新生仔猪脂类代谢和肝脏发育的动态变化及胎儿宫内发育迟缓对其的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索新生动物脂类代谢和肝脏发育特点及胎儿宫内发育迟缓(IUGR)的影响,本实验选择了正常体重(NW)和IUGR新生仔猪各15头,分别于出生当日(0d)、3d、7d屠宰,测定了肝脏和血浆中多项生化指标和酶的活性。试验结果如下:
     1 新生仔猪脂类代谢的特点
     仔猪血浆甘油三酯(TG)和葡萄糖的浓度在刚出生时都很低,到3d时迅速升高(P<0.01和P<0.0001),4d~7d保持稳定。血浆游离脂肪酸(FFA)的变化趋势正好相反,它在仔猪出生后3d明显下降(P<0.05)。在0d~7d之间,肝脏的TG浓度没有出现明显变化。血浆总胆固醇(TC)、低密度脂蛋白-胆固醇(LDL-C)和高密度脂蛋白-胆固醇(HDL-C)的浓度都随着新生仔猪日龄的增加而增加,到7d时它们的水平都极显著高于新生水平(P<0.01)。
     新生仔猪肝脏和血浆中的肝脂酶(HL)活性都较低,它们在0d~3d之间均显著增高(P<0.05);4d~7d,血浆中HL的活性继续呈升高趋势,而肝脏中的呈下降趋势。与仔猪肝脏HL活性的变化特点相似,肝脏中苹果酸脱氢酶(MDH)的活性也在0d~3d内迅速上升(P<0.05),然后呈现下降趋势。
     仔猪哺乳后血浆中脂肪浓度迅速升高,表明脂肪可为哺乳仔猪提供大量的能量。而且,试验表明新生仔猪的脂类代谢出现了剧烈变化,不论是脂肪酸合成、脂质转运,还是脂质中间代谢的能力在出生后一周都迅速发育变化。
     2 新生仔猪肝脏的发育及功能
     新生仔猪肝细胞索呈放射状排列,肝细胞中粗面内质网、线粒体等细胞器都很丰富,而且各细胞器的结构已经发育成熟。肝脏重量在仔猪出生后一周尤其是3d内迅速增加(P<0.01),远远快于体重增加的速度。仔猪肝脏蛋白质的含量在生后一周也一直增加,7d时为最高(P<0.01);而肝糖原贮备在刚出生时最高,出生以后很快下降(P<0.01)。仔猪出生后肝脏中DNA和RNA浓度的变化趋势正好相反,前者在出生后3d内明显下降(P<0.05),4d~7d又有增加趋势,而RNA浓度以3d为最高。
     新生仔猪转氨酶的活性也出现了剧烈的变化,其中血浆谷丙转氨酶(GPT)的活性明显增加(P<0.0001),肝脏GPT的活性呈下降趋势,而肝脏和血浆中谷草转氨
    
     卜三‘:V脂判工谢川及*队又自的不在引大片卜儿引与‘天紧L缓时见的影响
    酶(GOT)的活性均以 3d时为最高。
     肝脏中超氧化物歧化酶(soo )、cuznsoo和 ansoo的活性在仔猪刚出生时
    很高,以后随着工龄的增加都有下降趋势。谷脱甘肤过氧化物酶(GSH-PX)活性在
    cd-3d之间也急剧下降(P<0.05),但4d以后又明显回升(P<0.05)。过氧化氢酶(C八T)
    活性在3d内迅速升高(P<0刀1),以后保持稳定。仔猪刚出生时,肝脏中羟自由基厂OH)、
    脂质过氧化物(LPO)和西二醛(MDA )的浓度都比较高,以后明显减少。
     仔猪到出生时肝细胞的结构和功能基本发育成熟,而且新生仔猪肝脏中贮存了
    大量糖原,有利于维持血糖浓度和能量平衡、但是,仔猪刚出生时肝脏中自由基浓度
    较高、肝组织的脂质过氧化反应严重,肝组织中自由基的浓度也较高。仔猪出生以后,
    肝脏的生长发育十分迅速,不仅体积和重量快速增加,而且实质细胞的比 {FIJ进一步提
    高。与此同时,仔猪肝脏的氨基酸代谢能力和抗氧化功能都发生了剧烈的变化。
    3 IUGR对肝脏发育和脂类代谢的影响
     IUGR仔猪在 7d时肝脏 DNA水平显著高于 NW’组(P<0.of),在其它日龄组这
    种差异不显著。生后一周内IUGR仔猪肝脏的ProAINA比都有低于NW仔猪的趋势,
    3d时这种差异达到极显著水平门<0刀1)。肝脏RN A、N A/D*A比在*w和1**R
    仔猪之间没有明显差异。IUGR仔猪肝脏和血浆中转氨酶的活性也与NW仔猪也相近c
     仔猪出生后一周,IUGR组肝脏中rO、MDA和℃N的浓度都有高于正常组合】
    趋势。其中,两组仔猪在 cd时*O浓度的差异达到显著水平(P、0.of),slJ 7d时。
    no和h1*A浓度的差异都达到显著水平(卜。nOI和外0OI)c*w和nTGR新生仔
    猪肝脏中 SOD、GSH-Px、CAT的活性没有发现明显差异,不过试验发现 ILJGR新生
    仔猪S*D的活性有高于*w组的趋势、而GS卜PX有低于正常组的趋势。
     试验发现,1**R仔猪刚出生时血浆*C和**L〔$度显著高于Nw仔猪(P刀刀5
