表面活性剂增溶微生物—光催化联合降解污染土壤中的硫丹
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫丹是一种广谱高效的有机氯农药,在全世界范围内被广泛使用。因其在环境中残留期长、生物累积性强、对生态系统和人体健康毒害大、可在全球范围内迁移,于2011年4月被新列入持久性有机污染物(POPs)控制清单。硫丹的长期和大量施用使得我国农田土壤中积累了较多的硫丹及其高毒代谢产物硫丹硫酸盐,对农业生态环境和人体健康都构成了较为严重的威胁。随着硫丹被逐步禁止使用,硫丹生产企业关停后的遗留场地及贮存场地土壤的污染问题也日渐显现。我国是《关于持久性有机污染物的斯德哥尔摩公约》的缔约国,有责任和义务控制硫丹的使用,防治硫丹对环境的污染,发展硫丹污染土壤的修复技术和方法。
     目前,国内外大多利用微生物降解土壤中的硫丹,但硫丹为疏水性有机氯农药,又可被土壤胶体牢固吸附,生物有效性低,微生物降解效果不佳。同时,降解生成的毒性代谢产物硫丹硫酸盐可在土壤中长期积累,限制了微生物的降解效果和实际应用。因此,微生物降解土壤中硫丹目前还局限在实验室研究阶段。如何增大硫丹在土壤中的溶解能力,提高其生物有效性,在降解硫丹的同时去除高毒代谢产物硫丹硫酸盐,成为发展硫丹污染土壤修复技术、提高修复效率的重要研究内容。另一方面,硫丹对日光稳定,在土壤中难以直接光降解,也未见光催化降解土壤中硫丹的报道,但在光催化剂作用下水相中的硫丹可被彻底降解。因此,采用合适的光催化降解方法去除土壤中的硫丹值得探索。
     本文首先利用阴离子表面活性剂十二烷基硫酸钠(SDS)、非离子表面活性剂(Tween80、 Triton X-100)和添加剂Na2SiO3,研究了表面活性剂对硫丹的溶解能力和对污染老化土壤中硫丹的洗脱能力,获得具有最佳洗脱效果的表面活性剂及其组合。然后,从硫丹污染土壤中筛选出可降解硫丹的微生物,并研制获得在可见光区能有效催化降解硫丹的非金属元素掺杂Ti02。在此基础上,以微生物和光催化为降解手段,比较了先洗脱后降解土壤淋出液中的硫丹(先洗脱后降解)、同时洗脱和降解十壤中硫丹(同时洗脱和降解)这两种处理方式对污染土壤中硫丹的去除效果。最后,研究了表面活性剂作用微生物-光催化联合降解污染土壤中硫丹的效果,获得如下研究结果:
     1.筛选出可明显增溶和高效洗脱污染老化土壤中硫丹的表面活性剂及其组合。研究发现,a-硫丹在浓度为200~600mg·L-1的单一表面活性剂Tween80、Triton X-100和SDS中的溶解度分别达到9.28~25.70、3.95~8.40和0.88~1.83mg·L-1,溶解度与表面活性剂的临界胶束浓度呈负相关关系;β-硫丹在这3种表面活性剂中的溶解度与a-硫丹相差不大。当非/阴离子混合表面活性剂的质量比大于或等于4:1时,Tween80/SDS和Triton X-100/SDS对硫丹起协同增溶作用,Tween80/SDS对硫丹的增溶能力强于Triton X-100/SDS。表面活性剂对硫丹增溶能力的顺序为Tween80> Tween80/SDS> Triton X-100> Triton X-100/SDS> SDS,添加1000mg·L-1的Na2SiO3可增大表面活性剂及其组合的增溶能力,但不影响增溶能力的大小顺序。
     不添加Na2SiO3时,表面活性剂对污染老化土壤中a-、β-硫丹的洗脱率顺序为Tween80/SDS>Tween80> Triton X-100, Triton X-100/SDS在100-500mg·L-1和800-1000mg·L"1时的洗脱率分别低于和高于相应浓度的Triton X-100,加入SDS对提升Triton X-100洗脱土壤中硫丹的能力贡献不大。添加Na2SiO3后,硫丹的洗脱率顺序为Tween80/SDS> Tween80> Triton X-100/SDS> Triton X-100,4种洗脱模式对硫丹的洗脱能力均显著提高,其中a-硫丹的洗脱率分别是不加Na2SiO3的1.17~2.73、1.87~4.02、1.85~6.56和1.87~2.85倍。表面活性剂对污染老化土壤中硫丹的洗脱过程可用4参数2室一级反应动力学模型描述,该过程包括慢速洗脱和快速洗脱两个阶段。添加Na2SiO3可增大快速、慢速洗脱速率常数,降低慢速洗脱百分率。β-硫丹的洗脱速率和洗脱率均低于相应处理的a-硫丹,表明β-硫丹较难从土壤中洗脱。与其它洗脱模式比较,添加Na2Si03的Tween80/SDS能够高效、快速洗脱污染土壤中的硫丹,采用并行解吸法解吸14和20h后,对污染老化土壤中a-、β-硫丹的洗脱率达到最大,分别为91.41%和74.01%。
     2.从硫丹污染老化土壤中分离培养获得一株对高浓度硫丹具有耐受性的菌株EB-4,经16S rDNA鉴定确定为苍白杆菌属(Ochrobactrum sp.)。获得苍白杆菌降解洗脱液Eluent1(Tween80+Na2SiO3)、Eluent2(Tween80/SDS)和Eluent3(Tween80/SDS+Na2SiO3)中硫丹的最佳条件:pH为7.5~8.5,温度为35℃,微生物接种量大于10%,葡萄糖添加量1mg·L-1。苍白杆菌对3种洗脱液中硫丹的降解过程可用一级反应动力学模型描述,a-硫丹的半衰期分别为3.83、5.29和4.53d,β-硫丹分别为3.35、4.50和3.79d,β-硫丹的降解速率快于α-硫丹。
     先洗脱后降解土壤淋出液中硫丹的结果表明,苍白杆菌在12d内可将土壤淋出液Eluate1、 Eluate2和Eluate3中的硫丹完全降解。同时洗脱和微生物降解土壤中硫丹15d时,Eluent1. Eluent2和Eluent3处理对土壤中α-、β-硫丹的降解率均达到92%以上;苍白杆菌对硫丹的降解速率小于表面活性剂对土壤中硫丹的洗脱速率,微生物降解是同时洗脱和微生物降解污染老化土壤中硫丹的限速步骤。
     苍白杆菌以水解和氧化两种方式降解硫丹,代谢产物分别为硫丹二醇和硫丹硫酸盐。其中,硫丹二醇为主要代谢产物,可被苍白杆菌进一步代谢去除,不会在土壤和洗脱液中积累;高毒的硫丹硫酸盐为次要代谢产物,苍白杆菌难以进一步降解,在洗脱液和土壤中均表现出积累性。
     3.采用sol-gel法制备N、F元素掺杂的TiO2,通过X射线衍射(XRD)和激光粒度表征,获得粒径范围为310.8~345.6nm的锐钛矿型掺杂TiO2。先洗脱再光催化降解淋出液中硫丹的结果表明,锐钛矿型N、F掺杂Ti02在氙气灯照射下对土壤淋出液中的硫丹具有光催化活性,在强酸和强碱性条件下降解率较高;当光催化剂用量为400mg·L-1时,降解效果最好,洗脱液中的SDS在酸性和碱性条件下对硫丹的光催化降解分别起促进和抑制作用。土壤淋出液中硫丹的光催化降解过程可用一级反应动力学模型进行描述。当用N掺杂Ti02为光催化剂时,土壤淋出液Eluate1’、Eluate2’、和Eluate3’中光降解α-硫丹的半衰期分别为71.7、43.0和58.7min,β-硫丹分别为85.3、51.1和66.5min;当用F掺杂Ti02为光催化剂时,土壤淋出液Eluate1’、 Eluate2’和Eluate3’中光降解α-硫丹的半衰期分别为121.6、138.6和165.0min,β-硫丹分别为135.9、154.0和177.7min。N掺杂Ti02的光催化降解效果好于F掺杂TiO2,β-硫丹的光降解速率明显小于α-硫丹。
     同时洗脱和光催化降解土壤中硫丹的结果表明,以N掺杂TiO2为光催化剂,光降解120h时,Eluent1、Eluent2和Eluent3处理中α-硫丹的降解率分别为76.47%、74.81和79.14%,β-硫丹分别为57.79%、57.21%和58.52%;以F掺杂Ti02为光催化剂,a-硫丹的降解率分别为75.65%、73.59%和78.18%,β-硫丹分别为57.12%、56.41%和57.36%。研究发现,硫丹的光催化降解速率明显快于表面活性剂洗脱土壤中硫丹的速率,降解速率和程度取决于表面活性剂对硫丹的洗脱速率和程度。4参数2室一级反应动力学模型可以很好地描述同时洗脱和光催化降解土壤中硫丹的过程,包括快速光降解和慢速光降解两个阶段,后者是整个降解过程的速度控制步骤。由于β-硫丹可被土壤胶体更牢固吸附,α-硫丹的光催化降解速率快于β-硫丹。反应初期不同表面活性剂组合中硫丹的降解率差异显著,顺序为Eluent3> Eluent1> Eluent2,与这3种洗脱液对土壤中硫丹的洗脱率顺序一致。
     光催化降解硫丹的主要途径是光氧化,在土壤和表面活性剂上清液中均可检出微量代谢产物硫丹硫酸盐,可通过光氧化作用快速去除;硫丹硫酸盐在土壤中的残留时间比在上清液中长,光催化降解14h可被完全去除,不会在土壤中积累。
     4.在表面活性剂洗脱作用下,微生物-光催化联合降解可以缩短反应时间,提高污染土壤中硫丹的降解率,并有效避免硫丹硫酸盐的积累。比较同时洗脱和微生物降解3-9d后再光催化降解对硫丹的去除效果,发现同时洗脱和微生物降解的时间越长,联合降解对硫丹的去除率越高。其中,用Eluent3同时洗脱和微生物降解9d,再经N掺杂Ti02光催化降解480min,总浓度为20mg·kg-1的硫丹污染老化土壤中α-、β-硫丹的去除率分别达到96.57%和91.25%,微生物降解产生的硫丹硫酸盐也可同时去除,可高效修复硫丹污染的老化土壤。
Endosulfan is a widely used organochlorine pesticide (OCP) to control many insects and mites for field crops around the world. Owing to its highly toxic and bioaccumulation to most living organisms, and long-distance transport from its original source in the environment, endosulfan was listed in persistent organic pollutants (POPs) by Stockholm Convention in2011. With the long-term use of endosulfan. more and more endosulfan and its highly toxic metabolite (endosulfan sulfate) have been accumulated in agricultural soil in China, which poses a serious threat to agricultural ecological environment and human health. With being banned to use endosulfan gradually, people begin to concern on soil pollution problem in discarded manufacturing enterprise and storage site. China is a party to the Stockholm Convention on POPs control, and has responsibility and obligation to control the use of endosulfan. to prevent environmental pollution and develop the remedation technology for endosulfan-contaminated soil.
