城市植物叶片PAHs特性及对土壤微生物与酶的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(Polycyclic Aromatic Hydrocarbon,简称PAHs)是含有两个及两个以上苯环的持久性亲脂有机污染物,它生物累积性强,存在于环境介质中,对人类健康构成潜在的威胁,引起了各国科学家的极大重视。城市森林是城市生态系统的重要组成部分,一方面植物叶片对环境中PAHs具有一定的吞噬能力,另一方面土壤微生物和酶活性受地上植物的影响,能降解土壤中的PAHs。因此,城市森林建设在改善环境发挥重要作用。但目前缺乏定量分析和研究城市森林冠层叶片与地下土壤的PAHs行为及变化规律。研究PAHs大气中的传输途径、各植物的吸收差异和土壤降解能力,为城市绿化植物选择和合理配置提供科学依据。
     利用气质联用仪对樟树(Cinnamomum camphora)、桂花(Opsmanthus fragrans)、广玉兰(Magnolia grandiflora)、红檵木(Redrlowered loropetalum)4种绿化植物叶片的PAHs含量进行测定,分析其节律变化、叶片结构与富集之间的关系。同时研究不同PAHs浓度下土壤微生物和酶的变化。主要研究结果为:
     1、四种植物叶片中PAHs含量特征
     樟树、桂花、广玉兰和红繼木4种植物叶片中的PAHs总含量的差异性显著(p<0.05),分别为7.58mg·kg-1、4.34mg·kg-1、3.66 mg·kg-1、11.13mg·kg-1。其中樟树、桂花和红檵木3种植物叶片中菲(PHE)的含量最高,其次为荧蒽(FLA),第三为芘(PYR);广玉兰叶片中浓度较高的前三位PAHs分别为菲(PHE)、荧蒽(FLA)和萘(NAP)。4种植物叶片中,2-4环的中低环芳烃均占PAHs总含量的90%以上,而5~6环的高环芳烃小于10%,6环的仅占4%以下。
     2、叶片中PAHs含量节律变化规律
     4种植物叶片中PAHs,总含量表现出显著的季节性差异(P<0.05)。4月和7月,樟树叶片中PAHs,总平均含量最高,1月和10月红檵木叶片中PAHs总平均含量最高,广玉兰叶片中PAHs总的平均含量最低。其中1月份樟树、桂花和广玉兰叶片中PAHs总含量日变化规律基本一致,最大值出现在下午14点,最小值出现在晚上20点。红檵木叶片中的PAHs总含量最小值出现上午8点,最大值出现在下午14点。4月份樟树、桂花和红檵木叶片中的PAHs总含量最大值出现在下午15点,但樟树叶片中PAHs总含量在上午9点和次日凌晨3点较低,而桂花和红檵木叶片中PAHs总含量均在晚上21点达到最低。广玉兰4月份的PAHs总含量变化不大。7月份4种植物各时间段叶片中PAHs总含量变化趋势基本一致,呈显著的单峰曲线,最大值出现在晚上20点,最小值出现在下午14点。10月份樟树、桂花和广玉兰叶片中PAHs总含量日变化规律基本一致,最大值出现在晚上20点,最小值出现在下午14点。红檵木叶片中PAHs,总含量日变化规律与其它3种植物相反,最大值出现在14点,最小值出现在晚上20点。
     3、叶片结构特征与富集PAHs能力的关系
     4种植物叶片解剖结构与富集PAHs能力的相关关系均达到显著(P<0.05)。其中栅栏组织厚度、海绵组织厚度和叶片总厚度均与PAHs含量呈负相关,叶片栅栏组织、海绵组织和叶片总厚度越小,气态和颗粒态PAHs吸附量越多,对气态和颗粒态PAHs的富集作用较强。而种间其他叶片结构与PAHs含量间相关关系不显著(P>0.05),可能是因为生理特性的差异,表现为某些结构上的差异对PAHs的吸附不敏感,如有的角质层可能较难穿透、不同植物间气孔能力不一致、不同树种叶片气孔对PAHs粒径的选择不一致等。
     4、PAHs对土壤微生物的影响
     樟树、桂花、广玉兰和红檵木4种绿化植物和土壤不同PAHs水平0 g·kg-1(CK),2 g·kg-1(L1),10 g-kg-1(L2)和50 g.kg-1(L3)模拟结果表明,栽植樟树、广玉兰和红檵木3中植物幼苗的土壤中,受PAHS处理后细菌、真菌、放线菌和微生物总数都低于对照,栽植桂花幼苗的土壤中,PAHs处理后细菌和微生物总数高于对照。栽植桂花和红檵木幼苗的土壤中,PAHs处理后真菌数量高于对照。放线菌数量都表现为L1>CK>L2>L3。
     5、PAHs对土壤酶的影响
     广玉兰、桂花、红檵木3种绿化植物土壤中过氧化氢酶活性年均值均表现为3种污染处理高于对照。只有樟树L3处理与对照过氧化氢酶活性年均值基本相等,L1和L2则低于对照。4种绿化植物土壤中磷酸酶活性年均值表现为高于对照。广玉兰和桂花3种PAHs污染浓度的土壤中多酚氧化酶活性年均值低于对照。樟树表现为L1>CK>L2>L3,红檵木则表现为L2>L1>CK>L3。
Polycyclic aromatic hydrocarbons (PAHs), composed of two or more fused aromatic rings, are ubiquitous, bioaccumulative and persistent pollutants. With rapid population growth, concurrent urban expansion and industrial development, contamination of PAHs in the environment has been a serious public health problem that greatly affects human beings health, and ecosystems functions. Urban forests as an important component of urban ecosystems, it plant leaves could absorb pollutants such as PAHs from the air, and plant also could affect soil prepertis including microbial community and enzymes that metabolize PAHs. Hence, urban forests play an critical role in improving the environment and achieve harmonious development of man and nature.
     In this study, four widely used for urban green plant species(Cinnamomum camphor a,Opsmanthus fragrans, Magnolia grandiflora and Redrlowered loropetalum) were chosen to determine PAHs content in leaves and investigated the effects on PAHs on soil microbes and enzymes activities. The results could provide scientific basis for plant species selection and arrangement. Mian results showed as follows:
     1. Charactersistics of PAHs content in four plant species leaves
     PAHs contents in leaf differed significantly with plant species (p<0.05) and were 7.58mg·kg-1,4.34 mg·kg-1,3.66 mg·kg-1 and 11.13mg·kg-1 for C. camphora, O. fragrans, M. grandiflora and R. loropetalum, respectively. PHE content in leaves was the highest of PAHs for C. camphora, O. fragrans and R. loropetalum, and FLA and PYR was the second and the third one. Howerver, for leaf of M. grandiflora, the individual categories of PAHs contents in leaf were ranked in order as PHE> FLA> NAP. The 2-4 ring PAHs were the main components of the 16 PAHs and accounted for more than 90%, the 5-6 ring PAHs comprised a small percentage of total PAHs and was lower than 10%.