    和 P<0.001),而且它们在 cd~7d也迅速上升。除此之外,IUGR和NW仔猪肝脏中
    TC浓度和血浆HDL-C浓度均没有发现明显区s人IUGR新生仔猪血浆FF;A、TG、葡
    萄糖的浓度以及肝脏*L、M*H的活性与N“’仔猪也没有显著区别。
     以上结果表明,IUGR显著影响了肝脏白勺生长发育,胚胎时期其影响既包括肝细
    胞数目的减少又包括肝细胞体积的又小,出生以后主要体现为限制了肝细胞的生长和
    肥大。但是1厂GR并没有造成肝细胞损伤,也没有改变肝脏在氨基酸代谢中的一些功
    能。与Nw‘子持相比、IUGR仔猪肝脏的过氧化状态严重。不仅自由基产生过多,而
    且脂质过氧化瓦立活跃。试验还表明、除了引起胆固醇代谢的异常变化、自然条件下
    产生的 ILGR丁 1于猪的脂肪代谢没有明显影响。
The aim of these studies was to explore the lipid metabolism and liver development of neonatal pigs and the impacts of intrauterine growth retardation (IUGR). Fifteen normal weight (NW) and fifteen IUGR neonatal pigs were killed and sampled on newborn (day 0), day 3 and day 7 after birth, respectively. The activities of enzymes and some biochemical indices were analyzed according to appropriate methods. The results were demonstrated as follows:
    1 Lipid metabolism in normal neonatal pigs
    The concentrations of plasma triglyceride (TG) and glucose in piglets were low at birth, and increased severely during the first 3 postnatal days (P<0.01 and P<0.0001, respectively), and maintained unchanged thereafter. In contrast, there was a marked decrease in the concentration of plasma free fatty acid (FFA) in the piglet right after birth (P<0.05). Liver TG content had no significant variation in the first week after birth. From birth to 7 days old, the concentrations of total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C) all increased greatly in piglet plasma (P<0.01).
    In this experiment, both the activities of hepatic lipase (HL) and malate dehydrogenase (MDH) increased markedly during the first 3 postnatal days (P<0.05). From day 4 to day 7, the activity of HL showed a tendency to increase in plasma and to decrease in liver.
    The rapid increases of plasma fats in neonatal pigs suggest that fats become a major energy source for piglets in a short postnatal period. In addition, the results indicated that great changes took place in lipid metabolism in piglets during the early postnatal period.