     At present, microbial degradation is widely used to remove endosulfan in soil. However, endosulfan is a hydrophobic organochlorine pesticide, and can be solidly adsorbed by soil colloids, which leads to its low bioavailabilitv. and then affact the degradation efficiency of microorganisms. As a toxic metabolite of microbial degradation, endosulfan sulfate can be accumulated in soil for a long time, which may limit the degradation efficiency of microorganisms and practical application of this method. So these studies are still restricted to the laboratory. How to increase the solubility and bioavailability in soil and simultaneously remove endosulfan sulfate becomes an important topic for the development of remediation technology for endosulfan-contaminated soil and improvement the remediation efficiency. On the other hand, endosulfan in soil is difficult to degrade directly by sunlight, and few reports on the photocatalytic degradation of endosulfan in soil can be found. However, it was reported that endosulfan could be degraded thoroughly in aqueous phase by photocatalyst. This research inspires a new idea to degrade endosulfan in the contaminated soil, which is worthy to study using photocatalytic degradation.
     In this thesis, we tried to improve the solubility and bioavailability of endosulfan in soil by screening suitable surfactants and their combination. An endosulfan degradading bacterium was isolated from the contaminated aged soil, and was employed to degrade endosulfan in soil with the elution of surfactants. Meanwhile, fluorine and nitrogen-doped TiO2which may effectively catalyze endosulfan and its metabolites to degrade were synthesized by sol-gel method, and were used to degrade endosulfan in soil with the elution of surfactants. With the solubilization of surfactants, we tried to integrate microbial degradation and photocatalytic degradation techniques, and hoped to obtain the combination degradation method for endosulfan in the contaminated soil, and to provide a scientific basis for developing the theory and technology to remedy the contaminated soil. The main results are summarized as follows.
     1. Surfactants and their combination which could significantly improve the solubility of endosulfan and elute efficiently the contaminated aged soil were obtained. It could be found that the solubilities of a-endosulfan in Tween80, Triton X-100and SDS (sodium dodecyl sulfate) with the concentration of200~600mg·L'1were9.28~25.70,3.95~8.40and0.88~1.83mg·L-1, respectively, which were negatively correlated with critical micelle concentrations (CMCs) of these surfactants, while the solubilities of β-endosulfan in them showed the similar trend as that of a-endosulfan. When the mass ratio of anionic and nonionic surfactants was not less than4:1, Tween80/SDS and Triton X-100/SDS could synergistically increase the solubility of endosulfan, and the solubilization capacity of the former was stronger than the latter. The solubilization capacities of the surfactants followed a decreasing order of Tween80, Tween80/SDS, Triton X-100, Triton X-100/SDS, and SDS, and those could further increase with the similar trend in the presence of1000mg·L-1Na2SiO3.
     The elution percents of α-,β-endosulfan followed a decreasing order of Tween80/SDS, Tween80and Triton X-100in the absence of Na2Si03, while that of Triton X-100/SDS at low concentration (100~500mg·L-1) and high concentration (800~1000mg·L-1) were lower and higher than those by the corresponding concentrations of Triton X-100, respectively. In general, the elution capability of Triton X-100did not obviously improve with the addition of SDS. The elution percents of enduslfan follwed a decreasing order of Tween80/SDS, Tween80, Triton X-100/SDS, and Triton X-100in the presence of Na2SiO3, and those of a-endosulfan were as1.17~2.73,1.87~4.02,1.85~6.56and1.87~2.85times as that in the absence of Na2SiO3, and thus the elution capabilities of the four modes increased evidently. The elution process of endosulfan in contaminated aged soil could be described by a4-parameter biphasic first-order reaction kinetic model, and showed obvious rapid and slow elution phases. The addition of Na2SiO3could increase the rate constants of rapid elution and slow elution, and decrease slow elution percent. Both of the elution percent and elution rate of β-endosulfanl were lower than those of a-endosulfan, which indicated that β-endosulfan in soil was difficult to be eluted. Compared with the other elution modes, endosulfan could be effectively and rapidly eluted by Tween80/SDS in the presence of Na2SiO3. and the elution percents of α-,β-endosulfan in contaminated aged soil reached the maximums (91.41%and74.01%) by parallel desorption for14and20h. respectively.
     2. A strain named as EB-4was isolated from the aged soil contaminated by endosulfan, and was identified as Ochrobactrum sp. by16S rDNA sequence analysis. The optimum degradation conditions of this strain to degrade endosulfan in three surfactant solutions were obtained in Eluent1(Tween80+Na2SiO3), Eluent2(Tween80/SDS) and Eluent3(Tween80/SDS+Na2SiO3), i.e., pH7.5~8.5.35℃, the microbial inoculation over10%, and the adding content of glucose1mg·L-1. The degradation process of endosulfan in those surfactant solutions could be described by the first-order reaction kinetic model, and the half-lives of a-endosulfan were3.83,5.29, and4.53d, and those of β-endosulfan were3.35,4.50. and3.79d, respectively. The degradation rate of this strain for β-endosulfan was faster than that for a-endosulfan.
     The experimental results showed that endosulfan in Eluate1, Eluate2and Eluate3could be completely degraded in12d for surfactant elution followed with microbial degradation. The degradation percents of endosulfan in soil were more than92%in15d for simultaneous elution and microbial degradation. The microbial degradation rate of endosulfan was lower than the elution rate from the contaminated soil, and the former was the rate determining step in the whole process.
     Ochrobactrum sp. can degrade endosulfan with two pathways, i.e.. hydrolysis and oxidation. Hydralysis is the main pathway, and the main metabolic product is endosulfan diol which can be degraded further by this strain, and thus it may not accumulate in soil and eluent. The main metabolite of oxidation is endosulfan sulfate which is difficult to be degraded further, and can be accumulated in soil and eluent.
     3. Nitrogen and fluorine doped Anatase TiO2could be synthesized by sol-gel method, and the average particle sizes were in the range of310.8-345.6nm characterized by X-ray diffraction and laser particle size analysis. The results showed that the two doped TiO2had photocatalytic activity for endosulfan in soil eluate under the irradiation of xenon lamp, and high photodegradation rates could be obtained under the conditions of strong acid and strong alkaline for surfactant elution followed with photocatalytic degradation. It was found that the optimum dosage of photocatalyst was400mg·L-1. and SDS in the eluent could promote and inhibit the photodegradation of endosulfan under the acid and alkaline conditions, resepctively. The photocatalytic degradation of endosulfan in soil eluate could be described by the first-order reaction kinetic model. When N-doped TiO2was used to be photocatalyst, the half-lives of a-endosulfan in Eluate1', Eluate2'and Eluate3'were71.7,43.0and58.7min, and those of β-endosulfan were85.3,51.1,66.5min, respectively. When F-doped TiO2was used to be photocatalyst, the half-lives of a-endosulfan in Eluate1', Eluate2'and Eluate3'were121.6,138.6and165.0min, and those of β-endosulfan were135.9,154.0and177.7min, respectively. It indicated that the photocatalytic activity of N-doped TiO2was higher than that of F-doped TiO2, and the photodegradation rate of β-endosulfan was lower than that of a-endosulfan.
     For simultaneous elution and photocatalytic degradation, the photodegradation percents of a-endosulfan with the elution of Eluent1-Eluent3using N-doped TiO2were76.47%,74.81%and79.14%at120h irradiation, while.that of β-endosulfan were57.79%,57.21%and58.52%, respectively. The photodegradation percents of a-endosulfan increased to75.65%,73.59%and78.18%using F-doped TiO2at120h irradiation, while that of β-endosulfan increased to57.12%,56.41%and57.36%, respectively. The results also showed that the photodegradation rate of endosulfan was faster than the elution rate from soil, and the surfactant elution was the rate determining step in the whole process. The photodegradation process could be well described by a four-parameter biphasic first-order reaction kinetic model, and showed obvious rapid and slow photodegradation phases, the latter was the rate determining step. The photodegradation rate of β-endosulfan in the contaminated aged soil was lower than that of a-endosulfan, because β-endosulfan would be more strongly adsorbed on soil colloids. The degradation percents of endosulfan in different eluents followed a decreasing order of Eluent3, Eluent1and Eluent2, and were the similar as the variations of the elution percents. Photooxidation is the primary pathway for the photocatalytic degradation of endosulfan, and the degradation product endosulfan sulfate could be detected both in soil and the supernatant, which could be degraded quickly by photooxidation. Endosulfan sulfate in soil could remain longer than in the supernatant, and needed14h to completely remove by photodegradation.