     2. Seasonal and daily changes in PAHs contents in four plant species leaves
     PAHs contents in four plant leaves showed significant differences among four seasons (P<0.05). The highest PAHs contents in leaves of C. camphora occurred in April and July, while that of R. loropetalum occured in January and October. In January, diurnal variations of PAHs contents in C. camphora, O. fragrans, M. grandiflora were similar, with the highest content appeared in 14 p.m. and the lowest content appeared in 20 p.m.. But the PAHs content in R. loropetalum was highest in 14 p.m and was lowest in 8 a.m. In April, the PAHs content in C. camphora, O. fragrans, R. loropetalum was highest in 15 p.m, but the PAHs content in C. camphora was smaller from 9 am to 3 am the following day, and that in O. fragrans, R. loropetalum were the lowest at 9 pm. The PAHs contents in M. grandiflora changed little in April. In July, PAHs contents of leaves in four plants showed a similar change pattern that was the single curve, the highest PAHs contents appeared at 20 pm and the smallest contents appeared at 14 pm.
     3. Relationship of leave structures with PAHs contents
     There were closely relationships between leaf anatomical structures and PAHs contents for plant species. Palisade tissue thickness, spongy tissue thickness and the total leaf thickness were negatively correlated with PAHs contents. The thinner were the palisade tissue thickness, spongy tissue thickness and the total leaf thickness, the more did the aired and particle PAHs enrich. Other targets of leave structures showed no significant difference with PAHs contents (p>0.05), such as stratum corneum was hard to be penetrated and stomata in different trees would selected to scavenge the different particle sizes of PAHs.
     4. Effect of PAHs on soil microbial community
     Using pot experiment in greenhouse, the soils planted with C. camphora, O. fragrans, M. grandiflora and R. loropetalum seedlings were treated without diesel oil addition (control) and at three diesel contents (2g·kg-1, L1; 10 g·kg-1, L2 and 50g·kg-1, L3) to stimulate different levels of PAHs pollution. Soil microbes were investigated for one year. The numbers of bacteria, fungi, actinomyces and total microbes in PAHs polluted soils of C. camphora, M. grandiflora and R. loropetalum were lower than that in control soils. The numbers of bacteria, total microbes in PAHs polluted soils of O. fragrans were higher than that in control soils. The number of fungi in polluted soils of O. fragrans and R. loropetalum were higher than that in control soils. The numbers of actinomyces followed the order of L1>CK>L2>L3.
     5. Effects of PAHs on soil enzymes
     Catalase activities in polluted soils of M. grandiflora, O. fragrans and R. loropetalum were stronger than those in control soils. Catalase activities of C. camphora were in order of L3=CK>L1>L2. Phosphatase activities in polluted soils of four tree species were stronger than those in control soils. Polyphenol oxidase activities in polluted soils of M. grandiflora, O. fragrans were weaker than those in control soils, and the order of C. camphor a was ranked as L1>CK>L2>L3, and that of R. loropetalum was followed the order of L2>L1>CK>L3.
引文
[1]Menzie C A, Potocki B B, Santodonato J. Exposure to carcinogenic PAHs in the environment[J]. Environmental Science & Technology.1992,26(7):1278-1284.
    [2]Wilson S C, Jones K C. Bioremediation of soil contaminated with polycyclic aromatic hydro-carbons(PAHs):a review[J]. Environ Pollution.1993,81:229-249.
    [3]Xue W L, Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage:a review[J]. Toxicol. Appl. Pharmacol.2004,206(1):73-93.
    [4]杨艳,凌婉婷,高彦征,等.几种多环芳烃的植物吸收作用及其对根系分泌物的影响[J].环境科学学报,2010,30(3):593-599.
    [5]周明耀.环境有机污染与致癌物质[M].成都:四川大学出版社,1990,62-103
    [6]Ling Liu, James A. Tindall, M J. et al. Biodegradation of PAHs and PCBs in Soils and Sludges [J]. Water, Air, Soil Pollution,2007,181(1-4):281-296.
    [7]陈世军,祝贤凌,冯秀珍,等.多环芳烃对植物的影响[J].生物学通报,2010,45(2):9-11.
    [8]宋冠群,林金明.环境样品中多环芳烃的前处理技术[J].环境科学学报,2005,25(10):1287-1296.
    [9]Tremolada P, Burnett V, Calamari D, et al. Spatial distribution of PAHs in the UK atmosphere using pine needles[J]. Environ Sci Technol,1996,30(12):3570-3577.
    [10]李军,张干,祁士华.广州市大气中多环芳烃分布特征、季节变化及其影响因素[J].环境科学,2004,25(3):7-13.
    [11]杨萍.东北地区松针中多环芳烃的污染水平与特征[D].大连:大连理工大学,2008.5-6.
    [12]Yunker M B, Macdonald R W. Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada[J]. Organic Geochemistry.2003,34(10):1429-1454.
    [13]Miotn L L. Analytical Chemistry of polyeyclic Aromatic Compounds. Academic press, INC, 1981,17-40.
    [14]李春玉.多环芳烃的土壤降解特性及其影响因子研究[D].南京:南京农业大学,2008.
    [15]Rhykerd R L, Crews B, Mclnnes K J, et al. Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil[J]. Bioresource Technology,1999,67: 279-285.
    [16]Nielsen T, J(?)rgensen H E, Larsen J C, et al. City air pollution of polycyclic aromatic hydrocarbons and other mutagens:occurrence, sources and health effects[J]. Science of the Total Environment,1996,189/190:41-49.
    [17]朱利中,刘勇健,沈学优,等.城市道路交通PAHs污染现状及来源解析[J].环境科学学报,2000,20(2):183-186.
    [18]朱利中,王静,杜烨,等.汽车尾气中多环芳烃(PAHs)成分谱图研究[J].环境科学,2003,24(3):26-29.
    [19]欧阳威,刘红,于勇勇,等.微生物强化处理与堆制强化处理含油污泥对比试验[J].环境科学,2006,27(1):160-164.
    [20]USEPA. Polycyclic organic matter. US Environmental Protection Agency. Washington, DC. 2002. http://www.epa.gov/ttn/atw/hlthef/polycycl.html.
    [21]宋玉芳,周启星,许华夏,等.菲、芘、1,2,4-三氯苯对蚯蚓的急性毒性效应[J].农村生态环境,2003,19(1):36-39.
    [22]陈颖,王子健.用彗星试验检测土壤污染对蚯蚓活体基因损伤[J].土壤学报,2005,42(4):577-583.
    [23]赵作媛,朱江,陆贻通,等.镉-菲复合污染对蚯蚓急性毒性效应的研究[J].上海交通大学学报(农业科学版),2006,24(6):553-557.
    [24]Merianne A, Tomoko M T, Wang X C, et al. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms[J]. Journal of Experimental Botany,2005,56(421):2983-2994.
    [25]占新华,万寅婧,周立祥.水溶性有机物对土壤中菲的生态毒性影响[J].环境科学,2004,25(3):120-124
    [26]万寅靖,占新华,周立祥.土壤中芘、菲、萘、苯对小麦的生态毒性影响[J].中国环境科学,2005,25(5):563-566
    [27]Emmengger C, Kalberer M, Samburova V, et al. High time resolution and size segregated analysis of aerosol bound polycyclic aromatic hydro carbons [J]. Environmental Science Technology,2005,39(4):213-219.
