双馈风电机组的暂态行为及其对电力系统稳定性影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了深入认识电网扰动下双馈风力发电机(DFIG)的暂态行为,分析了机电解耦条件和机电解耦导致的结果。然后针对单机(DFIG)无穷大系统,定义了DFIG功角并分析其暂态行为,揭示了双馈电机的机电解耦性所导致的功角暂态行为的物理本质—纯粹的电磁暂态过程,具有快变特点。功角快变特性的外在表现是电网扰动后的有功功率快恢复特性。通过仿真分析和动模试验检验了理论分析的正确性。
     为了研究风电场对电力系统小扰动稳定性的影响,提出了双馈风电场动态频率特性的概念,通过数学证明,给出了判定双馈风电场对电力系统阻尼影响的性质及大小的判据:相频特性决定阻尼的性质,幅频特性决定阻尼大小。研究发现,DFIG动态频率特性与励磁控制参数密切相关,双闭环PI控制器的比例系数、积分系数对DFIG的动态频率特性有显著影响,进而造成DFIG的阻尼大小甚至阻尼性质因调节器参数变化而发生显著改变。在此基础上,设计了植于风电变流器上的附加阻尼控制器,利用电力系统分析综合程序(PSASP),通过二区域和多区域的算例分析证实,该控制策略具有提高电力系统阻尼的明显效果,而且具有参数易整定、调试方便和易于工程实现的优势。
     为了研究含风电场的电力系统暂态稳定性,分析了双馈感应发电机功角快变特性对常规同步发电机(SG)的首摆稳定性产生的重要影响。研究发现,DFIG和SG的功角摇摆曲线可能存在两类交点—主动交越点和被动交越点,交越的性质决定了DFIG对SG稳定性影响的性质。大扰动时,SG的首摆期间有主动交越交点,DFIG将降低系统的暂态稳定性;后续摇摆期间有被动交越交点,DFIG起正阻尼作用。在此研究基础上,设计了DFIG的暂态功角控制策略,该控制策略能对风电场附近的常规同步发电机产生显著致稳作用,提高了含风电的混合电力系统整体稳定性。
     为了揭示双馈风电机组的轴系扭振机理,基于电磁转矩的观点,发现双闭环PI调节参数和前馈补偿参数是影响电磁转矩性质的两个关键因素。由于设计用的互感系数很难保证就是电机的实际参数,故存在或正、或负的误差,误差的正、负性和大小对阻尼转矩的方向和大小有直接影响。上述两个独立因素共组合为4种情形,研究了各种情形下电磁转矩的阻尼性质,揭示了2种将产生电气负阻尼和可导致轴系扭振的情形。为了辨识和监测轴系扭振,还提出自然工况下轴系扭转模式、电磁模式的在线辨识方案,引入子空间法进行系统辨识和振荡模式提取。
In order to penetrate to the nature of transient behaviour of doubly-fed induction generator under grid disturbance, the conditions of electromechanical decoupling is concluded and the results of electromechanical decoupling is investigated. Power angle of DFIG is defined and its dynamic behavior is analyzed based on a single machine (DFIG) vs infinite system. It is demonstrated that the transient behavior of the power angle, not depending on rotor position and featuring complete electromagnetism transition, often shows fast-change character. Therefore, while disturbances happen in power grid, the active power of DFIG can be restored quikly to original value. Both digital simulation cases and physical experiments verify the proposed theory viewpoints.
     In order to investigate the influence of DFIG-based wind farms on small-signal stability of power system, the conception of frequency-power dynamic characteristic for DFIG was presented in this paper. Based on the proposed conception, two propositions are proved to be available for examining the damping of generic component. The phase of frequency-power dynamic characteristic of generic component can tell whether the damping performance is positive or not, and its magnitude can tell how strong the damping is. The research reveals that the regulator parameters of excitation system, such as integrator and proportion coefficient, have strong influence on the frequency dynamic characteristic of DFIG. Hence, the daming contribution of DFIG may extensively vary if the parameters of excitation regulator change. Using theoretic viewpoints above, an additional control strategy is designed for DFIG convertor to improve power system damping. Based on Power System Analysis Software Package (PSASP), 2-area and multi-area power systems cases show that the proposed control strategy can increase power system damping. The proposed strategy has some advantages of simple construction, fast tuning parameters, convenient debugging, and easy realization.
     For studying the transient stability of power systems with DFIG-based wind farms, the influence of DFIG on the first swing stability of power systems is investigated through illustrating the fast-change characteristic of DFIG power angle. It is revealed that two sorts of power angle curve cross will be produced when DFIG and parallel synchoronous generators are integrated into power grid. In this paper, these sorts of angle curves cross are defined as positive cross and passive cross, which have a significant effect on the stability of synchoronous generators. When a large disturbance happen in power grid, the positive cross will appear in the period of first swing and transient stability of power system will be weakened. But, the passive cross will occur in the succeeding seconds and DFIG will accordingly enhance damping of synchoronous generators. According analysis results above, an excitation control scheme is designed for DFIG convertor to improve transient performance of power angle of DFIG, and the proposed control strategy can also restrict the first swing of the synchoronous generators nearby the wind farm during grid disturbance.
