ammonia-lyase multigene family in Trifolium subterraneum. Gene, 1994, 138: 87-92
    [153] Pellegrini L, Rohfritsch O, Friting B. Phenylalanine ammonia-lyase in tobacco. Molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor. Plant Physiol, 1994, 106: 877-886
    [154] Pelletier MK, Murrell JR, Shirley BW. Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis. Plant Physiol, 1997, 113: 1437-1445
    [155] Pelletier MK, Winkel-Shirley B. Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings. Plant Phyisol, 1996, 111: 339-345
    [156] Pollak PE, Vogt T, Mo Y, Taylor LP. Chalcone synthase and flavonol accumulation in stigmas and anthers of Petunia hybrida. Plant Physiol, 1993, 102: 925-932
    [157] Pool-Zobel BL, Bub A, Schr?der N, Rechkemmer G. Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells. Eur J Nutr, 1999, 38: 227-234
    [158] Prescott AG, John P. Dioxygenases: molecular structure and role in plant metabolism. Annu Rev Plant Physiol Plant Mol Biol 1996, 47: 245-271
    [159] Prescott AG, Lloyd MD. The iron (II) and 2-oxoacid-dependent dioxygenases and their role in metabolism. Nat Prod Rep, 2000, 17: 367-383
    [160] Ranish JA, Hahn S. Transcription: basal factors and activation. Curr Opin Genet Dev, 1996, 6: 151-158
    [161] Reddy AM, Reddy VS, Scheffler BE, Wienand U, Reddy AR. Novel trangenic rice overexpression anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab Eng, 2007, 9: 95-111
    [162] Redman J, Whitcraft J, Johnson C, Arias J. Abiotic and biotic stress differentially stimulate as-1 element activity in Arabidopsis. Plant Cell Rep, 2002, 21: 180-185
    [163] Reyes JC, Muro-Pastor MI, Florencio F. The GATA family of transcription factors in Arabidopsis and rice. J Plant Physiol, 2004, 134: 1718-1732
    [164] Ritter H, Schulz GE. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell, 2004, 16:3426-3436
    [165] Roach PL, Clifton IJ, Fulop V, et al. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature, 1995, 375: 700-704
    [166] Rosati C, Cadic A, Duron M, Ingouff M, Simoneau P. Molecular characterization of the anthocyanidin synthase gene in Forsyhia x intermedia reveals organ-specific expression during flower development. Plant Sci, 1999, 149: 73-79
    [167] R?ther D, Poppe L, Morlock G, Viergutz S, Rétey J. An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum. Eur J Biochem, 2002, 269: 3065-3075
    [168] Ryan KG, Swinny EE, Markham KR, Winefield C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Pytochemistry, 2002, 59: 23-32
    [169] Saitou K, Kobayashi S, Gong Z, Tanaka Y, Yamazaki M. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J, 1999, 17: 181-189
    [170] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406-425
    [171] Sarma AD, Sreelakshmi Y, Sharma R. Differential expression and properties of phenylalanine ammonia-lyase isoforms in tomato leaves. Phytochemistry, 1998, 49: 2233-2243
    [172] Sasaki K, Marquez FJ, Nishio N, Nagai S. Promotive effects of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platensis. J Ferment Bioeng, 1995, 79: 453-457
    [173] Saure MC. External control of anthocyanin formation in apple. Sci Hortic, 1990, 42: 181-218
    [174] Schijlen EGWM, de Vos C.H. R., van Tunen AJ, Bovy AG. Modification of flavonoid biosynthesis in crop plants. Pytochemistry, 2004, 65: 2631-2648
    [175] Schmidt K, Heberle B, Kurrasch J, Nehls R, Stahl DJ. Suppression of phenylalanine ammonia lyase expression in sugar beet by the fungal pathogen Cercospora beticola is mediated at the core promoter of the gene. Plant Mol Biol, 2004, 55: 835-852
    [176] Schomburg D, Salzmann M. In: Enzyme Handbook 1. Schomburg, D., Salzmannn, M. ed. Berlin, Germany: Springer-Verlag; 1990
    [177] Schuster B, Rétey J. Serine-202 is the putative precursor of the active site dehydroalanine of phenylalanine ammonia lyase. Site-directed mutagenesis studies on the enzyme from parsley (Petroselinum crispum L.). FEBS Lett 1994, 349: 252-254
    [178] Schwede T, Kopp J, Guex N, Peitsch M. SWISS MODEL: an automated protein homology-modeling server. Nucleic Acids Res, 2003, 31: 3381-3385
    [179] Shen G, Pang Y, Wu W, et al. Cloning and characterization of a flavanone 3-hydroxylase gene from Ginkgo biloba. Biosci Rep, 2006a, 26: 19-29
    [180] Shen G, Pang Y, Wu W, et al. Isolation and characterization of a putative anthocyanindin reductase gene from Ginkgo biloba. J Plant Physiol, 2006b, 163: 224-227
    [181] Sierpina VS, Wollschlaeger B, Blumentha M. Ginkgo biloba. Am Family Physician, 2003, 68: 923-927
    [182] Singleton VL, Slinkard K. Total phenol analysis: automation and comparison with manual methods. Am J Enol Viticult, 1977, 28: 49-55
    [183] Smith JV, Luo Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol, 2004, 65: 465-472
    [184] Stafford HA. Possible multienzyme complexes regulating the formation of C6-C3 phenolic compounds and lignins in higher plants. Recent Adv Phytochem, 1974, 8: 53-79
    [185] Stefanie L, Monica L, Brian E. A diverse family of phenylalanine ammonia-lyase genes expressed in pine trees and cell cultures. Plant Mol Biol, 1998, 37: 15-24