    [28]Konstantinos P, Eva B L, Crispin J H, et al. Seasonal and long term trends in atmospheric PAH concentrations:evidence and implications [J]. Environmental Pollution,2004,128: 17-27.
    [29]Kurt E G, Rebecca M D. Particle/ gas concentrations and distributions of PAH s in the atmosphere of southen Chesapeake Bay [J]. Environmental Science Technology,1997,31: 140-147.
    [30]万显烈,杨凤林.大连市区大气中PAHs来源、分布及随季节变化分析[J].大连理工大学学报,2003,43(2):160-163.
    [31]吴水平,左谦,兰天,等.天津地区冬季总悬浮颗粒物中PAH s污染特征[J].环境科学,2004,25(4):13-17.
    [32]Roberte A M, Briang B, Josephy P D, et al. Com parison of the ames salmonella assay and mutatox genotoxicity assay forassessing the mutagenicity of polycyclic aromatic compounds in pore water from athabascaoil sands mature fine tailings [J]. Environ Sci Technol,1999,33: 2510-2516.
    [33]Buehler S. S., Basu L, Hites R. A. A comparison of PAH, PCB, and pesticide concentrations in air at two rural sites on Lake Superior. Environmental Science & Technology.2001.35(12): 2417-2422.
    [34]Coleman P. J., Lee R. G M., Alcock R. E., et al. Observations on PAID, PCB, and PCDDIF trends in U.K. urban air,1991-1995. Environmental Science & Technology.1997.31(7): 2120-2124.
    [35]Ngabe B., Poissant L. Polycyclic aromatic hydrocarbons in the air in the St. Lawrence Basin (Quebec). Environmental Science & Technology.2003.37(10):2094-2099.
    [36]Wan X. L., Chen J. W., Tian F. L., et al. Source apportionment of PAHs in atmospheric particulates of Dalian:Factor analysis with nonnegative constraints and emission inventory analysis. Atmospheric Environment.2006.40(34):6666-6675.
    [37]Chen B. L., Xuan X. D., Zhu L. Z., et al. Distributions of polycycic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Research.2004.38: 3558-3568.
    [38]Tao S., Cui Y. H., Xu F., et al. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Science of the Total Environment.2004.320(1):11-24.
    [39]Fernandes M. B., Sicre M. A., Boireau A., et al. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary. Marine Pollution Bulletin.1997.34:857-867.
    [40]Wild S. R., Jones K. C. Organic chemicals in the environmental polycyclic aromatic hydrocarbon by carrots grown in sludge-amended soil. Journal of Environmental Quality. 1992.21:217-225.
    [41]罗孝俊.珠江三角洲河流、河口和邻近南海海域水体、沉积物中多环芳烃与有机氯农药 研究[D].中国科学院广州地球化学研究所,广州.2004.
    [42]Wild S. R.; Jones K. C. Polynuclear aromatic hydrocarbons in the United Kingdom environment:a preliminary source inventory and budget. Environ,1995,88,91-108.
    [43]Trapido M. Polycyclic aromatic hydrocarbons in Estonian soil:contamination and profiles. Environ Pollut,1999,105,67-74.
    [44]Mielke H. W.; Wang G.; Gonzales C. R. et al. PAH and metal mixtures in New Orleans soils and sediments. Sci Total Environ,2001,281,217-227.
    [45]宋玉芳,常士俊,李利,等.污灌土壤中多环芳烃(PAHs)的积累与动态变化研究.应用生态学报,1997,8,93-98.
    [46]Kipopoulou A M, Manoli E, Samara C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ Pollut,1999,106,369-380.
    [47]Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Applied Chemistry,1996,11,121-127.
    [48]Stalikas C D, Chaidou C L, Pilidis G A. Enrichment of PAHs and heavy metals in soils in the vicinity of the lignite-fired power plants of West Macedonia (Greece). Sci Total Environ, 1997,204,135-146.
    [49]Wilcke W. Polycyclic aromatic hydrocarbons (PAHs) in soil-a review. Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde. Journal of Plant Nutrition and Soil,2000.163(3): 229-248.
    [50]Nadal M, Schuhmacher M, Domingo J L. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution.2004.132(1):1-11.
    [51]Wong F, Harner T, Liu Q T, et al. Using experimental and forest soils to investigate the uptake of polycyclic aromatic hydrocarbons (PAHs) along an urban-rural gradient. Environmental Pollution.2004.129(3):387-398.
    [52]Ping L F, Luo Y M, Zhang H B, et al. Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environmental Pollution.2007,147(2):358-365.
    [53]段永红,陶澎,王学军,等.天津表土中多环芳烃含量的空间分布特征与来源.土壤学报.2005.42(6):942-947.
    [54]Lin D H, Zhu L Z, Wang J. Environmental impact of PAHs on the metal-smelting area of Tangxia, China. Fresenius Environmental Bulletin,2004,13,447-453.
    [55]Meharg A A, Dyke W H, Osborn D. Polycyclic aromatic hydrocarbon (PAHs) dispersion and deposition to vegetation and soil following a large scale chemical fire. Environ Pollut,1998, 99,29-36.
    [56]Wagrowski D M, Hites R A. Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation. Environ Sci Technol,1997,31,279-282.
    [57]Howsam M, Jones K C, Meson P. PAHs associated with the leaves of three deciduous tree species. Ⅰ-Concentrations and profiles, Environ Pollut,2000,108,413-424.
    [58]Camargo M C R, Toledo M C F. Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control,2003,14,49-53.
    [59]Harrison R M, Smith D J T, Luhana L. Source apportionment of atmosphere collected from an urban location in Birmingham UK. Environmental Science & Technology.1996.30: 825-832.
    [60]Nikolaou K. Sources and chemical reactivity of polynuclear aromatic hydrocarbons in atmosphere:A critical review. Science of the Total Environment.1984.32(2):103-132.
    [61]Wan X L, Chen J W, Tian F L, et al. Source apportionment of PAHs in atmospheric particulates of Dalian:Factor analysis with nonnegative constraints and emission inventory analysis. Atmospheric Environment.2006.40(34):6666-6675.
    [62]曾凡刚,王关玉,田健,等.北京市部分地区大气溶胶中多环芳烃污染特征及污染源探讨.环境科学学报,2002.22(3):284-288.
    [63]史坚,黄成臣,徐鸿,等.杭州市大气总悬浮颗粒物中多环芳烃的HPLC分析.环境化学,2003,6:23-26.
    [64]张树才,张巍,王开颜,等.北京东南郊大气TSP中多环芳烃浓度特征与影响因素.环境科学.2007.28(3):460-465.
    [65]Wild S R, Jones K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment a preliminary source inventory and budget [J]. Environ Pollut,1995,88(1): 91-108.
    [66]Yin C Q, Jiang X, Yang X L, et al. Polycyclic aromatic hydrocarbons in soils in the vicinity of Nanjing, China [J]. Chemosphere,2008,73 (3):389-394.