     To reveal the mechanism of torsional oscillation of DFIG shaft, based on electromagnetic torque conception, it is demonstrated that the parameters of PI regulator and forward feed compensation are key factors that have great impacts on the electromagnetic torque. Because the controller design value of mutual inductance between stator and rotor windings is hardly equal to its real value, the error between design and real value can be positive or negative, which is the other crucial factor relating to the sign and magnitude of damping torque. Four kinds of cases are studied to find out the feature of damping torque, and two of them are confirmed to be the mechanisms of torsional oscillation of negative damping torque. To monitor shaft oscillations, an on-line identifying scheme for mechanical modes and electrical modes is developed, which employs subspace identification algorithm to identify system model and extract the dominating modes under the natural operation conditions.
引文
[1]张国宝.打造“风电三峡”[N],人民日报, 2008-02-4(15).
    [2]李俊峰,施鹏飞,高虎.中国风电发展报告2010,中国资源综合利用协会可再生能源专业委员会, 2010.10.
    [3]尹明,王成山,葛旭波,等.中德风电发展的比较与分析,电工技术学报, 2010, 25(9):157-162.
    [4]董立龙.“风火联合外送”欲破风电并网难题,河北日报, 2010-11-24(5).
    [5]李庚银,尹明.基于VSC-HVDC的风电场并网技术研究[博士学位论文],北京,华北电力大学, 2007.
    [6]杨思祥,李国杰,阮思烨,等.应用于DFIG风电场的VSC-HVDC控制策略,电力系统自动化, 2007, 31(19):64-67.
    [7] Lie Xu, Liangzhong Yao, Christian Sasse. Grid integration of large DFIG-based wind farms using VSC transmission, IEEE Transactions on Power System, 2007, 22(3):976-984.
    [8]肖志东.“电网友好型”风电场几大关键词解读, http://www.in-en.com/newenergy/html/newenergy-1904190486927535.htm(l国际能源网)
    [9]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究.中国电机工程学报, 2005, 25(8):90-94.
    [10]苑国锋,柴建云,李永东.新型转子电流混合控制的变速恒频异步风力发电系统,电网技术,2005, 29(15):76-80.
    [11] Pena R., Clare J.C., Asher, G.M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc., Electr. Power Appl., 1996, 143(3): 231–241.
    [12] Muller S, Deicke M, De Doncker R.W. Doubly fed induction generator systems for wind turbines. IEEE Ind. Appl. Mag., 2002, 8(3):26-33.
    [13] Hee-Sang Ko, Gi-Gab Yoon, Nam-Ho Kyung, et al. Modeling and control of DFIG-based variable-speed wind-turbine. Electric Power Systems Research, 2008, 78(11):1841-1849.
    [14]李鹏程,叶林.基于EMTP/ATP的双馈式风力发电系统的模型与实现.电力系统自动化, 2009, 33(14):93-97.
    [15] Yazhou Lei, Alan Mullane, Gordon Lightbody, Robert Yacamini. Modeling of the wind turbine with a doubly fed induction generator for grid integration studies,IEEE Transactions on Energy Conversion, 2006, 21(1):257-264. [16 ]Istvan Erlich, J?rg Kretschmann, Jens Fortmann, Stephan Mueller-Engelhardt, Holger Wrede. Modeling of Wind Turbines Based on Doubly-Fed Induction Generators for Power System Stability Studies, IEEE Transactions on Power System, 2007, 22(3):909-919.
    [17]王晓波,严干贵,郑太一,等.双馈感应风电机组联网运行仿真及实证分析,电力系统自动化, 2008, 32(7):87-91.
    [18] B.C. Pal, F. Mei. Modelling adequacy of the doubly fed induction generator for small-signal stability studies in power systems. IET Renew. Power Gener., 2008, 2(3):181–190.
    [19] Francoise Mei, Bikashi Pal. Modal analysis of grid-connected doubly fed induction generators. IEEE Trans. on Energy Conversion, 2007, 22(3):728-736.
    [20] Zhao Yang Dong, Ramesh C. Bansal. Small-signal stability analysis of a DFIG-based wind power system under different modes of operation, IEEE Transactions on Energy Conversion, 2009, 24(4):972-982.
    [21]林今,李国杰,孙元章,等.双馈风电机组的小信号分析及其控制系统的参数优化.电力系统自动化, 2009, 33(5):86-90.
    [22] Alvaro Luna, Francisco Kleber de Araujo Lima, David Santos,et al. Simplified modeling of a DFIG for transient studies in wind power applications,IEEE Transactions on Industrial Electronics, 2011,58(1):9-19.
    [23] Mohsen Rahimi, Mostafa Parniani. Dynamic behavior analysis of doubly-fed induction generator wind turbines-The in?uence of rotor and speed controller parameters, Electrical Power and Energy Systems, 2010, 32:464–477.
    [24] Lingling Fan, Rajesh Kavasseri, Zhixin Lee Miao, Chanxia Zhu. Modeling of DFIG-based wind farms for SSR analysis, IEEE Transactions on Power Delivery, 2010, 25(4):2073-2082.