    [186] Subramaniam R, Reinold S, Molitor EK, et al. Structure, inheritance, and expression of hybrid polar ( Populus trichocarpa×Populus deltoids) phenylalanine ammonia-yase genes. Plant Physiol, 1993, 102: 71-83
    [187] Tanaka Y, A. T, Tsuji H. Stabilization of apoproteins of light-harvesting chlorophyll-a/b protein complex by feeding 5-aminolevulinic acid under intermittent illumination. Plant Physiol Biochem, 1992, 30: 365-370
    [188] Tapia G, Verdugo I, Yanez M, et al. Involvement of Ethylene in Stress-Induced Expression of the TLC1.1 Retrotransposon from Lycopersicon chilense Dun. Plant Physiol, 2005, 138: 2075-2086
    [189] Teklemariam TA, Blake TJ. Phenylalanine ammonia-lyase-induced freezing tolerance in jack pine (Pinus banksiana) seedlings treated with low, ambient levels of ultraviolet-B radiation. Physiol Plant, 2004, 122: 244-253
    [190] Thompson J, Higgins D, Gibson T. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: 4673-4680
    [191] Thulke O, Conrath U. Salicylic acid has a dual role in activation of defence-related genes in parsley. Plant J, 1998, 14: 35-42
    [192] Timo K, Sari P, Merja U, et al. Cloing and characterization of cDNA clones encoding phenylalanine ammonia-lyase in barely. Plant Sci, 1997, 123: 143-150
    [193] Tobin EM, Silverthorne J. Light regulation of gene expression in higher plants. Annu Rev Plant Phys, 1985, 36: 569-593
    [194] Tsai C-J, Kayal WE, Harding SA. Populus, the new model system for investigating phenylpropanoid complexity. Int J Appl Sci Eng, 2006, 4: 221-233
    [195] Tsukaya H, Ohshima T, Naito S, Chino M, Komeda Y. Sugar-dependent expression of the CHS-A gene for chalcone synthase from Petunia in transgenic Arabidopsis. Plant Physiol, 1991, 97: 1414-1421
    [196] Turnbull JJ, Nakajima J, Welford RW, et al. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3beta-hydroxylase. J Biol Chem, 2004, 279: 1206-1216
    [197] Turnbull JJ, Sobey WJ, Aplin RT, et al. Are anthocyanidins the immediate products of anthocyanidin synthase? Chem Commun, 2000: 2473-2474
    [198] van Beek TA. Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 2002, 967: 21-55
    [199] van der Meer IM, Stuitjie AR, Mol NJM. Regulation of general phenylpropanoid and flavonoid gene expression. Boca Raton: CRC Press; 1993
    [200] von Westtstein D, Gough S, Kananagara CG. Chlorphyll biosynthesis. Plant Cell, 1995, 7: 1039-1057
    [201] Wang LJ, Jiang WB, Huang BJ. Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiol Plant, 2004, 121: 258-264
    [202] Wang X, Abdelbasset EH, Lome A, et a. US-1 and US-8 genotypes of phytophthora infestans differentially affect local, proximal and distal gene expression of phenylalanine ammonia-lyase and 3-hydroxy, 3-methylglutaryl CoA reductase in potato leaves. Physiol Mol Plant Pathol, 2004, 65: 157-167
    [203] Wanner LA, Li GQ, Dware W, Sommssich IE, Davis KR. The Phenylalanine ammonia-lyase gene family in Arabidoposis thaliana. Plant Mol Biol, 1995, 27: 328-335
    [204] Welford RWD, Clifton IJ, Turnbull JJ, Wilson SC, Schofield CJ. Structural and mechanistic studies on anthocyanidin synthase catalysed oxidation of flavanone substrates: the effect of C-2 sterochemistry on product selectivity and mechanism. Org Biomol Chem, 2005, 3: 3117-3126
    [205] Wen PF, Chen JY, Kong WF, et al. Salicylic acid induced the expression of phenylalanine ammonialyase gene in grape berry. Plant Sci 2005, 169: 928-934
    [206] Wilmouth RC, Turnbull JJ, Welford RWD, et al. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 2002, 10: 93-103
    [207] Winkel-Shirley B. Flavonoids biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 2001, 126: 485-493
    [208] Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol, 2002, 5 218-223
    [209] Wolfgang RH, Ralf G, Thomas B. Analysis of randomly selected cDNAs reveals the expression of stress- and defence-related genes in the barley mutant albostrains. Plant Sci, 1998, 133: 191-201
    [210] Xie DY, Dixon RA. Proanthocyanidin biosynthesisstill more questions than answers ? . Phytochemistry, 2005, (6): 62127-62144
    [211] Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 2003, 299: 396-399
    [212] Xu F, Cai R, Cheng S, et al. Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr J Biothenol, 2008, 7: 721-729
    [213] Xu F, Cheng SY, Cheng SH, Wang Y, Du HW. Time course of expression of chalcone synthase gene in Ginkgo biloba. J Plant Physiol Mol Biol, 2007, 33: 309-317
    [214] Yamada T, Tanaka Y, Sriprasertsak P, et al. Phenylalanine ammonia-lyase genes from Pisum sativum: structure, organ-specific expression and regulation by fungal elicitor and suppressor. Plant Cell Physiol, 1992, 33: 715-725
    [215] Yuriko O, Keishi O, Shinya K. Characterization of the structure and determination of mRNA levels of the phenylalanine ammonia-lyase gene family from Populus kitakamiensis. Plant Mol Biol, 1995, 28: 1133~1141
    [216] Zhang Z, Barlow JN, Baldwin JE, Schofiel CJ. Metal-catalyzed oxidation and mutagenesis studies on the iron (II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Biochemistry, 1997, 36: 15999-16007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700