    [67]Tremolada P, Burnett V, Calamari D, et al. Spatial distribution of PAHs in the UK atmosphere using pine needles [J]. Environ Sci Techno,1 1996,30(12):3570-3577.
    [68]杨萍,王震,陈景文,等.松针生理性质对其富集多环芳烃行为的影响[J].环境科学,2008,29(7):2018-2023.
    [69]Liu X, Zhang G, Jones K C, et al. Compositional fractionation of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum plumae formae WI LS.) from the northern slope of Nan ling, Mountains, South China [J]. Atmos Environ,2005,39(30):5490-5499.
    [70]田晓雪,周国逸,彭平安.珠江三角洲地区主要树种叶片多环芳烃含量特征及影响因素分析[J].环境科学,2008,29(4):849-854.
    [71]王雅琴,左谦,焦杏春,等.北京大学及周边地区非取暖期植物叶片中的多环芳烃[J].环境科学,2004,25(4):23-27.
    [72]Lehndorff E, Schwark L. Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler Part Ⅱ:polycyclic aromatic hydrocarbon s (PAH) [J]. Atmos Environ,2004,38 (23):3793-3808.
    [73]Hwang H M, Wade T L, Sericano J L. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States [J]. Atmos Environ,2003,37 (16):2259-2267.
    [74]Guddal E. Isolation of polynuclear aromatic hydrocarbons from roots of Chrysant hemun Vulgare Barnh Acta Chemica Scandinavica.1959.13(4):834-835.
    [75]Blasco M, Domeno C, Nerin C. Use of lichens as pollution biomonitors in remote areas: Comparison of PAHs extracted from lichens and atmospheric particles sampled in and around the Somport tunnel(Pyrenees). Environmental Science & Technology.2006.40(20):6384-6391.
    [76]Xu D D, Zhong W K, Deng L L, et al. Levels of extractable organohalogens in pine needles in China. Environmental Science & Technology.2003.37(1):1-6.
    [77]Chen J W, Zhao H M, Gao L, et al. Atmospheric PCDD/F and PCB levels implicated by pine (Cedrus deodara) needles at Dalian, China. Environmental Pollution.2006.144(2):510-515.
    [78]Simonich S L, Hites R A. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature.1994.370:49-51.
    [79]潘勇军,田大伦,唐大武,等.樟树林生态系统中多环芳烃含量和分布特征.林业科学.2004.40(6):2-7.
    [80]刘向,张干,刘国卿,等.南岭北坡苔鲜中多环芳烃的研究.中国环境科学.2005.25(1):101-105.
    [81]刘国卿,张干,刘向,等.大气中多环芳烃((PAHs)在松针和SPMD上的分布.环境化学.2005.24(1):81-85.
    [82]Liu G Q, Zhang G, Li J, et al. Spatial distribution and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) using semi-permeable membrane devices (SPMD) and pine needles in the Pearl River Delta, South China. Atmospheric Environment.2006.40: 3134-3143.
    [83]Niu J F, Chen J W, Martens D, et al. The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce Picea abies(L.) Karst.) needles. Science of the Total Environment.2004.322(1-3):231-241.
    [84]姜霞,区自清,应佩峰.14C-菲在“植物-火山石-营养液-空气”系统中的迁移和转化.应用生态学报.2001,12,451454.
    [85]Cambardella C A, Richard T L, Russell A. Compost mineralization in soil as a function of composting process conditions[J].European Journal of Soil Biology,2003,39:117-127.
    [86]Fuhr F, Scheele B, Kloster G Schadstoffeintrage in den Boden durch industrie, Besidedlung, Veerkehr und Land bewirtschaftung (organische Stoffe) [J]. VDLUFA-Schriftenreihe 16 (Kongrepband 1985).1986,73-84.
    [87]Wild S R, Jone K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget[J]. Environmental pollution,1995,88:91-108.
    [88]Knoche H, Klein M, Kordel W, et al. Literaturstudie zur Ableitung von Bodengrenzwerten fur polyzyklische aromatische Kohlenwasserstoffe (PAK) [J].1995.Umweltbundesamt, Texte71, Berlin,63p.
    [89]Wilcke W, Wolfgang Z, Jozef K. PAHS-pools in soils along a PAHs-deposition gradient[J]. Environ Pollution,1996,92(3):307-313.
    [90]Berteigne M, Lefevre Y, Rose C. Accumulation de polluants organiques (H. P.A.)dans les horizons humifres des sols[J]. European Journal of Forest Pathology,1988,18:310-318.
    [91]陈素暖,何江涛,金爱芳,等.多环芳烃在不同灌区土壤剖面的分布特征研究.环境科学与技术,2010,33(10):10-14.
    [92]Guband L, Jougen.C Z, Nina G Organic Micropollutants in Precipitation in Norway. Environmental Pollution.1977.11:1007-1014.
    [93]朱利中,陈宝梁,沈红心,等.杭州市地面水中多环芳烃污染现状及风险[J].中国环境科学.2003,23(5):485-489.
    [94]莫测辉,蔡全英,吴启堂,等.我国一些城市污泥中多环芳烃(PAHs)的研究[J].环境科学学报,2001,21(5):613-618.
    [95]王新红,徐立,陈伟琪,等.厦门西港沉积物中多环芳烃的垂直分布特征与污染追踪中国环境科学[J],1997,17(1):19-22.
    [96]林道辉,朱利中,高彦征.土壤有机污染植物修复机理与影响因素.应用生态学报,2003,14,1799-1803.
    [97]Tao S; Cui Y H, Xu F L. et al. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ,2004,320,11-24.
    [98]Gao Y Z, Zhu L Z. Phytoremediation and its models for organic contaminated soils. J Environ Sci,2003,15,302-310.
    [99]董瑞斌,许东风,刘雷,等.多环芳烃的研究进展.环境与开发,1999,14,10-11.
    [100]Ryan J A, Bell R M, Davidson J M, et al. Plant uptake of non-ionic organic chemicals from soils[J]. Chemosphere,1988,17:2299-2323.
    [101]Jones K C, Grimmer Q Jacob J, et al. Changes in the polynuclear aromatic hydrocarbon content of wheat grain and pasture grassland and over the last century from one site in the U.K. [J].The Science of the Total Environment,1989,78:117-130.
    [102]Simonnich S L, Hites RA. Organic pollutant accumulation in vegetation[J]. Environment Science and Technology,1995,29:2905-2914.
    [103]Wild S R, Jones K C. Organic chemicals entering agricultural soils in sewage sludge: screening for their potential to transfer to crop plants and livestock. Sci Total Environ,1992, 119,85-119.
    [104]Gao Y Z, Zhu L Z. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils[J]. Chemosphere,2004,55:1169-1178.
    [105]Alkio M, Tabuchi T M, Wang X C, et al. Stress responses to polycyclic aromatic hydrocarbons in arabidopsis include growth inhibition and hypersenative response-like symptoms[J]. Journal of Experimental Botany,2005,56:2983-2994.