    [25] Shuhui Li, Timothy A. Haskew, Jeff Jackson. Integrated power characteristic study of DFIG and its frequency converter in wind power generation, Renewable Energy, 2010, 35:42-51.
    [26]郁灿,金新民,郁灿,金新民.双馈风力发电机的稳态分析,大功率变流技术, 2010, 4:19-23.
    [27] Cui Yang, Yan Gan-gui,Jiang Da-wei, Mu Gang, Zhou Zhi-qiang. DFIG-based wind farm equivalent model for power system short circuit current calculation, IEEE International Conference on Sustainable Power Generation and Supply, SUPERGEN, 2009: 1-5.
    [28]冯双磊,赵海翔,任普春,等.基于PSCAD/EMTDC的双馈式变速恒频风电机组动态模型仿真,电网技术, 2007, 31(17):30-35.
    [29]李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真,中国电机工程学报, 2004, 24(6):100-105.
    [30]王厚军,晁勤,蒋佳良.基于Digsilent的风电场保护研究,可再生能源, 2010, 28(4):29-32.
    [31]曹娜,赵海翔,任普春,戴慧珠.风电场动态分析中风速模型的建立及应用,中国电机工程学报, 2007, 27(36):68-72.
    [32] Roberto Cárdenas, Rubén Pe?a,Germán Tobar,et al. Stability analysis of a wind energy conversion system based on a doubly fed induction generator fed by a matrix converter, IEEE Transactions on Industrial Electronics, 2009, 56(10):4194-4205.
    [33]李辉,阳春华,邓文浪,马学亮.矩阵变换器励磁的双馈型发电机软并网控制,中国电机工程学报, 2010, 30(15):75-79.
    [34] A.A. El-Sattar, N.H. Saad, M.Z. Shams El-Dein. Dynamic response of doubly fed induction generator variable speed wind turbine under fault, Electric Power Systems Research, 2008,78 :1240–1246.
    [35]蒋雪冬,赵舫.应对电网电压骤降的双馈感应风力发电机Crowbar控制策略,电网技术, 2008, 32(12):84-89.
    [36]宋卓彦,王锡凡,滕予非,等.变速恒频风力发电机组控制技术综述,电力系统自动化, 2010, 34(10):8-17.
    [37] A.H.M.A. Rahim, I.O. Habiballah. DFIG rotor voltage control for system dynamic performance enhancement, Electric Power Systems Research, 2011, 81:503-509.
    [38] B.Boukhezzar, H.Siguerdidjane. Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization, Energy Conversion and Management, 2009, 50:885-892.
    [39] Lie Xu. Direct active and reactive power control of DFIG for wind energy generation, IEEE Transactions on Energy Conversion, 2006,21(3):750-758.
    [40]高勇,张文娟,杨媛,等.基于无源性的变速恒频双馈风力发电机控制系统,电工技术学报,2010, 25(7):130-136.
    [41]张鲁华,郭家虎,蔡旭,等.双馈感应发电机的输入输出线性化解耦控制,中国电机工程学报, 2009, 29(增):197-203.
    [42]付旺保,赵栋利,潘磊,等.基于自抗扰控制器的变速恒频风力发电并网控制,中国电机工程学报, 2006, 26(3):13-18.
    [43]任丽娜,焦晓红,邵立平.双馈型变速恒频风力发电系统的鲁棒控制,控制理论与应用, 2009, 26(4):377-382.
    [44] Mustafa Kay?kc, Jovica V. Milanovic. Reactive power control strategies for DFIG-based plants, IEEE Transactions on Energy Conversion, 2007,22(2):389-396.
    [45] P. Cartwright, L. Holdsworth, J.B. Ekanayake et al. Co-ordinated voltage control strategy for a doubly fed induction generator (DFIG)-based wind farm, IEE Proc.-Gener. Transm. Distrib., 2004,151(4):495-502.
    [46] Elībieta Bogalecka, MichaáKosmecki. Control of reactive power in double-fed machine based wind park, Power Electronics and Motion Control Conference, 2008:1975-1980.
    [47] L.M. Fernandez, C.A. Garcia, F. Jurado. Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation, Energy,2008,33:1438– 1452.
    [48] F. Michael Hughes, Olimpo Anaya-Lara, Nicholas Jenkins,et al. Control of DFIG-based wind generation for power network support, IEEE Transactions on Power Systems,2005,20(4):1958-1966.
    [49] O. Anaya-Lara, F.M. Hughes, N. Jenkins, et al. Contribution of DFIG-based wind farms to power system short-term frequency regulation, IEE Proc.-Gener. Transm. Distrib., 2006,153(2):164-170.
    [50] Hee-Sang Ko,Sylvain Bruey, Juri Jatskevich,et al. A PI Control of DFIG-Based Wind Farm for Voltage Regulation at Remote Location, IEEE Conference on Power Engineering Society General Meeting, 2007:1-6.
    [51] M.Wilch, V. S. Pappala, S.N. Singh. Reactive power generation by DFIG based wind farms with AC grid connection, IEEE 6th International Conference on Power Electronics and Motion Control, 2009:1-7.