     4. With the soblization of surfactants, microbial-photocatalytic combination degradation could shorten the reaction time, and improve the degradation efficiency of endosulfan in the contaminated soil, and thus could effectively avoid the accumulation of endosulfan sulfate. Compared with the removal percents of endosulfan in soil by simultaneous elution and microbial degradation for3-9d followed with photodegradation, it could be found that the longer of the time of simultaneous elution and microbial degradation, the higher the removal percent of endosulfan by combination degradation. Among them, the removal percents of α-,β-endosulfan in contaminated aged soil spiked with20mg·kg-1endosulfan could reach96.57%and91.25%by N-doped TiO2photocatalytic degradation for120min after simultaneous elution using Eluent3and microbial degradation for9d, respectively, and the micariobial metabolite endosulfan sulfate could be also removed well, and thus may effectively remedy the endosulfan-contaminated soil.
引文
1. Abhilash P. C..Singh N. Withania somnifera dunal-mediated dissipation of lindane from simulated soil:implications for rhizoremediation of contaminated soil [J]. Journal of Soils and Sediments,2010.10(2):272-282.
    2. Adams C. D.. Cozzens R. A.. Kim B. J. Effects of ozonation on thebiodegradability of substituted phenols [J]. Water Research,1997,31(10):2655-2663.
    3. Adams R. L., Weber E. J., Baughman G. L. Photolysis of smoke dyes on soils [J]. Environmental Toxicology and Chemistry,1994,13(6):889-896.
    4. Aguer J. P., Richard C. Transformation of f enuron induced by photochemical excitation of humic acids [J]. Pesticide Science,1996,46(2):151-155.
    5. Ahangar A. G., Smernik R. J., Kookana R. S., et al. Clear effects of soil organic matter chemistry, as determined by NMR spectroscopy. on the sorption of diuron [J]. Chemosphere. 2008,70(7):1153-1160.
    6. Aiagana H. I., Haynes R. J., Wallis F. M. The use of surfactants as possible enhancers in bioremediation of creosote contaminated soil [J]. Water, Air,& Soil Pollution,2003,142(1-4): 137-149.
    7. Alexander M. Introduction to soil microbiology [M]. New York:John Wiley and Sons,1977.
    8. Allen-King R. M., Grathwohl P., Ball W. P. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks [J]. Advances in Water Resources,2002,25(8-12):985-1016.
    9. Andersen H. R., Andersen A. M., Arnold S. F., et al. Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals [J]. Environmetal Health Perspectives. 1999.107(Suppl.1):89-108.
    10. Antonious G F, Byers M E, Snyder-Conn E. Residues and fate of endosulfan on field grown pepper and tomato [J]. Pesticide Science,1998.54(1):61-67.
    11. Antonious G F. Byers M E. Fate and movement of endosulfan under field conditions [J]. Environmental Toxicology and Chemistry,1997,16(4):644-649.
    12. Arnold S. F., Klotz D M. Collins B M, et al. Synergistic activation of estrogen receptor with combinations of environmental chemicals [J]. Science,1996,272(5267):1489-1492.
    13. Arrebola F. J., Egea-Gonzalez F.J.. Moreno M.. et al. Evaluation of endosulfan residues in vegetables grown in greenhouses [J]. Pest Management Science.2001.57(7):645-652.
    14. Asahi R.. Morikawa T.. Ohwaki T. et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293(5528):269-271.
    15. Ashby S, Lefevre P. A., Odum J., et al. Synergy between synthetic estrogens [J]. Nature,1997, 385(6616):494.
    16. Atasoy A. D., Mermut A. R., Kumbur H., et al. Sorption of alpha and beta hydrophobic endosulfan in a vertisol from southeast region of Turkey [J]. Chemosphere,2009,74(11): 1450-1456.
    17. Attwood D, Florence A T. Surfatant Solutions [M], Shinoda K Ed. New York:Marcel Dekker Inc.1967:189-262.
    18. Awasthi N., Singh A.K., Jain R.K., et al. Degradation and detoxification of endosulfan isomers by a defined co-culture of two Bacillus strains [J], Applied Microbiology and Biotechnology, 2003,62(2/3):279-283.
    19. Awasthi, N., Ahuja, R., Kumar, A. Factors influencing the degradation of soil applied endosulfan isomers [J]. Soil Biology & Biochemistry,2000,32(11/12):1697-1705.
    20. Awasthi, N., Manickam, N., Kumar, A. Biodegradation of endosulfan by a bacterial coculture [J]. Bulletin of Environmental Contamination and Toxicology,1997,59(6):928-934.
    21. Ayres R. U., Ayres L. W. The life cycle of chlorine, Part IV:Accounting for persistent cyclic organochlorines [J]. Journal of Industrial Ecology,2000,3(2/3):121-159.
    22. Baker S. C., Ferguson S. J., Ludwig B., et al. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility [J]. Microbiology and Molecular Biology Reviews,1998,62(4):1046-1078.
    23. Balmer M. E., Goss K. U., Schwarzenbach R. P. Photolytic transformation of organic pollutants on soil surfaces:an experimental approach [J]. Environmental Science and Technology,2000, 34(7):1240-1246.
    24. Banat I. M., Makkar R. S., Cameotra S. S. Potential commercial applications of microbial surfactants [J]. Applied Microbiology and Biotechnology,2000,53 (5):495-508.
    25. Barcelo-Quintal M. H., Cebada-Ricalde M. C., Trejo-Irigoyen A. R., et al. Kinetic studies of endosulfan photochemical degradations by ultraviolet light irradiation in aqueous medium [J]. Journal of Environmental Science and Health Part B,2008,43(2):120-126.
    26. Beck E. W., Johnson J. C. Jr., Woodham D. W., et al. Residues of endosulfan in meat and milk of cattle fed treated forages [J]. Journal of Economic Entomology,1966,59(6):1444-1450.
    27. Begum A., Gautam S. K. Application of photocatalysis for the degradation of endocrine disrupting chemicals:endosulphan and lindane [J]. Indian Journal of Environmental Protection, 2011,31(8):658-665.
    28. Belgiorno V., Rizzo L., Fatta D., et al. Review on endocrine disrupting-emerging compounds in urban wastewater:occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse [J]. Desalination.2007,215(1-3):166-176.
    29. Bhalerao T. S., Puranik P. R. Biodegradation of organochlorine pesticide, endosulfan. by a fungal soil isolate. Aspergillus niger [J]. International Biodeterioration & Biodegradation.2007. 59 (4):315-321.
    30. Boivin A., Cherrier R., Schiavon M. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils [J]. Chemosphere,2005,61(5):668-676.
    31. Bollag J. M., Myers C. J., Minard R. D., Biological and chemicalinteractions of pesticides with soil organic matter [J]. Science of the Total Environment.1992.12(123/124):205-217.
    32. Bossi R, Skov H, Vorkamp K,et al. Atmospheric concentrations of organochlorine pesticides, polybrominated diphenyl ethers and polychloronaphthalenes in Nuuks, Southwest Greenland [J]. Atmospheric Environment,2008,42(31):7293-7303.
    33. Byme J. A., Eggins B. R., Brown N. M. D. Immobilisation of TiO2 powder for the treatment of polluted water [J]. Catalysis Today,1998.17(1/2):25-36.
    34. Cao M. H., Hu Y., Sun Q., et al. Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution [J]. Environmental Pollution. 2013,174(1):93-99.
    35. Cerrillo I., Granada A., Lopez-Espinosa M. J., et al. Endosulfan and its metabolites in fertile women, placenta, cord blood, and human milk [J]. Environmental Research,2005,98(2): 23-239.
    36. Chang W., Akbari A., Jessica S. Biodegradation of petroleum hydrocarbons in contaminated clayey soils from a sub-arctic site:The role of aggregate size and microstructure [J]. Chemosphere,2013,91(11):1620-1626.
    37. Chen K., Li J. Y., Wang W. X., et al. The preparation of vanadium-doped TiO2-montmorillonite nanocomposites and the photodegradation of sulforhodamine B under visible light irradiation [J]. Applied Surface Science,2011.257(16):7276-7285.
    38. Chen W., Kan A. T. Tomson M. B. Irreversible adsorption of chlorinated benzenes to natural sediments:Implications for sediment quality criteria [J]. Environmental Science and Technology,2000,34(3):385-392.
    39. Chen X.Q., Zhang X. W., Su Y. L., et al. Preparation of visible-light responsive P-F-codoped TiO2 nanotubes [J]. Applied Surface Science.2008.254(20):6693-6696.
    40. Choi H., Antoniou M., Pelaez M., et al. Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation [J]. Environmental Science and Technology.2007.41(21):7530-7535.
    41. Choi W. Y., Ko J. Y., Park H. W., et al. Investigation in TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone [J]. Applied Catalysis B:Environmental,2001,31(3): 209-220.
    42. Choudhy G. G. Humic substances:Structural aspects and photophysical, photochemical and free radical characteristics [M]. Hutzinger O.:The Handbook of Environmental Chemistry. Berlin: Springer Verlag,1984, Vol 1, Part C, pp1-2.
    43. Chowdhury A.G., Das C., Kole R.K., et al. Residual fate and persistence of endosulfan (50 WDG) in Bengal gram (Cicer arietinum) [J]. Environmental Monitoring and Assessment,2007, 132(1-3):467-473.
    44. Cong X., Xue N. D., Wang S. J., et al. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron [J]. Science of the Total Environment,2010,408(16):3418-3423.
    45. Cort T. L., Song M. S., Bielefeldt A. R. Nonionic surfactant effeets on pentachlorophenol biodegradation [J]. Water Research,2002,36(5):1253-1261.
    46. Curran W. S., Loux M. M., Liebl R. A., et al. Photolysis of imidazolinoneherbicides in aqueous solut ion and on soil [J]. Weed Science,1992,40(1):143-148.
    47. Daher C. F., Baroody G. M., Howland R. J. Effect of a surfactant, Tween 80, on the formation and secretion of chylomicrons in the rat [J]. Food Chemical Toxicology,2003,41(4):575-582.