    [106]Harvey P J, Campanella B F, Castro P M L, et al. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols[J]. Environmental Science and Pollution Research,2002, 9(1):29-47.
    [107]Banks M K, Lee E, Schwab A P. Evaluation of dissipation mechanisms for benzo[a]pyrene in the rhizosphere of tall fescue[J]. Journal of Environmental Quality,1999,28:294-298.
    [108]沈菲.钢铁工业区农田植物PAHs的浓度水平和影响因素[D].浙江大学,2006.
    [109]Sun P, Backus S, Blanchard P, et al. Annual variation of polycyclic aromatic hydrocarbon concentrations in precipitation collected near the Great Lakes. Environmental Science & Technology.2006.40(3):696-701.
    [110]Riederer M. Estimating partitioning and transport of organic chemicals in the oliage/ atmosphere system:discussion of a fugacity-based model. Environmental Science & Technology.1990,24(6):829-837.
    [111]Jeffree C E G. Structure and ontogeny of plant cuticles. In plant cuticles:an integrated functional approach[J]. Bios Scientific, Lancaster, UK.1996:33-82.
    [112]Riederer M. Estimating partitioning and transport of organic chemicals in the foliage/ atmosphere system:discussion of a fugacity-based model [J]. Environ Sci Technol,1990,24: 829-837.
    [113]Smith K E C, Jones K C. Particles and vegetation:implications for the transfer of particle-bound organic contaminants to vegetation [J]. Sci Total Environ,2000,246:207-236.
    [114]Zhang Q Z, Davis L C, Erickson L E. Transport of methyl tertbutyl ether through alfalfa plants. Environ. Sci. Technol.2001,35,725-731.
    [115]Topp E, Scheunert L, Attar A, et al. Factors affecting the uptake of 14C-labelled organic chemical by plants from soil[J]. Eco Joxicol. Environ. Safety.1986,11,219-228.
    [116]Mclachlan M S. Bioaccumulation of hydrophobic chemicals in agricultural food chains [J]. Environ Sci Technol,1996,30:252-259.
    [117]Fismes J, Perrin-Ganier C, Empereur-Bissonnet P. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils [J]. J Environ Qual,2002,31:1649-1656.
    [118]Oleszczuk P, Baran S. Polycyclic aromatic hydrocarbons content in shoots and leaves of willow (salix viminalis) cultivated on the sewage sludge-amended soil [J]. Water Air Soil Poll, 2005,168:91-111.
    [119]高学晟,姜霞,区自清.多环芳烃在土壤中的行为[J].应用生态学报,2002,13(4):501-504.
    [120]包贞,潘志彦,杨晔,等.环境中多环芳烃的分布及降解[J].浙江工业大学学报,2003,31(5):528-534.
    [121]丁克强,骆永明.多环芳烃污染土壤的生物修复[J].土壤,2001,(4):169-178.
    [122]邢维芹,骆永明,李立平,等.持久性有机污染物的根际修复及其研究方法[J].土壤,2004,36(3):258-263.
    [123]Kari T. Steffen S S, Marja T, et al. Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi[J]. Biodegradation,2007,18(3):359-369.
    [124]旷远文,温达志,钟传文,等.根系分泌物及其在植物修复中的作用.植物生态学报,2003,27,709-717.
    [125]Jones D L, Darrah P R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil.1994,166,247-257.
    [126]丁克强,骆永明,刘世亮,等.黑麦草对菲污染土壤修复的初步研究[J].土壤,2002,4:233-236.
    [127]丁克强,骆永明,刘世亮,等.黑麦草对土壤中苯并[a]芘动态变化的影响[J].土壤学报,2004,41(3):348-353.
    [128]Nichol T D. Rhizosphere microbial populations in contaminated soils. Water, Air and Soil Pollution.1997,95,165-176.
    [129]Jodahl J L, Foster L, Schnoor J L. Effect of hybrid trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem.1997,16,1318-1321.
    [130]Donnelly P K, Hegde R S, Fletcher J S. Growth of PCB-degrading bacteria on compounds from photosynthetic. Chemosphere.1984,28,981-988.
    [131]Fletcher J.S.; Hedge R.S. Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere.1995,31,3009-3016.
    [132]孙铁珩,周启星,李培军.污染生态学.科学出版社,2001,北京.
    [133]Schnoor J L, Licht L A, Mccutcheon SC,et al. Phytoremediation of organic and nutrient contaminants. Envir,on Sci Technol,1995,29:318-323.
    [134]Schroll R, Bierling B, Cao G, et al. Uptake pathways of organic chemicals from soil by agricultural plants. Chemosphere,1994,28,297-303.
    [135]Collins C, Fryer M, Grossso A. Plant uptake of non-ionic organic chemicals. Environ Sci Technol,2006,40,45-52.
    [136]Reischl A, Reissinger M, Thoma M, et al. Uptake and accumulation of PCDD/F in terrestrial plants:basic considerations. Chemosphere.1989,19,467-474.
    [137]Hulster A, Muller J F, Marschner H, et al. Soil-plant transfer of polychlorinated dibenzo pdioxins and dibenzofurans to vegetables of the cucumber family (cucurbitaceae). Environ Sci Technol,1994,28,1110-1115.
    [138]White J C, Wang X P, Gent M P N, et al. Subspecies-level variation in the phytoextraction of weathered p,p'-DDE by cucurbita pepo. Environ Sci Technol,2003,37,4368-4373.
    [139]魏树和,周启星,张凯松,等.根际圈在污染土壤修复中的作用与机理分析.应用生态学报.2003,14,143-147.
    [140]张福琐,曹一平.根际动态过程与植物营养.土壤学报.1992,29,239-250.
    [141]Aprill W, Sims R C. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil[J]. Chemosphere,1990,20:253-265.
    [142]Liste H H, Alexander M. Rapid screening of plants promoting phenanthrene degradation[J]. Journal of Environmental Quality,1999,28:1376-1377.
    [143]Liste H H, Felgentreu D. Crop growth, culturable bacteria, and degradation of petrolhydrocarbons (PHCs) in a long-term contaminated field soil[J]. Applied Soil Ecology, 2006,31:43-52.
    [144]桑伟莲,孔繁翔.植物修复研究进展环境科学进展.1999,7,40-44.
    [145]Leyval C, Binet P. Effect of poluaromatic hydrocarbons in soil on arbuscular mycorrhizal plants. J Environ Qual.1998,27,402-407.
    [146]安凤春,莫汉宏,郑明辉.DDT及其主要降解产物污染土壤的植物修复.环境化学,2003,22(1):19-25.
    [147]Chiou C T, Sheng G Y, Manes M. A partition-limited model for plant uptake of organic contaminants from soil and water. Environ Sci Technol.2001,35,1437-1444.
    [148]Reischl A, Reissinger M,Thoma M, et al. Uptake and accumulation of PCDD/F interrestrial plants:basic considerations. Chemosphere.1989,19,467-474.
    [149]Zhang Q Z, Davis L C, Erickson L E. Transport of methyl tertbutyl ether through alfalfa plants. Environ. Sci. Technol.2001,35,725-731.