    [52] Mohammed El Moursi,Geza Joosb. Optimal tracking secondary voltage control for the DFIG wind turbines and compensator devices,Electric Power Systems Research, 2009, 79:1705–1716.
    [53] J.P.A. Vieira1, M.V.A. Nunes, U.H. Bezerra. Designing optimal controllers for doubly fed induction generators using a genetic algorithm, IET Gener. Transm. Distrib., 2009, 3(5): 472–484.
    [54]陈惠粉,乔颖,鲁宗相,闵勇.风电场群的无功电压协调控制策略,电力系统自动化, 2010, 34(18):78-83.
    [55]金海峰,吴涛.风电接入系统后的电压稳定问题,电力自动化设备, 2010, 30(9):82-84.
    [56]迟永宁,王伟胜,戴慧珠.改善基于双馈感应发电机的并网风电场暂态电压稳定性研究,中国电机工程学报, 2007, 27(25):25-31.
    [57]张学广,刘义成,海樱,徐殿国.改进的配电网双馈风电场电压控制策略,中国电机工程学报, 2010, 30(7):29-35.
    [58]王松岩,朱凌志,陈宁,于继来.基于分层原则的风电场无功控制策略,电力系统自动化, 2009, 33(13):83-88.
    [59] J. Shu, B.H. Zhang, C.G. Wang. Stability Control of Power System Integration of VSCF Wind Generator, IEEE International Conference on Sustainable Power Generation and Supply, 2009:1-6.
    [60] M. Shahabi, M.R.Haghifam, M. Mohamadian. Microgrid dynamic performance improvement using a doubly fed Induction wind generator, IEEE Transcations on Energy Conversion, 2009,24(1):137-144.
    [61] Liyan Qu, Wei Qiao. Constant power control of DFIG wind turbines with supercapacitor energy storage, IEEE Transcations on Industry Application, 2011, 41(1):359-367.
    [62]贾俊川,刘晋,张一工.集成嵌入式储能的双馈风力发电系统功率控制,电力系统自动化, 2010, 34(15):80-84.
    [63] R.D. Fernandez,R.J. Mantz, P.E. Battaiotto. Linear and non-linear control of wind farms.Contribution to the grid stability, International Journal of Hydrogen Energy, 2010, 35:6019–6024.
    [64] R.D. Fernandez, P.E. Battaiottoa, R.J. Mantz. Wind farm non-linear control for damping electromechanical oscillations of power systems, Renewable Energy, 2008, 33: 2258–2265.
    [65]关宏亮,迟永宁,王伟胜.双馈变速风电机组频率控制的仿真研究,电力系统自动化, 2010, 34(15): 61-65.
    [66]曹军,王虹富,邱家驹.变速恒频双馈风电机组频率控制策略,电力系统自动化, 2009, 33(13):78-82.
    [67]关宏亮,迟永宁,戴慧珠.并网风电场改善系统阻尼的仿真,电力系统自动化, 2008, 32(13):81-85.
    [68]舒进,郝治国,张保会,等.改善接入系统同步稳定性的变速风电机组控制,电力系统自动化, 2009, 33(7):65-69,80.
    [69] Gerardo Tapia, Giovanna Santamar′a, Mikel Telleria, Ana Susperregui. Methodology for Smooth Connection of Doubly Fed Induction Generators to the Grid, IEEE Transcations on Energy Conversion, 2009, 24(4):959-971.
    [70]郎永强,徐殿国,Hadianmrei S.R,马洪飞.交流励磁双馈电机分段并网控制策略,中国电机工程学报, 2006, 26(19):133-138.
    [71]吴国祥,马炜,陈国呈,等.双馈变速恒频风力发电空载并网控制策略,电工技术学报, 2007, 22(7):169-175.
    [72]杨淑英,张兴,张崇巍,等.变速恒频双馈风力发电机投切控制策略,中国电机工程学报, 2007, 27(17):103-108.
    [73]吴国祥,黄建明,陈国呈,等.变速恒频双馈风力发电运行综合控制策略,电机与控制学报, 2008, 12(4):435-441.
    [74]夏长亮,王慧敏,宋战锋,陈炜.变速恒频双馈风力发电系统空载并网积分变结构控制,天津大学学报, 2008, 41(11):1281-1286.
    [75]中国电力科学研究院.风电场接入电网技术规定(修订版)[S].北京:国家电网公司,2009.
    [76] Y. Wang, L. Xu, B.W. Williams. Compensation of network voltage unbalance using doubly fed induction generator-based wind farms, IET Renew. Power Gener., 2009, 3(1):12-22.
    [77] Lie Xu. Coordinated Control of DFIG’s Rotor and Grid Side Converters During Network Unbalance, IEEE Transactions on Power Electronics, 2008, 23(3):1041-1049.
    [78]胡家兵,贺益康,王宏胜,等.不平衡电网电压下双馈感应发电机网侧和转子侧变换器的协同控制,中国电机工程学报, 2010, 30(9):97-104.
    [79]郑艳文,李永东,柴建云.不平衡电压下双馈发电系统控制策略,电力系统自动化, 2009, 33(15):89-93.