    48. Damardji B., Khalaf H., Duclaux L., et al. Preparation of TiO2-pillared montmorillonite as photocatalyst:Part Ⅱ. Photocatalytic degradation of a textile azo dye [J]. Applied Clay Science, 2009,45(1/2):98-104.
    49. Daneshaver N., Salari D., Khataee A. R. Photocatalytic degradation of azo dye acidic red 14 in water:Investigation of the effect of operational parameters [J]. Journal of Photochemistry and Photobiology A,2003,157(1):111-116.
    50. Das A K, Saha S, Pal A, et al. Surfactant-modified alumina:An efficient adsorbent for malachite green removal from water environment [J]. Journal of Environmental Science and Health A,2009,44(9):896-905.
    51. Davezza M., Debora F., Prevot A. B., et al. Removal of alkylphenols from polluted sites using surfactant-assisted soil washing and photocatalysis [J]. Environmental Science Pollution Research,2011,18(5):783-789.
    52. Deitsch J. J., Smith J. A. Effect of Triton X-100 on the rate of trichloroethene desorption from soil to water [J]. Environmental Science and Technology,1995,29(4):1069-1080.
    53. Deschenes L., Lafrance P., Villeneuve J. P., et al. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil [J]. Applied Microbiology and Biotechnology,1996,46(5/6):638-646.
    54. Ding K. Q., Luo Y. M., Sun T. H., et al. Bioremediation of soil contaminated with petroleum using forced-aeration composting [J]. Pedosphere,2002.12(2):145-150.
    55. Dombek T., Dolan E., Schultz J., et al. Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions [J]. Environmental Pollution,2001,111(1):21-27.
    56. D'Orazio V., Ghanem A., Senesi N. Phytoremediation of pyrene contaminated soils by different plant species [J]. Clean-Soil. Air, Water,2013.41(4):377-382.
    57. Dorough H. W., Huhtanen K., Marshall T. C. Fate of endosulfan in rats and toxicological considerations of apolar metabolites [J]. Pesticide Biochemistry and Physiology,1978,8(3): 241-252.
    58. Edwards D. A., Luthy R. G., Liu Z. B. Solubilization of polycyclic aromaric hydrocarbons in micellar nonionic surfactant solutions [J]. Environmental Science and Technology,1991,25(1): 127-133.
    59. End of the Road for Endosulfan. Environmental Justice Foundation.2002.
    60. Erdemoglu S., Aksub S. K., Sayilkan F., et al. Photocatalytic degradation of Congo red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC-MS [J]. Journal of Hazardous Materials,2008,155(3):469-476.
    61. Frank M. P., Graebing P. G., Chib J. S. Effect of soil moisture and sample depth on pesticide photolysis [J]. Journal of Agricultural and Food Chemistry,2002,50(9):2607-2614.
    62. Galindo C., Jacques P., Kalt A. Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes:UV/H2O2, UV/TiO2 and VIS/TiO2:Comparative mechanistic and kinetic investigations [J]. Journal of Photochemistry and Photobiology A: Chemistry,2000.130(1):35-47.
    63. Gao Y. Z., Zhu L. Z. Phytoremediation and its models for organic contaminated soils [J]. Journal of Environmental Sciences,2003.15(5):302-310.
    64. Garrison A. W., Nzengung V. A., Avants J. K., et al. Phytodegradation of p, p'-DDT and the enantiomers of o. p'-DDT [J]. Environmental Science and Technology,2000,34(9):1663-1670.
    65. Gerhardt K. E., Huang X. D., Glick B. R.. et al. Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges [J]. Plant Science,2009,176(1):20-30.
    66. Gevao B., Mordaunt C., Semple K. T., et al. Bioavailability of nonextractable (bound) pesticide residues to earthworms [J]. Environmental Science and Technology,2001,35(3):501-507.
    67. Ghadiri H., Rose C. W. Degradation of endosulfan in a clay soil from cotton farms of western Queensland [J]. Journal of Environmental Management,2001.62(2):155-169.
    68. Maier-Bode H. Properties, Effect, Residues and Analytics of the Insecticide Endosulfan, in: Residue Reviews/Ruckstands-Berichte [M]. Springer,1968, pp.1-44.
    69. Gonzalez-Farias F, Estrada X. C., Ruiz C. F., et al. Pesticides distribution in sediments of a tropical coastal lagoon adjacent to an irrigation district in northwest Mexico [J]. Environmental Technology,2002,23(11):1247-1256.
    70. Goswami S., Singh D. K. Biodegradation of a and β endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. B9 [J]. Biodegradation,2009,20(2):199-207.
    71. Goswami S., Vig K., Singh D. K. Biodegradation of a and β endosulfan by Aspergillus sydoni [J]. Chemosphere,2009,75(7):883-888.
    72. Graebing P., Frank M., Chib J. S. Effect of fertilizer and soil components on pesticide, photolysis [J]. Journal of Agricultural and Food Chemistry,2002,50(25):7332-7339.
    73. Graumann K, Breithofer A, Jungbauer A. Monitoring of estrogen mimics by a recombinant yeast assay:Synergy between natural and synthetic compounds [J]. Science of the Total Environment,1999,225(1/2):69-79.
    74. Guerin T. F. The anaerobic degradation of endosulfan by indigenous microorganisms from low-oxygen soils and sediments [J]. Environmental Pollution,1999,106(1):13-21.
    75. Guerin, T. F. Abiological loss of endosulfan and related chlorinated organic compounds from aqueous systems in the presence and absence of oxygen [J]. Environmental Pollution,2001, 115(2):219-230.
    76. Guillard C., Puzenat E., Lachheb H., et al. Why inorganic salts decrease the TiO2 photocatalytic efficiency [J]. International Journal of Photoenergy,2005,7(1):1-9.
    77. Gunther T, Domberger U, Fritsche W. Effects of ryegrass on biodegradation of hydrocarbons in soil [J]. Chemoshpere,1996,33(2):203-215.
    78. Gupta A., Kaushik C. P., Kaushik A. Degradation of hexachlorocyclohexane (HCH:α, β, γ and 8) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH [J]. Soil Biology & Biochemistry,2000,32(11/12):1803-1805.
    79. Han M., Ji G. D., Ni J. R. Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant, alkyl polyglucoside [J]. Chemosphere,2009,76(5): 579-586.
    80. Hance R. J. Effect of pH on the degradation of atrazine, dichlorprop, linuron and propyzamide in soil [J]. Pesticide Science,1979,10(1):83-86.
    81. Harms H., Bosma T. N. P. Mass transfer limitation of microbial growth and pollutant degradation [J]. Journal of Industrial Microbiology and Biotechnology,1997,18(2-3):97-105.
    82. Hautala R. R. Surfactant effects on pesticide photochemistry in water and soil [M]. USEPA, 1978:18.
    83. Havens P. L., Rase H. F. Reusable immobilized enzvme/polyurethane sponge for removal and detoxification of localized organophosphate pesticide spills [J]. Industrial Engineering Chemistry Research,1993,32(10):2254-2258.
    84. Hebertt V. R., Miller G. C. Depth dependence of direct and indirect photolysis on soil surfaces [J]. Journal of Agricultural and Food Chemistry,1990,38(3):913-918.
    85. Hechmi N., Aissa N. B., Abdennaceur H., et al. Phytoremediation potential of maize(Zea Mays L.) in co-contaminated soils with pentachlorophenol and cadmium [J]. International Journal of Phytoremediation,2013,15(7):703-713.
    86. Hernandez-Rodriguez D., Sanchez J. E., Nieto M. G.. et al. Degradation of endosulfan during substrate preparation and cultivation of Pleurotus pulmonarius [J]. World Journal of Microbiology and Biotechnology,2006,22 (7):753-760.
    87. Hickey A. M., Gordon L., Dobson A. D. W.. et al. Effect of surfactants on fluoranthene degradation by Pseudomonas alcaligenes PA-10 [J]. Applied Microbiology and Biotechnology. 2007.74(4):851-856.
    88. Higarashi M. M., Jardim W. F. Remediation of pesticides contaminated soil using TiO2 mediated by solar light [J]. Catalysis Today,2002,76(2-4):201-207.
    89. Ho L. T. T. Formulating Detergents and Personal Care Products,2001, AOCS Press. Champaign. Illinois, Chapter 2.
    90. Home 1., Sutherland T. D., Harcourt R. L. et al. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate [J]. Applied & Environmental Microbiology, 2002,68(7):3371-3376.
    91. Houas A., Lachheb H., Ksibi M., Elaloui E., et al. Photocatalytic degradation pathway of methylene blue in water [J]. Applied Catalysis B:Environmental,2001,31(2):145-157.
    92. Huang D. G.. Liao S. J., Quan S. Q., et al. Preparation of anatase F doped TiO2 sol and its performance for photodegradation of formaldehyde [J]. Journal of Material Sciences,2007, 42(19):8193-8202.
    93. Huang Q. D., Hong C. S. TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant [J]. Chemosphere,2000,41(6):871-879.
    94. Hussain S. Arshad M., Saleem M. Screening of soil fungi for in vitro degradation of endosulfan [J]. World Journal of Microbiology and Biotechnology,2007a,23(7):939-945.
    95. Hussain S., Arshad M., Saleem M., et al. Biodegradation of α- and β-endosulfan by soil bacteria [J]. Biodegradation,2007b,18(6):731-740.
    96. Hussain S., Arshad M., Shaharoona B., et al. Concentration dependent growth/non-growth linked-kinetics of endosulfan biodegradation by Pseudomonas aeruginosa [J]. World Journal of Microbiology and Biotechnology,2009,25(5):853-858.
    97. Jaeger C. D., Bard A. J. Spin trapping and electron spinresonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate systems [J]. Journal of Physical Chemistry,1979,83(24):3146-31521.
    98. Jayashree R., Vasudevan N., Chandrasekaran S., et al. Surfactants enhanced recovery of endosulfan from contaminated soils [J]. International Journal of Environmental Science and Technology,2006,3(3):251-259.