    [150]Cunningham S D, Anderson T A, Schwab A P, et al. Phytoremediation of soils contaminated with organic pollutants. Adv. Agron.1996,56,56-114.
    [151]Briggs G C, Bromilow R H, Ewans AA. Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic Sci,1982,13,495-504.
    [152]Briggs G G, Bromilow R H, Ewans A A, et al. Relationships between lipophilicity and the distribution of non-ionized chemicals in barley shoots following uptake by the roots. Pestic Sci,1983,22,271-274.
    [153]Burken J G, Schnoor J L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ. Sci. Technol.1998,32,3379-3385.
    [154]Travis C C, Arms A D. Bioconcentration of organics in beef, milk, and vegetation. Environ. Sci. Technol,1988,22,271-274.
    [155]Ryan J A, Bell R M, Davidson J M, et al. Plant uptake of nonionic organic chemicals from soils. Chemosphere.1988,17,2299-2323.
    [156]高彦征.土壤多环芳烃污染土壤修复及强化的新技术原理研究[D].浙江大学,2004.
    [157]Wiltse C, Rooney W L, Chen Z, et al. Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J Environ Qual,1998,27:169-173.
    [158]Topp E, Scheunert L, Attar A, et al. Factors affecting the uptake of C-14-labeled organic chemicals by plants from soil. Ecotoxicol Environ 1986,11:219-228.
    [159]Wang M J, Jones K C. Uptake of chlorobenzenes by carrots from spiked and sewage sludge-amended soil. Environ Sci Technol,1994,28,1260-1267.
    [160]Komp P, McLachlan M S. Influence of temperature on the plant/air partitioning of semivolatile organic compounds. Environ Sci Technol,1997,31.886-890.
    [161]Wagrowski D M, Hites R A. Partitioning of polychlorinated dibenzo pdioxins and dibenzofurans between the atmosphere and corn. Environ Sci Technol,1998,32,2389-2393.
    [162]Barber J L, Thomas G O, Kerstiens G, et al. Air-side and plant-side resistances influence the uptake of airborne PCBs by evergreen plants. Environ Sci Technol,2002,36,3224-3229.
    [163]Hiatt M. Leaves as an indicator of exposure to airborne volatile organic compounds. Environ Sci Technol,1999,33,4126-4133.
    [164]Schrelber L, Schonherr J. Uptake of organic chemicals in conifer needles:surface adsorption and permeability of cuticles. Environ Sci Technol,1992,26,153-159.
    [165]Little P, Wiffen R. D. Emission and deposition of petrol engine exhaust Pb-I. Deposition of exhaust Pb to plant and soil surface. Atoms Environ,1977,11,437-447.
    [166]Howsam M, Jones K.C, meson P. PAHs associated with the leaves of three deciduous tree species. I-Concentrations and profiles, Environ Pollut,2000,108,413-424.
    [167]萨仁,苏德毕力格,陈家瑞.黄华属植物叶表皮特征及其生物学意义[J].草地学报,2000,8(1):65-76.
    [168]Pan K Y, Lu A M, Wen J. Characters of leaf epidermis in Hamamelidaceae(s.l)[J]. A cta Phytotaxonomica sinica,1990,28(1):10- 26(in Chinese).
    [169]Kong H Z. Comparative morphology of leaf epidermis in the chloranthaceae[J]. Botanical Jourual of the Linnean Society,2001,136:279-294.
    [170]Nadeau J A, Sack F D. Control of stomatal distribution on the Arabidopsis leaf surface[J]. Science,2002,296:1697-1700.
    [171]Serna L. Good neighbours[J]. Nature,2004,430(15):302-304.
    [172]Zacchini M, Morini S, Vitagliano C. Effect of photoperiod on some stomatal characteristics of in vitro cultured fruit tree shoots[J]. Plant Cell Tissue Organ Cult,1997,49:195-200.
    [173]Gay A P, Hurd R G. The influence of light on stomatal density in the tomato[J]. New Phytol, 1975,75:37-46.
    [174]Ticha I. Photosynthetic characteristics during ontogenesis of leaves.7. stomata density and sizes[J]. Photosynthetica,1982,16:375-471.
    [175]郑淑霞,上官周平.近一世纪黄土高原区植物气孔密度变化规律[J].生态学报,2004,24(11):2457-2464.
    [176]郑淑霞,上官周平.近70年黄土高原3种植物叶片气孔特征参数比较[J].植物资源与环境学报,2005,14(1):1-5.
    [177]邹天才,张著林.山茶属五种植物叶片解剖特征及与光合生理相关性研究[J].西北植物学报,1996,16(1):42-51.
    [178]于龙凤,李富恒,安福全,等.西葫芦不同节位叶片的形态解剖学数量性状研究[J].北方园艺,2009(5):5-8.
    [179]Hester M W, Mendelssohn I A, Mckee K L. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints[J]. Environmental and Experimental Botany,2001,46:277-297.
    [180]Roscas G, Scarano F R. Leaf anatomical variation in Alchornea triplinervia (Spreng) Mull. Arg.(Euphorbiaceae)under distinct light and soil water regimes[J]. Botanical Journal of the Linnean Society,2001,136:231-238.
    [181]李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2005,22(增刊):118-127.
    [182]蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅰ.叶片解剖特征的比较[J].植物生态学报,2001,25(1):90-98.
    [183]史刚荣,邢海涛.淮北相山8个树种叶片的生态解剖特征[J].林业科学,2007,43(3):91-96.
    [184]罗凤霞.叶片形态解剖结构与树木抗S02污染的研究[J].沈阳农业大学学报.1993,24(4):343-346.
    [185]Agrawal M, Singh J. Impact of Coal Power Plant Emission on the Foliar Elemental Conc, in Plants in A Low rainfall Tropical Region [J].Environmental Monitoring and Assessment, 2000,60:261-282.
    [186]Fleek J A, Grigal D F, Nater E A. Mercurv Uptake by Trees: An Observational Experiment[J]. Water, Air, and Soil Pollution,1999,115:513-523.
    [187]Tao Z Y, Hornbuckle K C. Uptake of Polycyclic Aromatic Hydrocarbons (PAHs)by Broad Leaves:Analysis of Kinetic Limitations [J]. Air, and Soil Pollution:Focus,2001,1:275-283.
    [188]Smith K E C, Jones K C. Particles and vegetation:implications for the transfer of particle-bound organic contaminants to vegetation[J]. Sci Total Environ.2000,246:207-236.
    [189]Barber J L, Kurt P B, Thomas G.O, et al. Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants[J].Environ Sci Technol,2002,36: 4282-4287.
    [190]Hung H, Thomas GO, Jones K C, et al. Grass-air exchange of polychlorinated biphenyls[J]. Environ Sci Technol,2001,35:4066-4073.
    [191]田晓雪,周国逸,彭平安.珠江三角洲地区主要树种叶片多环芳烃含量特征及影响因素分析[J].环境科学,2008,29(4):849-854.
    [192]王雅琴,左谦,焦杏春,等.北京大学及周边地区非取暖期植物叶片中的多环芳烃[J].环境科学,2004,25(4):23-27.