    [80] Brekken T , Mohan N. Control of a doubly fed induction wind generator under unbalanced grid voltage conditions. IEEE Transactions on Energy Conversion, 2007, 22 (1):129-135.
    [81] Jiabing Hu, Yikang He. DFIG wind generation systems operating with limited converter rating considered under unbalanced network conditions e Analysis and control design, Renewable Energy, 2011, 36:829-847.
    [82]郭晓明,贺益康,何奔腾,等.不对称电网电压下双馈风力发电机的直接功率控制,电力系统自动化, 2008, 32(13):86-91.
    [83]李辉,廖勇,姚骏,等.不平衡电网电压下基于串联网侧变换器的DFIG控制策略,电力系统自动化, 2010, 34(3):96-100.
    [84] Bakari Mwinyiwiwa, Yongzheng Zhang, Baike Shen, et al. Rotor position phase-locked loop for decoupled P-Q control of DFIG for wind power generation, IEEE Transactions on Energy Conversion, 2009, 24 (3):758-765.
    [85] Mansour Mohseni, Syed Islam, Mohammad A.S. Masoum. Using equidistant vector-based hysteresis current regulators in DFIG wind generation systems, Electric Power Systems Research, 2011, 81: 1151–1160.
    [86] Mohammad Verij Kazemi, Ahmad Sadeghi Yazdankhah, Hossein Madadi Kojabadi. Direct power control of DFIG based on discrete space vectormodulation, Renewable Energy, 2010, 35: 1033–1042
    [87]高乐,周有庆,徐隆亚.基于转子电流的双馈感应电机无速度传感器控制,电力系统自动化, 2010, 34(13):61-65.
    [88] Datta R, Ranganathan V T. Variable-speed wind power generation using doubly fed wound rotor induction machine—A comparison with alternative schemes. IEEE Trans on Energy Conversion, 2002, 17(3):414-421.
    [89] Hansena A D, Michalke G. Fault ride-through capability of DFIG wind turbines. Renewable Energy 2007, 32:1594–1610.
    [90] Morren J, Sjoerd W. H. Ride-through of wind turbines with doubly-fed induction generator during a voltage dip. IEEE Trans on Energy Conversion, 2005, 20(2):435-441.
    [91] Dawei Xiang, Li Ran. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through. IEEE Trans on Energy Conversion, 2006, 21(3):652-662.
    [92] Lopez J, Sanchis P, Roboam X, Marroyo L. Dynamic behavior of the doubly fed induction generator during three-phase voltage dips. IEEE Trans on Energy Conversion, 2007, 22(3):709-717.
    [93] Lopez J, Gubía E, Olea E, Ruiz J. Ride through of wind turbines with doubly fed induction generator under symmetrical voltage dips. IEEE Trans on Industrial Electrinics, 2009, 56(10):4246-4253.
    [94]杨淑英,张兴,张崇巍,等.电压跌落激起的双馈型风力发电机电磁过渡过程.电力系统自动化, 2008,32(19) :85-91. YANG Shuying, ZHANG Xing, ZHANG Chongwei,et al. Electro-magnetic transition of doubly fed wind turbines initiated by voltage dip. Automation of Electric Power Systems, 2008, 32(19) :85-91.
    [95] Rahimi M, Parniani M. Grid-fault ride-through analysis and control of wind turbines with doubly fed induction generators.Electric Power Systems Research, 2010, 80: 184–195.
    [96] Mishra Y, Mishra S,Tripathy M. Improving Stability of a DFIG-Based Wind Power System With Tuned Damping Controller. IEEE Trans on Energy Conversion, 2009, 24(3):650-659.
    [97] Erlich I, Kretschmann J, Fortmann J. Modeling of wind turbines based on doubly-fed induction generators for power system stability studies. IEEE Trans on Power Systems, 2007, 22(3):909-919.
    [98]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制.电力系统自动化, 2006, 30 (8) :21-26. HU Jiabing , SUN Dan , HE Yikang , et al . Modeling and control of DFIG windenergy generation system under grid voltage dip. Automation of Electric Power Systems, 2006, 30 (8): 21-26.
    [99] Flannery P S, Venkataramanan G. A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter. IEEE Trans on Power Electronics, 2008, 23(3):1126-1135.
    [100] El-Sattar A A, Saad N H,Shams El-Dein M Z. Dynamic response of doubly fed induction generator variable speed wind turbine under fault. Electric Power Systems Research, 2008, 78(2): 1240–1246.
    [101]朱颖,李建林,赵斌.双馈型风力发电系统低电压穿越策略仿真,电力自动化设备, 2010, 30 (6):20-24.
    [102] M. Rahimi, M. Parniani. Efficient control scheme of wind turbines with doubly fed induction generators for low voltage ride-through capability enhancement. IET Renew. Power Gener., 2010, 4(3): 242–252.
    [103] Min Min Kyaw, V.K. Ramachandaramurthy. Fault ride through and voltage regulation for grid connected wind turbine, Renewable Energy, 2011, 36:206-215.
    [104] Graham Pannell, David J. Atkinson, Bashar Zahawi. Analytical study of grid-fault response of wind turbine doubly fed induction generator, IEEE Transcations of Energy Conversion, 2010, 25(4):1081-1091.