    99. Jayashree R., Vasudevan N. Effect of Tween 80 added to the soil on the degradation of endosulfan by Pseudomonas aeruginosa [J]. International Journal of Environmental Science and Technology,2007,4(2):203-210.
    100. Jayashree R., Vasudevan N. Effect of Tween 80 and moisture regimes on endosulfan degradation by Pseudomonas aeruginosa [J]. Applied Ecology and Environmental Research, 2009,7(1):35-44.
    101. Jee V., Beekles D. M., Ward C. H., et al. Aerobic slurry reactor treatment of phenanthrene contaminated sediment [J]. Water Research,1998,32(4):1231-1239.
    102. Ji G. D., Zhou G. H. Elution of 17 α 25-norhopanes and triaromatic steroids from weathered soils by mixed Triton X-100/Na2SiO3 surfactant solution [J]. Chemical Research in Chinese Universities,2012,28(3):419-423.
    103. Ji G. D., Zhou C., Zhou G. H. Ultrasound enhanced gradient elution of super heavy oil from weathered soils using TX100/SBDS mixed salt micellar solutions [J]. Ultrasonics Sonochemistry,2011,18 (2):506-512.
    104. Jia H. L., Li Y F, Wang D G, et al. Endosulfan in China 1-gridded usage inventories [J]. Environmental Science and Pollution Research,2009a,16(3):295-301.
    105. Jia H. L., Sun Y. Q., Li Y. F., et al. Endosulfan in China 2-emissions and residues [J]. Environmental Science and Pollution Research,2009b,16(3):302-311.
    106. Jia H. L., Liu L. Y., Sun Y. Q., et al. Monitoring and modeling endosulfan in Chinese surface soil [J]. Environmental Science and Technology,2010,44(24):9279-9284.
    107. Jie S., Kaibin T., Wei C., et al. Controllable solvothermal synthesis and photocatalytic properties of complex (oxy)fluorides K2TiOF4, K3TiOF5, K7Ti4O4F7 and K2TiF6 [J]. Journal of Hazardous Materials,2009,171(1-3):279-287.
    108. Johnson M. D, Michaelkeinath T., Weber W. J. A. Distributed reactivity model for sorption by soils and sediments.14. Characterization and modeling of phenanthrene desorption rates [J]. Environmental Science and Technology,2001,35(8):1688-1695.
    109. Jonsson C. M., Toledo M. C. F. Bioaccumulation and elimination of endosulfan in the fish Yellow Tetra(Hyphessobrycon bifasciatus) [J]. Bulletin of Environment Contamination and Toxicology,1993,50(4):572-577.
    110. Kamei I., Takagi K., Kondo R. Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsute [J]. Journal of Wood Science,2011,57(4):317-322.
    111.Katagi T. Phtodegradation of pesticides on plant and soil surfaces [J]. Reviews in Environmental Contamination and Toxicology,2004,182(1):1-78.
    112. Kataoka R., Takagi K., Sakakibara F. Biodegradation of endosulfan by Mortieralla sp. strain W8 in soil:Influence of different substrates on biodegradation [J]. Chemosphere,2011,85(3): 548-552.
    113. Kathpal T. S., Singh A., Dhankhar J. S., et al. Fate of endosulfan in cotton soil under subtropical conditions of northern India [J]. Pesticide Science,1997,50(1):21-27.
    114. Kaur I., Mathur R. P., Tandon S. N., et al. Persistence of endosulfan (technical) in water and soil [J]. Environmental Technology,1998,19(1):115-119.
    115. Kawahigashi H., Hirose S., Ohkawa H., et al. Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19 [J]. Journal of Agricultural and Food Chemistry,2006,54(8):2985-2991.
    116. Kelley S. L., Aitchison E. W., Deshpande M., et al. Biodegradation of 1,4-dioxane in planted and unplanted soil:effect of bioaugmentation with Amycolata sp. CB 1190 [J]. Water Research, 2001,35(16):3791-3800.
    117. Khalid N. R., Ahmed E., Hong Z. L., et al. Nitrogen doped TiO2 nanoparticles decorated on graphene sheets for photocatalysis applications [J]. Current Applied Physics 2012, 12(6):1485-1492.
    118. Kikuchi Y., Sunada K., Iyoda T., et al. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect [J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,106(1-3):51-56.
    119. Kile D. E., Chiou C. T. Wrater solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration [J]. Environmental Science and Technology,1989,23(7):832-838.
    120. Kim I. S., Park J. S., Kim K. W. Enhanced biodegradation of polycyclicaromatic hydrocarbons using nonionic surfactants in soil slurry [J]. Applied Geochemistry,2001,16(11/12): 1419-1428.
    121. Kim S. G., Bae H. S., Oh H. M., et al. Isolation and characterization of novel halotolerant and/or halophilic denitrifying bacteria with versatile metabolic pathways for the degradation of trimethylamine [J]. FEMS Microbiology Letters,2003,225(2):263-269.
    122. Kim Y. K., Kim S. H., Choi S. C. Kinetics of endosulfan degradation by Phanerochaete chrysosporium [J]. Biotechnology Letters,2001,23(2):163-166.
    123.Konstantinou I. K., Albanis T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations:A review [J]. Applied Catalysis B: Environmental,2004,49(1):1-14.
    124. Kudin K. N., Car R. Why are water-hydrophobic interfaces charged? [J]. Journal of the American Chemical Society,2008.130(12):3915-3919.
    125.Kullman S. W., Matsumura F. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan [J]. Applied & Environmental Microbiology,1996,62(2):593-600.
    126. Kumar K., Devi S. S., Krishnamurthi K., et al. Enrichment and isolation of endosulfan degrading and detoxifying bacteria [J]. Chemosphere,2007,68(2):317-322.
    127. Kumar M., Lakshmi C. V., Khanna S. Biodegradation and bioremediation of endosulfan contaminated soil [J]. Bioresource Technology,2008,99(8):3116-3122.
    128. Kumar M., Philip L. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils [J]. Chemosphere,2006a,62(7):1064-1077.
    129. Kumar M., Philip L. Bioremediation of endosulfan contaminated soil and water:Optimization of operating conditions in laboratory scale reactors [J]. Journal of Hazardous Materials,2006b, 136(2):354-364.
    130. Kumar M., Philip L. Enrichment and isolation of a mixed bacterial culture for complete mineralization of endosulfan [J]. Journal of Environmental Science Health Part B,2006c,41(1): 81-96.
    131. Kumar P.. Singh S. P., Madhukar D., et al. Determination of endosulfan residues in buffalo meat using high performance liquid chromatography [J]. Buffalo Bulletin.2009,28(4):188-197.
    132. Kwon G. S., Sohn H. Y.. Shin K. S., et al. Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8 [J]. Applied Microbiology & Biotechnology.2005,67(6):845-850.
    133. Kwon G. S., Kim J. E., Kim T. K., et al. Klebsiella pneumoniae KE-1 degrades endosulfan without formation of the toxic metabolite, endosulfan sulfate [J]. FEMS Microbiology Letters, 2002,215(2):255-259.
    134. Laabs V.. Amelung W., Pinto A. A., et al. Pesticides in surface water, sediment, and rainfall of the northeastern Pantanal basin. Brazil [J]. Journal of Environmental Quality,2002,31(5): 1636-1648.
    135. Lacayo-Romero M., Bavel B. V., Mattiasson B. Degradation of toxaphene in aged and freshly contaminated soil [J]. Chemosphere,2006,63(4):609-615.
    136. Laha S., Luthy R. G. Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems [J]. Biotechnology & Bioengineering,1992,40(11): 1367-1380.
    137. Laha S., Luthy R. G. Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems [J]. Environmental Science and Technology,1991,25(11):1920-1930.
    138. Larson R. A., Weber E. J. Environmental Photochemistry. In:Reaction Mechanisms in Environmental Organic Chemistry [M]. Lewis Publishers, CRC Press, Inc. Ann Arbor,1994: 359-413.
    139. Leonard A. W., Hyne R. V., Lim R. P., et al. Fate and toxicity of endosulfan in Namoi River water and bottom sediment [J]. Journal of Environmental Quality,2001,30(3):750-759.
    140. Li B. R., Wang X. H.,.Yan M. Y., et al. Preparation and characterization of nano-TiO2 powder [J]. Materials Chemistry and Physics,2002,78(1):184-188.
    141. Li D., Ohashi N., Hishita S., et al. Origin of visible-light-driven photocatalysis:A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations [J]. Journal of Solid State Chemistry,2005a, 178(11):3293-3302.
    142. Li D., Haneda H., Hishita S., et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde [J]. Journal of Fluorine Chemistry,2005b,126(1):69-77.
    143. Li W., Daid Y., Xue B. B, et al. Biodegradation and detoxification of endosulfan in aqueous medium andsoil by Achromobacter xylosoxidans strain CS5 [J]. Journal of Hazardous Materials, 2009,167(1-3):209-216.
    144. Li Y. F., Macdonald R. W. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota:a review [J]. Science of the Total Environment,2005,342(1-3):87-106.
    145. Liste H. H., Alexander M. Accumulation of phenanthrene and pyrene in rhizosphere soil [J]. Chemosphere,2000,40(1):11-14.
    146. Liu Q., Dong M. Z., Ma S. Z. Surfactant enhanced alkaline flooding for western Canadian heavy oil recovery [J]. Colloids and Surfaces A,2007,293(1-3):63-71.
    147. Lunney A. I., Zeeb B. A., Reimer K. J. Uptake of weathered DDT in vascular plants:potential for phytoremediation [J]. Environmental Science and Technology,2004,38(22):6147-6154.
    148. Mangalampalli V. Sharma P., Lalitha K., et al. Solar photocatalytic mineralization of isoproturon over TiO2/HY composite systems [J]. Solar Energy Materials and Solar Materials and Solar Cells.2008,92(3):332-242.
    149. Mani A., Hameed S. S., Ramalingam S. Effect of rhamnolipd potential on biodegradation of endosulfan by Pseudomonas aeruginosa in batch studies [J]. Journal of Bioscience and Technology,2011,2(3):268-278.