    
    
    2 Developmental patterns and function of the liver in neonatal pigs
    The hepatocyte cords were arranged in a radial mode in neonatal pig liver. There were abundant mature cellular organelles such as mitochondria and rough endoplasmic reticula in the liver of neonatal pigs. Liver weight increased at a higher rate than body weight in the first 7 days, especially in the first 3 days after birth. Similarly, liver protein content increased significantly in the first postnatal week (P<0.01). In contrast, liver glycogen content was highest at birth and decreased markedly after birth (P<0.01). DNA concentration was lowest (P<0.05) and RNA concentration highest (P<0.05) in the liver of 3-day old piglets.
    During the first week after birth, the activity of glutamic-pyruvic transaminase (GPT) increased greatly in plasma (P<0.0001), but tended to decrease in liver. The activity of glutamine-oxaloacetic transaminase (GOT) was highest on day 3 both in plasma and in liver.
    The activities of superoxide dismutase (SOD), CuZnSOD and MnSOD were highest in the liver of piglets at birth, and decreased gradually in the first postnatal week. The activity of glutathione peroxidase (GSH-Px) was lowest on day 3 (P<0.05). On the contrary, the activity of catalase (CAT) increased from newborn to day 3 (P<0.01) and maintained at a steady level between day 4 and day 7. In addition, all the contents of hydroxyl radical ("OH), lipid peroxide (LPO) and malondialdehyde (MDA) were found highest in the liver of newborn piglets.
    These results showed that the hepatocytes had already developed both in structure and in function. In addition, the abundant liver glycogen at birth played a critical role in maintaining the homeostasis of plasma glucose and energy metabolism in neonatal pigs. However, there were higher radical concentration and severe lipid peroxidation in the liver of piglet at birth. During the short period after birth, both the size and the weight of liver increased greatly, and the proportion of liver parenchyma increased to a certain degree in the piglet. In the meantime, great changes took place in the capabilities of antioxidation and amino acids metabolism in piglet liver.
    3 The impacts of IUGR on liver development and lipid metabolism in neonatal pigs
    Whereas liver glycogen content showed a tendency to be lowered in IUGR piglets, there were no significant differences in the
引文
[1] 石蕾,译.新生儿的脂肪代谢[J].国外医学妇幼保健分册,1996,7(4):176-179.
    [2] 谢启宇.初生仔猪添加中链脂肪的研究[J].上海畜牧兽医通讯,1998,(2):6-7.
    [3] 陆立,周燕.感染与脂肪代谢[J].国外医学外科学分册,1997,24(5):258-260.
    [4] 潘宝海,李德发.仔猪的能量饲料及能量代谢评定模型[J].中国饲料,2001,4:2-4.
    [5] Clandinin M T, Chappell J E, Heim T, et al. Fatty acid accretion in fetal and neonatal liver: implications for fatty acid requirements [J]. Early Hum Dev,1981, 5:7-14.
    [6] Azavache V, Cuevas C and Bosch V. The liver as a source of essential long chain polyunsaturated fatty acids for postnatal brain development in the rat [J]. Archivos Latinoamericanos de Nutricion, 1998, 48:216-220.
    [7] Alessandri J M, Goustard B, Guesnet P, et al. Polyunsaturated fatty acids status in blood, heart, liver, intestine, retina and brain of newborn piglets fed either sow milk or a milk replacer diet [J]. Reprod Nutr Dev, 1996, 36:95-109.
    [8] Gaines D W, Friedman L, Newell RF, et al. Ornithine decarboxylase, fatty acid synthetase, and lipid levels in selected organs of the postnatal developing male miniature pig [J]. Lab Anim, 1994,28:380-386.
    [9] Dolittle M H, Wong H and Davis R C. Synthesis of hepatic lipase in liver and extrahepatic tissue [J]. J Lipid Res, 1987,28:1326-1334.