    [105] Morgan Kiani, Wei-Jen Lee. Effects of voltage unbalance and system harmonics on the performance of doubly fed induction wind generators, IEEE Transcations of Industry Applications, 2010, 46(2):562-568.
    [106] Jiabing Hu, Yikang He, Lie Xu. Improved control of DFIG systems during network unbalance using PI–R current regulators, IEEE Trans on Industrial Electrinics,2009,56(2):439-450.
    [107] Lie Xu. Enhanced Control and operation of DFIG-based wind farms during network unbalance, IEEE Transcations of Energy Conversion, 2008, 23(4):1073-1081.
    [108] Oriol Gomis-Bellmunt, Adria Junyent-Ferre, Andreas Sumper, et al. Ride-through control of a doubly fed induction generator under unbalanced voltage sags, IEEE Transcations of Energy Conversion, 2008, 23(4):1036-1045.
    [109]王宏胜,章玮,胡家兵.电网电压不对称故障条件下DFIG风电机组控制策略,电力系统自动化, 2010 , 34 (4):97-102.
    [110]廖勇,李辉,姚骏,等.采用串联网侧变换器的双馈风电机组低电压过渡控制策略,中国电机工程学报, 2009, 29(27):90-97.
    [111] Patrick S. Flannery, Giri Venkataramanan. Unbalanced voltage sag ride-throughof a doubly fed induction generator wind turbine with series grid-side converter, IEEE Transcations of Industry Applications, 2009, 45(5):1789-1887.
    [112]郝正航,余贻鑫,曾沅.双馈风力发电机功角暂态行为及其控制策略,电力自动化设备, 2011, 31(2):79-83.
    [113]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响,电网技术, 2007, 31(3):77-81.
    [114] Eduard Muljadi, C. P. Butterfield, Brian Parsons, et al. Effect of variable speed wind turbine generator on stability of a weak grid, IEEE Transcations of Energy Conversion, 2007, 22(1):29-36.
    [115] Durga Gautam, Vijay Vittal, Terry Harbour. Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems, IEEE Transactions on Power Systems, 2009, 24(3):1426-1434.
    [116] Libao Shi, Shiqiang, Yixin Ni. Transient stability of power systems with high penetration of DFIG based wind farms, IEEE Power & Energy Society General Meeting, 2009:1-6.
    [117] Olimpo ANAYA-LARA, Michael Hughes, Nicholas Jenkins. Minimum synchronous generator for stability of DFIG-based wind farm, CIRED 18th International Conference and Exhibition on Electricity Distribution,Turin, 2005:
    [118]Lasantha Meegahapola, Damian Flynn. Impact on transient and frequency stability for a power system at very high wind penetration, IEEE Power and Energy Society General Meeting, 2010:1-6.
    [119]黄学良,刘志仁,祝瑞金,等.大容量变速恒频风电机组接入对电网运行的影响分析.电工技术学报, 2010, 25(4): 142-149.
    [120]迟永宁,王伟胜,刘燕华.大型风电场对电力系统暂态稳定性的影响.电力系统自动化,2006,30(15):10-14.
    [121] J.G. Slootweg, W.L. Kling, The impact of large scale wind power generation on power system oscillations. Electric Power System Research, 2003, 67(1):9-20.
    [122] R.D. Fernandez, R.J. Mantz, P.E. Battaiotto.Impact of wind farms on a power system. An eigenvalue analysis approach, Renewable Energy, 2007, 32(10):1676-1688.
    [123] N.R.Ullah, T. Thiringer. Improving voltage stability by utilizing reactive power injection capability of variable speed wind turbines, International Journal of Power and Energy Systems, 2008, 28(3):289-297.
    [124] G. Tsourakis, B.M. Nomikos,C.D. Vournas. Effect of wind parks with doubly fed asynchronous generators on small-signal stability. Electric Power Systems Research, 2009, 79(1):190-200.
    [125] O. Anaya-Lara, F.M. Hughes, N. Jenkins, et al. Provision of a synchronising power characteristic on DFIG-based wind farms, IET Gener. Transm. Distrib., 2007,1(1):162-169.
    [126] G. Ramtharan, J.B. Ekanayake, N. Jenkins. Frequency support from doubly fed induction generator wind turbines, 2007,1(1):3-9.
    [127] Mustafa Kayik?i, Jovica V. Milanovic, Dynamic contribution of DFIG-based wind plants to system frequency disturbances, IEEE Transactions on Power Systems, 2009, 24(2):859-867.
    [128] M. Akbari, Seyed M. Madani, A New method for contribution of DFIG-based wind farms in power system frequency regulation, North American Power Symposium (NAPS), 2010.
    [129] Praghnesh Bhatt, Ranjit Roy, S.P. Ghoshal. Dynamic participation of doubly fed induction generator in automatic generation control, Renewable Energy, 2011,36:1203-1213.
    [130] Durga Gautam, Lalit Goel, Raja Ayyanar, et al. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems, IEEE Transactions on Power Systems,2011,26(1):214-224.