    150.Margesin R., Schinner F. Bioremediation of diesel-oil contaminated alpine soils at low temperatures [J]. Applied Microbiology & Biotechnology,1997,47(4):462-468.
    151. Mata-Sandoval J. C., Karns J., Torrents A. Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries [J]. Journal of Agricultural and Food Chemistry,2001,49(7):3296-3303.
    152. May R., Schroder, P., Sandermann H. Jr. Ex-situ process for treatment PAH-contaminated soil with Phanerochaete chrysosporium [J]. Environmental Science and Technology,1997,31(9): 2626-2633.
    153. Meagher R. B. Phytoremediation of toxic elemental and organic pollutants [J]. Current Opinion in Plant Biology,2000,3(2):153-162.
    154. Mersie W., Seybold C. A., McNamee C., et al. Abating endosulfan from runoff using vegetative filter strips:the importance of plant species and flow rate [J]. Agriculture, Ecosystems and Environment,2003,97(1-3):215-223.
    155. Mill T. Predicting photoreaction rates in surface waters [J]. Chemosphere,1999,38 (6): 1379-1390.
    156. Minero C., Mariella G., Maurino V., et al. Photocatalytic transformation of organic compounds in the presence of inorganic anions.1.Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system [J]. Langmuir,2000,16(6):2632-2641.
    157. Mohamed A., Mahfoodh A. S. M. Solubilization of naphthalene and pyrene by sodium dodecyl sulfate (SDS) and polyoxyethylenesorbitan monooleate (Tween 80) mixed micelles [J]. Colloids and Surfaces A,2006,287(1-3):44-50.
    158. Mukherjee I., Mittal A. Bioremediation of endosulfan using Aspergillus terreus and Cladosporium oxysporum [J]. Bulletin of Environmental Contamination and Toxicology,2005, 75(5):1034-1040.
    159. Mukherjee I., Gopal M. Interconversion of stereoisomers of endosulfan on chickpea crop under field conditions [J]. Pesticide Science,1994,40(2):103-106.
    160. Nakaoka Y., Nosaka Y. ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder [J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,110(3):299-305.
    161. Navarro S., Barba A., Segura J. C., et al. Disappearance of endosulfan residues from seawater and sediment under laboratory conditions [J]. Pest Management Science,2000,56(10): 849-854.
    162. Nguyen T. T., Youssef N. H., McInerney M. J., et al. Rhamnolipid biosurfactant mixtures for environmental remediation [J]. Water Research,2008,42(6/7):1735-1743.
    163. Parka M., Lee C.-II., Lee E. J., et al. Layered double hydroxides as potential solid base for beneficial remediation of endosulfan-contaminated soils [J]. Journal of Physics and Chemistry of Solids,2004,65(4):513-516.
    164. Paul V., Balasubramaniam E. Effect of single and repeated administration of endosulfan on behavior and its interaction with centrally acting drugs in experimental animals:a mini review [J]. Environmental Toxicology and Pharmacology,1997,3(2):571-575.
    165. Penuela G. A., Barcelo D. Application of C18 disks followed by gas chromatography techniques to degradation kinetics, stability and monitoring of endosulfan in water [J]. Journal of Chromatography A,1998,795(1):93-104.
    166. Peterson S. M., Batley G. E. The fate of endosulfan in aquatic ecosystems [J]. Environmental Pollution,1993,82(2):143-152.
    167. Qiu X. H., Zhu T., Wang F., et al. Air-water gas exchange of organochlorine pesticides in Taihu Lake, China [J]. Environmental Science and Technology,2008,42(6):1928-1932.
    168. Ramaneswari K., Rao L. M. Bioconcentration of endosulfan and monocrotophos by Labeo rohita and Channa punctata [J]. Bulletin of Environmental Contamination and Toxicology, 2000,65(5):618-622.
    169. Ramirez-Sandoval M., Melchor-Partida G. N., Muniz-Hernandez S., et al. Phytoremediatory effect and growth of two species of Ocimum in endosulfan polluted soil [J] Journal of Hazardous Materials,2011,192(1):388-392.
    170. Ranjit K. T., Cohen H., Willner I., et al. Lanthanide oxide-doped titanium dioxide:Effective photocatalysts for the degradation of organic pollutants [J]. Journal of Materials Science,1999, 34(21):5273-5280.
    171. Rice C. P., Nochetto C. B., Zara P. Volatilization of trifluralin, atrazine, metolachlor, chlorpyrifos, a-endosulfan, and β-endosulfan from freshly tilled soil [J]. Journal of Agricultural and Food Chemistry,2002,50(14):4009-4017.
    172. Richard E. M., William P. I. Effects of a nonionic surfactant on biodegradation of phenanthrene and hexadecane in soil [J]. Environmental Toxicology and Chemistry,1998.18(9):1927-1931.
    173. Romantschuk M., Sarand I., Petanen T.. et al. Means to improve the effect of in situ bioremediation of contaminated soil:an overview of novel approaches [J]. Environmental Pollution,2000,107(2):179-185.
    174. Romero E., Dios G., Mingorance M. D., et al. Photodegradation of mecoprop and dichlorprop on dry, moist and amended soil surfaces exposed to sunlight [J]. Chemosphere,1998,37(3): 577-589.
    175. Rosen M. J. Surfactant and Interfacial Phenomena [M].2nd Ed., John Wiley & Sons, New York, 1989:170.
    176. Rouse J. D., Sabatini D. A., Suflita J.M., et al. Influence of surfactants on microbial degradation of organic compounds [J]. Critical Reviews in Environmental Science and Technology,1994, 24(4):325-370.
    177. Rouse J. D., Sabatini D. A., Harwell J. H. Minimizing surfactant losses using twin-head anionic surfactant in subsurface remediation [J]. Environmental Science and Technology,1993,27(10): 2072-2078.
    178. Sakthivel S., Neppolian B., Shankar M. V., et al. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2 [J]. Solar Energy Materials Solar Cells,2003,77(1):65-82.
    179. Saquib M., Muneer M. TiO2-mediated photocatalytic degradation of a triphenylmethane dye (Gentian violet), in aqueous suspensions [J]. Dyes and Pigments,2003,56(1):37-49.
    180. Sarah S., Krishna M. V., Riaz M. Characterization of endosulfan and endosulfan sulphate degradation by strains of Pseudomonas putida [J]. International Journal of Environmental Sciences,2012,3(2):859-869.
    181. Schippers C., Gebner K., Muller T., et al. Microbial degradation of phenenthrene by addition of a sophorolipid mixture [J]. Journal of Biotechnology,2001,83(3):189-198.
    182. Schnoor J. L., Lich L. A., McCutcheon S. C., et al. Phytoremediaiton of organic and nutrient contaminants [J]. Environmental Science and Technology,1995,29(7):318-323.
    183. Seiliano S. D., Greer C. W. Plant-bacterial combinations to phytoremediate soil contaminated with high concentrations of 2,4,6-trinitrotoluene [J]. Journal of Environmental Quality,2000, 29(7):311-316.
    184. Shahsavari E., Adetutu E. M., Anderson P. A., et al. Necrophytoremediation of phenanthrene and pyrene in contaminated soil [J]. Journal of Environmental Management,2013,122(15): 105-112.
    185. Shelby M. D., Newbold Z. R., Davis V. L. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays [J]. Environmental Health Perspectives,1996, 104(12):1296-1300.
    186. Shen L., Wania F., Lei Y. D. Atmospheric distribution and long-range transport behavior of organochlorine pesticides in North America [J]. Environmental Science and Technology,2005, 39(2):409-420.
    187. Shetty P. K., Mitra J., Murthy K., et al. Biodegradation of cyclodiene insecticide endosulfan by Mucor thermohyalospora MTCC 1384 [J]. Current Science,2000,79(9):1381-1383.
    188. Shi Z., Sigman M. E., Ghosh M. M., et al. Photolysis of 2-chlorophenol dissolved in surfactant solutions [J]. Environmental Science and Technology,1997,31(12):3581-3587.
    189. Shivaramaiah H. M., Kennedy I. R. Biodegradation of endosulfan by a soil bacterium [J]. Journal of Environmental Science and Health Part B,2006,41(6):895-905.
    190. Shivaramaiah H. M., Sanchez-Bayo F, Al-Rifai J., et al. The fate of endosulfan in water [J]. Journal of Environmental Science and Health B,2005,40(5):711-720.
    191. Siddique T., Okeke B. C., Arshad M., et al. Enrichment and isolation of endosulfan-degrading microorganisms [J]. Journal of Environmental Quality,2003,32(1):47-54.
    192. Siddique T., Okeke B.C., Arshad M. et al. Frankenberger, Biodegradation kinetics of endosulfan by Fusarium ventricosum and a Pandoraea species [J]. Journal of Agricultural and Food Chemistry,2003,51(27):8015-8019.
    193. Simonich S. L., Hites R. A. Global distribution of persistent organochlorine compounds [J]. Science,1995,269(5232):1851-1854.
    194. Singh A., Van Hamme, J. D., Ward O. P. Surfactants in microbiology and biotechnology:Part 2. Application aspects [J]. Biotechnology Advances,2007,25(1):99-121.
    195. Singh N. S., Singh D. K. Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium [J]. Biodegradation,2011,22(5): 845-857.
    196. Singh N., Megharaj M., Kookana R. S., et al. Atrazine and simazine degradation in Pennisetum rhizosphere [J]. Chemosphere,2004,56(3):257-263.
    197. Smith J. A., Sahoo D., McLellan H. M., et al. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer.1. Transport of Triton X-100 [J]. Environmental Science and Technology,1997,31(12):3565-3572.
    198. Soto A. M., Chung K. L., Sonnenschein C. The pesticides endosulfan, toxaphane, and dieldrin have estrogenic effects on human estrogen-sensitive cells [J]. Environmental Health Perspectives,1994,102(4):380-383.