    [193]Daisuke N, Yukiko Y, Junzo S, et al. Seasonal Changes in the Concentration of Polycyclic Aromatic Hydrocarbons in Azalea Leave and Relationship to Atmospheric Concentration[J]. Chemospher,1995,30 (3):409-418.
    [194]戴郁芬,吴玉琛,谢仁杰,等.中台湾树叶中PAHs浓度分析之研究[J].弘光学报,1994,47(2):103-110.
    [195]温洪宇,廖银章,李旭东.微生物降解多环芳烃的研究进展[J].微生物学杂志,2005,25(6):73-75.
    [196]Miller C. Hall D, K, Liang Y. N, et al. Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Mycobacterium Isolates from Soil[J]. Microbial Ecology,2004,48:230-238.
    [197]罗雪梅,刘昌明,何孟常.土壤与沉积物对多环芳烃类有机物的吸附作用[J].生态环境,2004,13(3):394-398.
    [198]于秀艳,丁永生.多环芳烃的环境分布及其生物修复研究进展[J].大连海事大学学报,2004,30(4):55-59.
    [199]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学,2000,19(3):24-25.
    [200]占新华,周立祥.多环芳烃(PAHs)在土壤-植物系统中的环境行为[J].生态环境,2003,12(4):487-492.
    [201]程国玲,李培军,王凤友,等.多环芳烃污染土壤的植物与微生物修复研究进展[J].环境污染治理技术与设备,2003,4(6):30-36.
    [202]Paul D, Hallett, Nia A. White K R. Impact of basidiomycete fungi on the wettability of soil contaminated with a hydrophobic polycyclic aromatic hydrocarbon[J]. Biologia Bratislava, 2006,61/Suppl,19:S334—S338.
    [203]Steven D, Siciliano James J, Germida K B, et al. Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial[J]. Applied and Environmental Microbiology,2003,69(1):483-489.
    [204]Brajesh K. Singh S M, Jacqueline M P, et al. Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils[J]. Elsevier B, V,2007, in press.
    [205]胡亚林,汪思龙,颜绍馗.影响土壤微生物活性与群落结构因素研究进展[J].土壤通报,2006,37(1):170-176.
    [206]Marschner P, Yang C H, Lieberei R, et al. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biology and Biochemistry,2001,33: 1437-1445.
    [207]杨苏声,周俊初.微生物生物学[M].北京:科学出版社,2004.319.
    [208]宋玉芳,许华夏,任丽萍.两种植物条件下土壤中矿物油和多环芳烃(PAHs)的生物修复研究[J].应用生态学报,2001,12(1):108-112.
    [209]Sebastien D, Claire R, Francis G, et al. In-situ phytoremediation of PAHs contaminated soils following a bioremediation treatment[J]. Water, Air, and Soil Pollution,2006,6:299-315.
    [210]Ping G, Tieheng S, Gunter B, et al. Ecological effects of combined organic or inorganic pollution on soil microbial activities [J]. Water, Air, and Soil pollution,1997,96:133-143.
    [211]Adam G, Duncan H J. Effect of diesel fuel on growth of selected plant species[J]. Environmental Geochemistry and Health,1999,21:353-357.
    [212]王光华,金剑,徐美娜,等.植物、土壤及土壤管理对土壤微生物群落结构的影响[J].生态学杂志,2006,25(5):550-556. In: Lynch J M, Whipps J M. Substrate flow in the rhizosphere[J]. Plant Soil,1990,129:1-20.
    [213]陈来国,冉勇.植物修复多环芳烃研究现状[J].环境科学与技术,2004,27(5):99-102.In:沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002.317.
    [214]Salt D E, Smith R D, Raskin I. Phytoremediation[J]. Annu Rev Plant Physiol Plant Mol Biol.,1998,49:643-668.
    [215]Yoshitomi K J, Shann J R. Corn(Zea mays L.)root exudates and their impact on 14C-pyrene mineralization[J]. Soil Biology and Biochemistry,2001,33:1769-1776.
    [216]Liu S L, Luo Y M, Cao Z H, et al. Degradation of benzo[a]pyrene in soil with arbuscular mycorrhizal alfalfa[J]. Environmental Geochemistry and Health,2004,26:285-293.
    [217]卫士美,武小平,李润植.有机污染物的植物修复[J].中国农学通报,2006,22(5):384-388.
    [218]杨柳春,郑明辉,刘文彬,等.有机物污染环境的植物修复研究进展[J].环境污染治理技术与设备,2002,3(6):1-7.
    [219]Binet P, Portal J M, Leyval C. Dissipation of 3-6-ring Polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass[J]. Soil Biology and Biochemistry,2000,32:2011-2017.
    [220]高彦征,凌婉婷,朱利中,等.黑麦草对多环芳烃污染土壤的修复作用及机制[J].农业环境科学学报,2005,24(3):498-502.
    [221]Xing W Q, LuoYM, Wu L H, et al. Accumulation and phytoavailability of benzo[a]pyrene in an acid sandy soil [J]. Environmental Geochemistry and Health,2006,28:153-158.
    [222]Li H, Luo Y M, Song J, et al. Degradation of benzo[a]pyrene in an experimentally contaminated paddy soil by vetiver grass (Vetiveria zizanioides)[J]. Environmental Geochemistry and Health,2006,28:183-188.
    [223]徐圣友,陈英旭,林琦,等.玉米对土壤中菲芘修复作用的初步研究[J].土壤学报,2006,43(2):226-232.
    [224]Patryk O, Stanislaw B. Polycyclic aromatic hydrocarbons content in shoots and leaves of willow (Salix Viminalis) cultivated on the sewage sludge-amended soil [J]. Water, Air, and Soil Pollution,2005,168:91-111.
    [225]Vervaeke P, Luyssaert S, Mertens J, et al. Phytoremediation prospects of willow stands on contaminated sediment:a field trial[J]. Environmental Pollution,2003,126:275-282.
    [226]Xing W Q, Luo Y M, Wu L H, et al. Spatial distribution of PAHs in a contaminated valley in Southeast China[J]. Environmental Geochemistry and Health,2006,28:89-96.
    [227]莫测辉,蔡全英,吴启堂,等.城市污泥与玉米秸秆堆肥中多环芳烃(PAHs)的研究[J].农业工程学报,2001,17(5):73-77.
    [228]袁蓉,刘建武,成旦红,等.凤眼莲对多环芳烃(萘)有机废水的净化[J].上海大学学报(自然科学版),2004,10(3):272-276.
    [229]陈瑞蕊,林先贵,尹睿,等.有机污染土壤中菌根的作用[J].生态学杂志,2005,24(2):176-18.
    [230]张春杨.细菌降解多环芳烃上游途径的遗传学研究进展[J].微生物学通报,2006,33(3):161-166.
    [231]沈国清,陆贻通,洪静波.重金属和多环芳烃复合污染对土壤酶活性的影响及定量表征[J].应用与环境生物学报,2005,11(4):479-482.