    [131]黄梅,万航羽.在动态仿真中风电场模型的简化,电工技术学报, 2009,24(9):147-152.
    [132]米增强,苏勋文,余洋,等.双馈机组风电场动态等效模型研究,电力系统自动化, 2010, 34(17):72-77.
    [133] L.M. Fernández, C.A. García a, J.R. Saenz a, et al. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds, Energy Conversion and Management, Energy Conversion and Management, 2009, 50: 691–704.
    [134] Luis M. Fernandez, Francisco Juradob, Jose Ramon Saenz. Aggregated dynamic model for wind farms with doubly fed induction generator wind turbines, Renewable Energy, 2008, 33:129–140.
    [135] Vladislav Akhmatov, An aggregated model of a large wind farm with variable speed wind turbines equipped with doubly-fed induction generators, Wind Engineering, 2004, 28(4):479-488.
    [136]王成山,孙玮,王兴刚.含大型风电场的电力系统最大输电能力计算,电力系统自动化, 2007, 31(2):17-21, 31.
    [137] M.G. Castro, J.M. Ferreira. A wind park reduced-order model using singular perturbations theory, IEEE transactions on Energy Conversion, 1996, 11(4):735-741.
    [138] L. M. Fernandez, F. Juradob, J. R. Saenz. Aggregated dynamic model for wind farms with doubly fed induction generator wind turbines, Renewable Energy, 2008, 33(1):129-140.
    [139] G. G. Miguel, M. P. Comech, J. Sallan, A. Llombart. Modelling wind farms for grid disturbance studies, Renewable Energy, 2008, 33(1):2109-2121.
    [140]王忱,石立宝,姚良忠,等.大规模双馈型风电场的小扰动稳定分析,中国电机工程学报, 2010, 30(4):63-70.
    [141] Akhmatov V, Knudsen H. An aggregated model of a grid-connected, large-scale offshore wind farm for power stability investigations-importance of windmill mechanical system, Electric Power Energy Syst. 2002, 24: 709–717.
    [142] L. M. Fernandez, C. A. Garcia, F. Jurado, J. R. Saenz. Aggregation of Doubly Fed Induction Generators Wind Turbines Under Different Incoming Wind Speeds[C]// IEEE Power Tech conference, St. Petersburg,Russia:2005
    [143]刘其辉.变速恒频风力发电系统运行与控制研究: [博士学位论文],杭州,浙江大学, 2005.
    [144]高景德,王祥珩,李发海.交流电机及其系统的分析(第二版)[M]北京:清华大学出版社,2005.
    [145] V. Akhmatov. Variable-speed wind turbines with doubly-fed induction generators. Part I: Modelling in dynamic simulation tools, Wind Engineering, 2002, 26(2): 85-108.
    [146]卞松江,吕晓美,相会杰.交流励磁变速恒频风力发电系统控制策略的仿真研究,中国电机工程学报, 2005, 25(16):57-62.
    [147] Kundur P. Power System Stability and Control. New York: McGraw-Hill, 1994.
    [148]吴胜,黄声华,周理兵,等.双馈电机交直交控制系统仿真分析.华中科技大学学报, 2003 (1) : 80 -83.
    [149] S. Chondrogiannis, M. Barnes. Stability of doubly-fed induction generator under stator voltatge orientated vector control. IET Renewable Power Generation, 2008, 2(3):170-180.
    [150]郭金东,赵栋利,林资旭,等.兆瓦级变速恒频风力发电机组控制系统.中国电机工程学报. 2007, 27(6):1-6.
    [151]唐新安,谢志明,王哲,等.风力机齿轮箱故障诊断.噪声与振动控制, 2007, 27(1):120-124.
    [152]张新燕,何山,张晓波.风力发电机组主要部件故障诊断研究.新疆大学学报(自然科学版), 2009, 26(2):140-144.
    [153] Ribrant J. Reliability Performance and Maintenance– A Survey of Failures in Wind Power Systems [D]. Sweden: KTH School of Electrical Engineering, 2006.
    [154]李东东,陈陈.风力发电机组动态模型研究.中国电机工程学报. 2005, 25(3):115-120.
    [155]张瑞成,童朝南.基于交流传动的轧机机电耦合系统振动特性分析.机械强度, 2006, 28 (3):336-340.
    [156]刘爽,张业宽,刘彬.轧机主传动机电耦联扭振系统的动态分岔研究.机械工程学报, 2010, 46(3):83-89.
    [157]张帆,徐政.附加励磁阻尼控制抑制次同步谐振研究.电力系统自动化, 2007, 31(23):24-28.
    [158]谢小荣,刘世宇,张树卿,等.附加励磁阻尼控制抑制多模态SSR的机理及其关键技术.电力系统自动化, 2007, 31(21):10-14.
    [159] V. Akhmatov. Variable-speed wind turbines with doubly-fed induction generators. PartⅡPower system stability, Wind Engineering, 2002, 26(3):171-188.
    [160]余贻鑫.线性系统.北京:科学出版社, 2009.
    [161] F. Wu, X. P. Zhang, K. Godfrey, P. Ju. Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator. IET Gener. Transm. Distrib., 2007, 1(5):751–760.