    [10] 叶平,陈保生.脂蛋白脂酶的研究进展[J].心血管病学进展,1995,16(5):299-302.
    [11] Goldberg I J. Association of plasma lipoprotein with post heparin lipase activities [J]. J Clin Invest, 1986, 78: 1523-1528.
    [12] 倪燕君,刘厚钰,张顺财,等.肝脂酶、脂蛋白脂肪酶在脂肪肝发病中的作用[J].中华消化杂志,1999,19(5):324-327.
    [13] 董晨,卢思广,方先勇,等.肝脏在肾病低白蛋白高脂血症发生中的作用[J].徐州医学院学报,2000,20(2):100-102.
    [14] Semenkovich C F, Chen S H, Wims M, et al. Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution [J]. J Lipid Res, 1989, 30: 423-431.
    [15] Le dividich J, Herpin P, Mourot J, et al. Effect of low-fat colostrum on fat accretion and lipogenic enzyme activities in adipose tissue in the 1-day-old pig [J]. Comp Biochem Physiol, 1994, 108: 663-671.
    [16] 季海峰,张沅.猪脂肪代谢的研究进展[J].中国畜牧杂志,1993,29(3):59-61.
    [17] 刘丑生.猪脂肪代谢酶特征及其与生产性能的典型相关研究[J].中国畜牧杂志,1999,35(5):27-28.
    [18] Xia T and Coleman R A. Diacylglycerol metabolism in neonatal rat liver: characterization of cytosolic diacylglyceroi lipase activity and its activation by monoalkylglycerols [J]. Biochim Biophys Acta, 1992, 1126: 327-336.
    [19] 顾宪红.仔猪脂肪代谢特点及其影响因素[J].中国饲料,2001,14:21-23.
    [20] Noblet J, Dourmad J Y, Etienne M, et al. Energy metabolism in pregnant sows and newborn pigs[J]. J Anim Sci, 1997, 75: 2708-2714.
    [21] Le Dividich J and Noblet. Thermoregulation and energy metabolism in the neonatal pig [J]. Annales de Recherches Veterinaires, 1983, 14: 375-381.
    [22] Herpin P. Le Dividich J, Berthon D, et al. Assessment of thermoregulatory and postprandial
    
    thermogenesis over the first 24 hours after birth in pigs [J]. Exp Physiol, 1994, 79: 1011-1019.
    [23] Le Dividich J, Herpin P and Rosado-Ludovino R M. Utilization of colostral energy by the newborn pig[J]. J Anita Sci, 1994, 72: 2082-2089.
    [24] Le Dividich J, Mormede P, Catheline M, et al. Body composition and cold resistance of the neonatal pig from European (Large White) and Chinese (Meishan) breeds [J]. Biol Neonate, 1991, 59: 268-277.
    [25] 秦宜德,邹思湘,徐银学,等.二种母猪初乳组分和繁殖性能的比较研究[J].安徽农业科学,2000,28(1):99-100.
    [26] 姜礼胜,张松意,刘育新,等.中链甘油三酯及其在新生仔猪上的应用研究综述[J].养猪,1997,(2):9-11.
    [27] Bohme H J, Sparmann G and Hofmarm E. Biochemistry of liver development in the perinatal period [J]. Experientia, 1983, 39: 473-483.
    [28] Lossec G, Herpin P and Le Dividich J. Thermoregulatory responses of the newborn pig during experimentally induced hypothermia and rewarming [J]. Exp Physiol, 1998, 83: 667-678.
    [29] 钱继红,吴圣楣,张伟利,等.上海地区母乳中三大营养素含量分析[J].实用儿童临床杂志,2002,17(3):243-245.
    [30] Hardy S C and Kleinman R E. Fat and cholesterol in the diet of infants and young children: implications for growth, development, and long term health[J]. J Pediatr, 1994, 125: 69-77.
    [31] Wolfe R G, Maxwell C V and Nelson E C. Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig[J]. J Nutr, 1978, 108: 1621-1634.