    [232]Najat A, Jean-M P, Timothy V, et al. Distribution and location of polycyctic aromatic hydrocarbons (PAHs) and PAH-degrading bacteria within polluted soil aggregates [J]. Biodegration,2001,12:49-57.
    [233]田蕴,郑天凌.应用双层平板技术评估海水沉积物中多环芳烃-芘的污染研究[J].中国生态农业学报,2004,12(1):23-25.
    [234]Johnsen A R, Karlson U. PAH degradation capacity of soil microbial communities—does it depend on PAH exposure? [J]. Microbial Ecology,2005,50:488—495.
    [235]张咏梅,周国逸,吴宁.土壤酶学的研究进展[J].热带亚热带植物学报,2004,12(1):83-90.
    [236]宫璇,李培军,张海荣,等.土壤的芘污染与土壤酶活性[J].农村生态环境,2004,20(3):53-55,59.
    [237]胡开辉,罗庆国,汪世华,等.化感水稻根际微生物类群及酶活性变化[J].应用生态学报,2006,17(6):1060-1064.
    [238]周乐.多环芳烃降解菌的筛选、降解条件及其与玉米联合修复菲、芘污染土壤的研究[D].南京:南京农业大学,2006,7:63.
    [239]高永健,袁玉欣,刘四维,等.不同林龄杨树人工林对土壤微生物状况和酶活性的影响[J].中国农学通报,2007,23(7):185-189.
    [240]李霞,潘开文,高平,等.农药对土壤微生物和酶活性的影响[J].安徽农业科学,2007,35(21):6510-6512.
    [241]柴强,黄鹏,黄高宝.间作对根际土壤微生物和酶活性的影响研究[J].草业学报,2005,14(5):105-110.
    [242]宫璇,李培军,张海荣,等.菲对土壤酶活性的影响[J].农业环境科学学报,2004,23(5):981-984.
    [243]Klimkowicz P A, Maliszewska K B. Effect of anthracene and pyrene on dehydrogenases activity in soils exposed and unexposed to PAHs[J]. Water, Air, and Soil Pollution,2003, 145:169-186.
    [244]Chen Y, Wang C X, Wang Z J, et al. Assessment of the contamination and genotoxicity of soil irrigated with wastewater[J]. Plant and Soil,2004,261:189-196.
    [245]沈定华,许昭怡,于鑫,等.土壤有机污染生物修复技术影响因素的研究进展[J].土壤,2004,36(5):463-467.
    [246]US Environmental Protection Angency, Office of Solid Waste and Emergency Response. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Method 3540C:Soxhlet Extraction[S],1996.
    [247]Banjoo D R, Nelson P K. Improved ultrasonic extraction procedure for the determination of polycyclic aromatic hydrocarbons in sediments[J]. Journal of Chromatography A,2005, 1066:9-18.
    [248]谢振伟,但德忠,赵燕等.超声波辅助萃取技术在样品预处理中的应用[J].化学通报,2005,68:1-11.
    [249]李核,李攻科,张展霞.微波辅助萃取技术的进展[J].分析化学,2003,31(10):1261-1268.
    [250]Lopez-Avila V, Bendicto J, Charan C, et al. Determination of PCBs in soil/sediments by microwave-assisted extraction and GC/ECD or ELISA[J]. Environmental Science & Technology,1995,29(10):2709-2712.
    [251]Lopez-Avila V, Benedicto J. Microwave-assisted extraction combined with gas chromatography and enzyme-linked immunosorbent assay[J]. Trends in Analytical Chemistry,1996,15(8):334-341.
    [252]Hawthorne S B, Krieger M S, Miller D J. Supercritical carbon dioxide extraction of polychlorinated biphenyls, polycyclic aromatic hydrocarbons, heteroatom-containing polycyclic aromatic hydrocarbons, and n-alkanes from polyurethane foam sorbents[J]. Analytical Chemistry,1989,61:736-740.
    [253]Ashraf-Khorassani M, Taylor L T. Analysis of propellant stabilizer components via packed and capillary supercritical fluid chromatography/fourier transform infrared spectrometry[J]. Analytical Chemistry,1989,61(2):145-148.
    [254]Levy J M, Rosselli A. Quantitative supercritical fluid extraction coupled to capillary gas chromato graphy[J]. Chromatographia,1989,28:613-616.
    [255]Tomas C, Vaclav S. Application of supercritical fluid extraction (SFE) to predict bioremediation efficacy of long-term composting of PAHs-contaminated soil[J]. Environmental Science & Technology,2005,39:8448-8452.
    [256]冯志强.超临界流体萃取联用技术的应用[J].分析仪器,2005,1:6-10.
    [257]Richter B E, Jones B A, Ezzell J L, et al. ASE:A technique for sample preparation[J]. Analytical Chemistry,1996,68:1033-1039.
    [258]牟世芬,刘勇建.加速溶剂萃取的原理及应用[J].现代科学仪器,2001,3:18-20.
    [259]叶明立,朱岩.ASE加速溶剂萃取技术在食品农残方面的分析应用[J].现代科学仪器,2003,1:35-37.
    [260]Vreuls J J, Jong G J, Brinkman U A. On-line coupling of liquid chromatography, capillary gas chromato graphy and mass spectrometry for the determination and identification of polycyclic aromatic hydrocarbons in vegetable oils[J]. Chromatographia,1991,31:113-118.
    [261]Moreda W, Perez-Camino M C, Cert A. Gas and liquid chromatography of hydrocarbons in edible vegetable oils[J]. Journal of Chromatography A,2001,936:159-171.
    [262]Sanchez-Brunete C, Ester M, Jose L T. Analysis of 27 polycyclic aromatic hydrocarbons by matrix solid-phase dispersion and isotope dilution gas chromatography-mass spectrometry in sewage sludge from the Spanish area of Madrid[J]. Journal of Chromatography A,2007, 1148:219-227.
    [263]Jacob D B, Robin J L. Developments in the use of chromatographic techniques in marine laboratories for the determination of halogenated contaminant and polycyclic aromatic hydrocarbons [J]. Journal of Chromatography A,2003,1000:223-251.
    [264]Kuppithayanant N, Rayanakorn M, Wongpornchai S, et al. Enhanced sensitivity and selectivity in the detection of polycyclic aromatic hydrocarbons using sequential simplex optimization, the addition of an organic modifier and wavelength programming[J]. Talanta, 2003,61(6):879-888.
    [265]田大伦.杉木林生态系统定位研究方法[M].北京:科学出版社,2004.216-217,307-311,201-203,142-144.
    [266]中科院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.44-46.
    [267]俞毓馨,吴国庆,孟宪庭.环境工程微生物检验手册[M].北京:中国环境科学出版社,1990.136-138.
    [268]关松荫.土壤酶及其研究方法[M].北京:中国农业出版社,1986.309-327.
    [269]严昶升.土壤肥力研究方法[M].北京:农业出版社,1988.248-250.
    [270]马骁轩,冉勇,邢宝山,等.珠江三角洲一些菜地土壤中多环芳烃的含量及来源[J].环境科学学报,2007,27(10):1727-1733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700