    [162] V. Akhmatov, Knudsena H, Nielsenb A H. Advanced simulation of windmills in the electric power supply. International Journal of Electrical Power and Energy Systems, 2000, 22(6): 421-434.
    [163]徐政.交直流电力系统动态特性行为分析.北京:机械工业出版社, 2005.
    [164] M. Verhaegen. Identification of the deterministic part of MIMO state space models given in innovations from input-output data [J]. Automatica. 1994, 30(1):61-74.
    [165]贾宏杰.电力系统小扰动稳定域研究: [博士学位论文],天津,天津大学, 2002.
    [166]孙强.电力系统小扰动稳定域与低频振荡: [博士学位论文],天津,天津大学, 2007.
    [167]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响.中国电机工程学报,2005,25(11): 6-11.
    [168]岳程燕,田芳,周孝信,等.电力系统电磁暂态-机电暂态混合仿真接口原理,电网技术, 2006, 30(1):23-27.
    [169] Abram P. Dynamic models of Wind Turbines[D]. Goteborg, Sweden: Chalmers University of Technology, 2008.
    [170]刘宪林,王鑫.单机-SVC-无穷大系统机电模式阻尼特性分析,郑州大学学报(工学版), 2007, 28(3):87-90.
    [171]王海风,李乃湖,陈珩,等.静止无功补偿器阻尼电力系统振荡(上)——理论分析,中国电机工程学报, 1996, 16(3): 190-195.
    [172]贾宏杰,余晓丹,余贻鑫.并联电容补偿导致负阻尼现象成因初探,电力系统自动化, 2005, 29(6):39-44.
    [173]赵书强,常鲜戎,贺仁睦,等. PSS控制过程中的借阻尼现象与负阻尼效应,中国电机工程学报, 2004,24(5): 7-11.
    [174]钟志勇,谢志棠,王克文.适用于电力系统动态稳定分析的元件建模新方法,中国电机工程学报, 2000, 20 (3): 30- 33 .
    [175] M. V. A. Nunes, J. A. P. Lopes, H. H. Zurn, U. H. Bezerra, and R. G. Almeida. In?uence of the variable-speed wind generators in transient stability margin of the conventional generators integrated in electrical grids. IEEE Trans. Energy Convers.2004,19(4):692–701.
    [176] J. L. Rueda, F. Shewarega. Impact of large scale wind power integration on small signal tability, http://www.uni-due.de/ean/downloads/papers/rueda- 2009a.pdf
    [177] Elkington K, Valerijs Knazkins V, Ghandhari M. On the stability of power systems containing doubly fed induction generator-based generation. Electric Power Systems Research 2008,78:1477–1484.
    [178]余贻鑫,陈礼义.电力系统的安全性和稳定性,北京:科学出版社, 1988.
    [179]余贻鑫,王成山.电力系统稳定性理论与方法,北京:科学出版社, 1999.
    [180]张运洲,白建华,辛颂旭.我国风电开发及消纳相关重大问题研究.能源技术经济, 2010, 22(1):1-6.
    [181]白建华,辛颂旭,贾德香,程路.中国风电开发消纳及输送相关重大问题研究.电网与清洁能源, 2010, 26(1):14-17.
    [182]史林军,陈中,王海风,唐国庆.应用飞轮储能系统阻尼电力系统低频振荡,电力系统自动化, 2010, 34(8): 29-33.
    [183]李刚,程时杰,文劲宇,潘垣.基于储能型稳控装置的电力系统阻尼特性分析,电力系统自动化, 2007, 31(17):11-15.
    [184]陈中,杜文娟,王海风,高山.基于阻尼转矩分析法的储能系统抑制系统低频振荡,电力系统自动化, 2009, 33(12):8-11.
    [185]李刚,程时杰,文劲宇,潘垣.利用柔性功率调节器提高电力系统稳定性,中国电机工程学报, 2006, 26(23):1-6.
    [186]赵洋,肖湘宁.利用SSSC阻尼电力系统低频振荡,电力系统自动化, 2007, 31(17):40-44.
    [187] Mendonca A, Lopes, J A. Simultaneous tuning of power system stabilizers installed in DFIG-Based Wind generation, Proceedings of IEEE LausanneConference on Power Tech, 2007, Switzerland, 219-224.
    [188] Ledesma P., Gallardo C. contribution of variable-speed wind farms to damping of power system oscillations, Proceedings of IEEE Lausanne Conference on Power Tech, 2007, Switzerland, 191-193.
    [189] Tsourakis G.,Vournas C. A controller for Wind Generators to increase damping of power oscillations, Proceedings of IEEE International Symposium on Circuit and System, 2010, Paris, France, 2195-2198.
    [190] Zhixin Miao, Lingling Fan, Osborn D, Yuvarajan S. Control of DFIG-based wind generation to improve inter-area oscillation damping, IEEE Trans. On Energy Conversion, 2009, 24(2): 415-422.
    [191] O. Anaya-Lara, F. M. Hughes. Rotor flux magnitude and angle control strategy for doubly fed induction generators. Wind Energy, 2006, 9:479–495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700