    199. Sutherland T. D., Home I., Lacey J. M., et al. Enrichment of an endosulfan-degrading mixed bacterial culture [J]. Applied & Environmental Microbiology,2000,66(7):2822-2828.
    200. Sylvia D. M., Fuhrmann J. J., Hartel P. G., et al. Principles and applications of soil microbiology [J]. New Jersey:Prentice Hall,2005.
    201. Tang H., Berger H., Schmid P. E., et al. Photoluminescence in TiO2 anatase single crystals [J]. Solid State Communications,1993,87(9):847-850.
    202. Tariq M I, Afzal S, Hussain I. Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan [J]. Environmental Research,2006,100(2):184-196.
    203. Test No.106:Adsorption/desorption using a batch equilibrium method [S]. OECD Guidelines for the Testing of Chemicals, Section 1,2000:13-16.
    204. Tiehm A. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants [J]. Applied & Environmental Microbiology,1994,60(1):258-263.
    205. Todaro D., Occulti F., Roda G. C., et al. Sustainable decontamination of an actual site aged PCB polluted soil by a biosurfactant-based washing followed by a photocatalytic treatment [J]. Biotechnology & Bioengineering,2008,99(6):1525-1534.
    206. Todorova N., Giannakopoulou T., Vaimakis T., et al. Structure tailoring of fluorine-doped TiO2 nanostructured powders [J]. Materials Science and Engineering:B,2008,152(1-3):50-54.
    207. Turchi C. S., Ollis D. F. Photocatalytic degradation of organic water contaminants:mechanisms involving hydroxyl radical attack [J]. Journal of Catalysis,1990,122(1):178-192.
    208. Van Hamme J. D., Singh A., Ward O. P. Physiological aspects Part 1:in a series of papers devoted to surfactants in microbiology and biotechnology [J]. Biotechnology Advances,2006, 24(6):604-620.
    209. Van Hamme J. D., Ward O. P. Physical and metabolic interactions of Pseudomonas sp. strain JA5-B45 and Rhodococcus sp. strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them [J]. Applied & Environmental Microbiology,2001,67(10): 4874-4879.
    210. Verma A., Ali D., Farooq M., et al. Expression and inducibility of endosulfan metabolizing gene in Rhodococcus strain isolated from earthworm gut microflora for its application in bioremediation [J]. Bioresource Technology,2011,102(2):2979-2984.
    211. Verma K., Agrawal N., Farooq M., et al. Endosulfan degradation by a Rhodococcus strain isolated from earthworm gut [J]. Ecotoxicology & Environmental Safety,2006,64(3):377-381.
    212. Villa R. D., Trovo A. G., Nogueira R. F. P. Soil remediation using a coupled process:soil washing with surfactant followed by photo-Fenton oxidation [J]. Journal of Hazardous Materials,2010,174(1-3):770-775.
    213. Viney I., Bewley R. J. F. Preliminary studies on the development of amicrobiological treatment of polyehlorinated biphenyls [J]. Archives of Environmental Contamination Toxicology,1990, 19(5):789-796.
    214. Volkering F., Breure A. M., Sterkenburg A., et al. Microbial degradation of polycyclic aromatic hydrocarbons:effect of substrate availability on bacterial growth kinetics [J]. Applied Microbiology & Biotechnology.1992.36(4):548-552.
    215. Volkering F., Breure A. M., Van Andel J. G.. et al. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons [J]. Applied & Environmental Microbiology,1995,61(5):1699-1705.
    216. Wade M. G., Desaulniers D., Leingartner K., et al. Interactions between endosulfan and dieldrin on estrogen-mediated processes in vitro and in vivo [J]. Reproductive Toxicology,1997,11(6): 791-798.
    217. Walse S. S., Scott G.I., Ferry J. L. Stereoselective degradation of aqueous endosulfan in modular estuarine mesocosms:Formation of endosulfan γ-hydroxycarboxylate [J]. Journal of Environmental Monitoring,2003,5(3):373-379.
    218. Walse S. S., Shimizu K. D., Ferry J. L. Surface-catalyzed transformations of aqueous endosulfan [J]. Environmental Science and Technology,2002,36(22):4846-4853.
    219. Wan M. T., Kuo J. N., Buday C., et al. Toxicity of α-and β-endosulfan and their formulated and degradation products to Daphnia magna, Hyalella azteca, Oncorhynchus mykiss, Oncorhynchus kisutch. and biological implications in streams [J]. Environmental Toxicology and Chemistry. 2005,24(5):1146-1154.
    220. Wang J. S., Yin S., Zhang Q. W.. et al. Influences of the factors on photocatalysis of fluorine-doped SrTiO2 made by mechanochemical method [J]. Solid State Ionics,2004. 172(1-4):191-195.
    221. Wang Y. W., Cai Y. Q., Jiang G. B. Research processes of persistent organic pollutants (POPs) newly listed and candidate POPs in Stockholm Convention [J]. Scientia Sinica Chimica,2010, 40(2):99-123.
    222. Wang Z. P., Cai W. M., Hong X. T.. et al. Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources [J]. Applied Catalysis B: Environmental,2005,57(3):223-233.
    223. Weber J., Halsall C. J., Muir D., et al. Endosulfan. a global pesticide:A review of its fate in the environment and occurrence in the Arctic [J]. Science of the Total Environment.2010,408(5): 2966-2984.
    224. WHO, Geneva companion volume to Environmental Health Criteria 40:Endosulfan. Published by the WHO for the IPCS (a collaborative programme of UNEP. ILO and WHO).1988. http://www.inchem.org/documents/hsg/hsg/hsg017.htm.
    225. Witter J. V., Robinson D. E., Mansingh A., et al. Insecticide contamination of the Jamaican environment. V. Island-wide rapid survey of residues in surface and ground water [J]. Environmental Monitoring Assessment,1999,56(3):257-267.
    226. Wu T. X., Liu G. M., Zhao J. C. Evidence for H2O2 generation during the TiO2 assisted photodegradation of dyesin aqueous dispersions under visible light illumination [J]. The Journal of Physical Chemistry B,1999,103(23):4862-4867.
    227. Yang J., Zhang P., Liu L., et al. Kinetic study on the photocatalytic degradation of reactive brilliant X-3B by UVC and UVA [J]. Environmental Science,2011,32(11):3365-3371.
    228. Yu J. C., Yu J. G., Ho W. K., et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powers [J]. Chemistry of Materials,2002,14(9): 3808-3816.
    229. Yu H. S., Zhu Z. L., Zhou W. J. Enhanced desorption and biodegradationof phenanthrene in soil-water systems with the presence of anionic-nonionicmixed surfactants [J]. Journal of Hazardous Materials,2007,142(1/2):354-361.
    230. Yu Y. X., Zhao J., Bayly A. E. Development of surfactants and builders in detergent formulations [J]. Chinese Journal of Chemical Engineering,2008,16(4):517-527.
    231. Yuan S. Y., Wei S. H., Chang B. V. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture [J]. Chemosphere,2000,41(9):1463-1468.
    232. Zeng G. M., Fu H. Y., Zhong H., et al. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and rhamnolipid, in liquid culture media and compost matrix [J]. Biodegradation,2007,18(3):303-310.
    233. Zepp R. G., Wolfe N. L., Gordon J. A., et al. Dynamatics of 2,4-D esters in surface waters: hydrolysis, and photolysis, vaporization [J]. Environmental Science and Technology,1975, 9(13):1144-1150.
    234. Zhang Z. L., Hong H. S., Zhou J. L., et al. Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River estuary, southeast China [J]. Chemosphere,2003, 52(9):1423-1430.
    235. Zhao X., Quan X., Chen S., et al. Photocatalytic remediation of gamma-hexachlorocyclohexane contaminated soils using TiO2 and montmorillonite composite photocatalyst [J]. Journal of Environmental Sciences-China,2007,19(3):358-361.
    236. Zhou M., Li Y. C., Nkedi-Kizza P. Endosulfan losses through runoff and leaching from calcareous gravelly or marl soils [J]. Vadose Zone Journal,2003,2(2):231-238.
    237. Zhou M., Rhue, R. D. Screening commercial surfactants suitable for remediating DNAPL source zones by solubilization [J]. Environmental Science and Technology,2000,34(10): 1985-1990.
    238. Zhou W., Zhu L. Enhanced desorpt ion of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant [J]. Environmental Pollution,2007,147(2):350-3571.
    239. Zhou W. J., Zhu L. Z. Solubilization of pyrene by anionic-nonionic mixed surfactants [J]. Journal of Hazardous Materials,2004,109(1-3):213-220.
    240. Zhu L. Z., Chiou C. T. Water solubility enhancements of pyrene by single and mixed surfactant solutions [J]. Journal of Environmental Sciences-China,2001,13(4):491-496.
    241. Zhu L. Z., Feng S. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants [J]. Chemosphere,2003,53(5):459-467.
    242. Zhu L. Z., Zhao B. W., Li Z. L. Water solubility enhancements of PAHs by sodium castor oil sulfonate microemulsions [J]. Journal of Environmental Sciences-China,2003,15(5):583-589.
    243.安凤春,莫汉宏,郑明辉,等.滴滴涕及其主要降解产物污染土壤的植物修复[J].环境化学,2003,22(1):19-25.
    244.鲍长利,周波,刘淑霞,等.沸石负载TiO2的制备及其对农药敌敌畏的光降解性能[J].应用化学,2003,20(12):1222-1224.
    245.陈宝梁,李菱,朱利中.温度和离子强度对SDBS增溶菲的影响及机理[J].环境化学,2006,25(6):697-700.
    246.陈刚,姜霞.复合表面活性剂(SDS/Tw-80)对长链烷烃的增溶和柴油污染土壤的洗脱作用[J].农业环境科学学报,2010,29(7):1283-1289.
    247.陈刚才,甘露,万国江.土壤有机污染及其治理技术[J].重庆环境科学,2000,22(2):45-62.