    [32] Yu X X, Drackley J K and Odle J. Food deprivation changes peroxisomal beta-oxidation activity but not catalase activity during postnatal development in pig tissues [J]. J Nutr, 1998, 128: 1114-1121.
    [33] Duee P H, Pegorier J P, Peret J, et al. Separate effects of fatty acid oxidation and glucagon on gluconeogenesis in isolated hepatocytes from newborn pigs [J]. Biol Neonate, 1985, 47: 77-8341.
    [34] Adams S H, Alho C S, Asins G, et al. Gene expression of mitochondrial 3-hydroxy-3-methyiglutaryl- CoA synthase in a poorly ketogenic mammal: effect of starvation during the neonatal period of the piglet [J]. Biochem J, 1997, 324: 65-73.
    [35] Pegorier J P, Duee P H, Girard J, et al. Metabolic fate of non-esterified fatty acids in isolated hepatocytes from newborn and young pigs. Evidence for a limited capacity for oxidation and increased capacity for esterification [J]. Biochem J, 1983, 212: 93-97.
    [36] Newcomb M D, Harmon D L, Nelssen J L, et al. Effect of energy source fed to sows during late gestation on neonatal blood metabolite homeostasis, energy stores and composition [J]. J Anim Sci, 1991, 69: 230-236.
    [37] Ghebremeskei K, Bitsanis D, Koukkou E, et al. Maternal diet high in fat reduces docosahexaenoic acid in liver lipids of newborn and sucking rat pups [J]. Br J Nutr,1999, 81:395-404.
    [38] Boyd R D, Moser B D, Lewis A J, et al. Effect of maternal dietary energy source on glucose homeostasis, liver glycogen and carcass lipid in the neonatal pig [J]. J Anim Sci, 1981, 53: 1316-1324.
    [39] Ojamaa K M, Elliot J I and Hartsock T G. Effects of gestation feeding level on glycogen reserves and blood parameters in the newborn pig [J]. J Anim Sci,1980, 51: 620-628.
    [40] Fergusson M A and Koski K G. Comparison of effects of dietary glucose versus fructose during pregnancy on fetal growth and development in rats [J]. J Nutr, 1990, 120: 1312-1319.
    
    
    [41] Le Dividich J, Esnauit T, lynch B, et al. Effect of colostral fat level on fat deposition and plasma metabolites in the newborn pig [J]. J Anim Sci, 1991, 69: 2480-2488.
    [42] Gerfault V, Louveau I, Mourot J, et al. Lipogenic enzyme activities in subcutaneous adipose tissue and skeletal muscle from neonatal pigs consuming maternal or formula milk [J]. Reprod Nutr Dev, 2000, 40: 103-112.
    [43] 邹志琴,杨在清.动物脂肪代谢激素调控分子机理的研究进展[J].黄牛杂志,1998,24(6):41-44.
    [44] Wang Y, Fried S K, Petersen R N, et al. Somatotropin regulates adipose tissue metabolism in neonatal swine [J]. J Nutr, 1999, 129: 139-145.
    [45] Lepine A J, Boyd R D and Whitehead D M. Effect of colostrum intake on hepatic gluconeogenesis and fatty acid oxidation in the neonatal pig [J]. J Anim Sci,1991, 69:1966-1974.
    [46] Lepine A J, Boyd R D and Welch J. Effect of colostrum intake on plasma glucose, non-esterified fatty acid and glucoregulatory hormone patterns in the neonatal pig [J]. Domest Anim Endocrinol,1989, 6:231-241.
    [47] Honeyfield D C and Froseth J A. Evaluation of energy sources with and without carnitine in newborn pig heart and liver [J]. J Nutr, 1991, 121: 1117-1122.
    [48] Martin R J, Herbein J H, Sherritt G W, et al. Development of liver metabolism and serum hormones and metabolites in the perinatal pig [J]. Growth, 1980, 44: 1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700