    248.陈亚丽,张先恩,刘虹,等.甲基对硫磷降解菌假单胞菌WBC-3的筛选及其降解性能的研究[J].微生物学报,2002,42(4):490-497.
    249.程国玲,李培军,王凤友,等.多环芳烃污染土壤的微生物与植物联合修复研究进展[J].环境污染治理技术与设备,2003,4(6):257-265.
    250.丁娟,罗坤,周娟,等.表面活性剂Tween80和β-环糊精对白腐菌降解多环芳烃的影响[J].南京大学学报(自然科学版),2007,43(5):561-566.
    251.董亮,戴树桂.憎水性污染物在表面活性剂溶剂中的增溶动力学[J].环境科学,2000,21(1):27-31.
    252.高士祥,王灿,孔德洋,等.β-环糊精对对硝基苯酚微生物降解的影响[J].环境化学,2003,22(5):445-449.
    253.高岳君,许宜铭.氟离子掺杂和吸附对二氧化钛光催化活性的影响[J].物理化学学报,2012,28(3):641-646.
    254.和文祥,蒋新,朱茂旭,等.酶修复土壤农药污染的研究进展[J].生态学杂志,2001,20(3):47-51.
    255.胡春华,邓先珍,汪茜.土壤污染修复技术研究综述[J].湖北林业科技,2005,(5):44-47.
    256.胡浩,曾清如,杨海君,等.两株表面活性剂降解菌株的分离、鉴定及降解特性[J].中国 环境科学,2008,28(1):43-48.
    257.胡永茂,项金钟,李茂琼,等.超细Ti02粒子的溶胶凝胶法制备研究[J].胶体与聚合物,2003,21(1):19-23.
    258.姜霞,高学晟,应佩峰,等.表面活性剂的增溶作用及在土壤中的行为[J].应用生态学报,2003,14(11):2072-2076.
    259.姜霞,井欣,高学晟,等.表面活性剂对土壤中多环芳烃生物有效性影响的研究进展[J].应用生态学报,2002,13(9):1179-1186.
    260.蒋兵,赵保卫,赵兰萍,等.阴-非混合表面活性剂对菲和萘的增溶作用[J].兰州交通大学学报(自然科学版),2007,26(1):153-157.
    261.蒋庆哲,宋昭峥,赵密福,等.表面活性剂科学与应用[M].北京:中国石油化工出版社,2006:167-168.
    262.亢卫民,肖德雄,郭少忠.硫丹残留警钟再次敲响[J].中国检验检疫,2007,(5):16-17.
    263.雷乐成,汪大晕.水处理高级氧化技术[M].北京:化学工业出版社,2001:186-288.
    264.李文,彭香,张京顺,等.硫丹降解菌的筛选及降解性能研究[J].山东农业科学,2009,(]):67-70.
    265.李文,张京顺,李莹莹,等.硫丹降解菌C7在土壤中的降解性能及其酶促降解试验[J].山东农业科学,2008,(9):46-48.
    266.李玉瑛,李冰.鼠李糖脂对不同菌株降解柴油污染物的影响[J].环境工程学报,2010,4(9):2088-2092.
    267.陆祖军,田娜娜,韦妮妮,等.一株吐温-80降解真菌的分离及其降解特性研究[J].环境科学与技术,2010,33(8):1047-1052.
    268.刘济宁,周林军,石利利,等.硫丹在土壤中的降解特性与污染修复模拟研究[C].中国毒理学会环境与生态毒理学专业委员会第二届学术研讨会暨中国环境科学学会环境标准与基准专业委员会2011年学术研讨会会议论文集,南京,201].
    269.刘魏魏,尹睿,林先贵,等.生物表面活性剂强化微生物修复多环芳烃污染土壤的初探[J].土壤学报,2009,30(7):2153-2159.
    270.骆永明.污染土壤修复技术研究现状与趋势[J].化学进展,2009,21(2/3):558-565.
    271.马婵媛,赵保卫,吴咏琪,等.表面活性剂对土壤中多环芳烃菲洗脱作用的比较研究[J].安全与环境学报,2008,8(4):19-21.
    272.马辉,张东海,李小侠,等.硫丹在棉花及土壤中的残留动态研究[J].石河子大学学报(自然科学版),2008,26(5):579-582.
    273.马满英,施周,刘有势.鼠李糖脂洗脱土壤中多氯联苯影响因素的研究[J].环境工程学报,2008,2(1):83-87.
    274.麦有斌,尹华,叶锦韶,等.生物表面活性剂及其在环境修复中的研究进展[J].环境污染 治理技术与设备,2006,7(12):5-9.
    275.明九雪,钱传范,申继忠.硫丹(endosulfan)在苹果和土壤中的残留动态研究[J].中国农业大学学报,1998,3(3):95-100.
    276.彭胜巍,周启星.持久性有机污染土壤的植物修复及其机理研究进展[J].生态学杂志,2008,27(3):469-475.
    277.宋玉芳,孙铁珩,许华夏.表面活性剂Tween 80对土壤中多环芳烃生物降解的影响[J].应用生态学报,1999,10(2):230-232.
    278.苏坤昌,朱鲁生,谢慧,等.硫丹高效降解菌JBW4的筛选和降解特性研究[C].持久性有机污染物论坛暨第五届持久性有机污染物全国学术研讨会论文集,2010:190-191.
    279.陶成斌.硫丹生产优化工艺研究[J].河北化工,2009,32(12):37-39.
    280.田齐东,王国庆,赵欣,等.3种表面活性剂对有机氯农药污染场地土壤的增效洗脱修复效应[J].生态与农村环境学报,2012,28(2):196-202.
    281.万卷敏,杨亚提,刘霞,等.塿土对阴-非离子表面活性剂的吸附特征研究[J].农业环境科学学报,2011,30(4):690-696.
    282.王艮梅,孙成,谢学群.表面活性剂Tween80及DOM对土壤中菲及芘解吸的影响[J].环境科学,2007.28(4):832-837.
    283.王国惠.有机氯农药高效降解菌的筛选及其降解能力的研究[J].环境保护,2004,(8):12-14.
    284.王庆利,彭健.吐温80的安全性研究进展[J].毒理学杂志,2006,20(4):262-264.
    285.王书锦,胡江春,张宪武.新世纪中国土壤微生物学的展望[J].微生物学杂志,2002,22(1):36-39.
    286.王亚韡,蔡亚岐,江桂斌.斯德哥尔摩公约新增持久性有机污染物的一些研究进展[J].中国科学:化学,2010,40(2):99-123.
    287.吴耀国,张小燕,胡思海,等.无机盐与表面活性剂对菲在黄土上吸附/解吸行为的联合影响[J].地球科学(中国地质大学学报),2012,37(2):320-326.
    288.吴咏琪,赵保卫,朱瑞佳,等.阴/非表面活性剂对土壤中菲的洗脱及影响因素研究[J].农业环境科学学报,2008.27(6):2211-2215.
    289.谢文明,李宛泽,安丽华,等.表面活性剂对南瓜消解土壤中DDT的影响[J].农业环境科学学报,2007.26(5):1640-1644.
    290.熊佰炼,张进忠,代娟,等.硫丹及其主要代谢产物对紫色土中酶活性的影响[J].生态学报,2013.33(15):4649-4657.
    291.薛琴,管玉江,王子波,白书立.N掺杂TiO2纳米管阵列的制备及可见光光催化性能研究[J].化学学报,2010,68(16):1603-1608.
    292.杨峻,张文君.硫丹的生产使用现状及管理动态[J].农药科学与管理,2011,32(10):6-9.
    293.于颖,周启星.污染土壤化学修复技术研究与进展[J].环境污染治理技术与设备,2005,6(7):1-7.
    294.余海粟,朱利中.混合表面活性剂对菲和芘的增溶作用[J].环境化学,2004,23(5):485-489.
    295.岳永德,花日茂,汤峰,等.土壤粒径对农药在土壤中分布和光解的影响[J].安徽农业大学学报,1993,20(4):309-314.
    296.张华荣,谭克奇,郑海务.铝氮共掺杂TiO2的制备及其光催化活性[J].功能材料,2011,42(4):646-654.
    297.张玉龙,李军,沈宏,等.辽宁省水稻生产中硅肥施用技术的研究Ⅱ——水溶性硅肥偏硅酸钠的施用技术[J].土壤通报,2004,35(5):604-607.
    298.赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003:263-270.
    299.赵国玺.表面活性剂物理化学[M].北京大学出版社,1994.
    300.赵振华,吴玉,蒋新,等.低分子量有机酸对红壤中硫丹释放动力学的影响[J].环境科学,2009,30(10):3077-3081.
    301.郑和辉,叶常明.乙草胺和丁草胺在土壤中的紫外光化学降解[J].环境化学,‘2002,21(2):117-122.
    302.钟金魁,赵保卫,朱琨,等.表面活性剂对菲的增溶动力学及质量增溶比(WSR)与亲水亲油平衡值(HLB)的关系[J].环境化学,2011,30(10):1737-1742.
    303.钟宁,曾清如,廖柏寒,等.非离子表面活性剂对土壤中甲基对硫磷的增溶、洗脱及其在土壤中的吸附[J].安全与环境学报,2005,5(6):34-36.
    304.周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    305.朱利中,冯少良.混合表面活性剂对多环芳烃的增溶作用及机理[J].环境科学学报,2002,22(6):774-778.
    306.朱利中.土壤及地下水有机污染的化学与生物修复[J].环境科学进展,1999,7(2):65-71.
    307.朱鲁生,于建垒,李光德,等.硫丹环境毒理研究进展[J].环境科学进展,1996,4(1):41-49.
    308.朱雪梅,陶澍,林健枝.根际土壤中DDTs的残留与转化[J].环境化学,2004,23(2):157-162.
    309.朱永官.土壤-植物系统中的微界面过程及其生态环境效应[J].环境科学报,2003,23(2):205-210.
    310.竺利红.硫丹残留及其微生物降解研究进展[J].中国农学通报,2011,27(18):242-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700