顺序注射化学发光联用技术选择性测定三种氨基酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命科学是21世纪最重要的科学研究领域,氨基酸分析在生命科学研究中占有重要的地位。建立准确、灵敏、简便、快捷的氨基酸分析方法对蛋白质化学、临床医学、生理研究、及食品分析有着重要意义。
     化学发光法以其灵敏度高、分析速度快、简便和线性范围宽等诸多优点,促使人们做了大量的研究工作。它在生命科学、临床医学和环境科学等许多领域的应用都已成为研究的热点。流动注射分析技术可以精确地控制试剂和试样的体积以及混合时间,提高方法的重现性;易于控制采样操作、减少试剂和试样的消耗;自动化程度高,显著提高分析频率。顺序注射分析作为流动分析的一个分支或第二代流动注射分析在上世纪九十年代被提出来。它更新了仪器装置,简化了操作使其更易微机化,达到了自动化和智能化的新水平,可以用同一装置完成不同组分的检测而无需改变流路的设置,成为流动注射分析研究中最活跃的领域之一。流动注射和顺序注射及其混合体系已发展成为自动分析和在线样品处理技术的主要手段。流动分析进样和化学发光检测技术耦合,保留了化学发光检测技术固有的优点,克服了通常化学发光分析中因反应速度快,反应过程难以控制,重现性较差的弊病,进一步改善了后者的分析性能,显著地提高了分析结果重现性、准确度和分析速度。本文将顺序注射进样技术和化学发光检测方法联用,建立了简便、快速、灵敏、选择性测定氨基酸含量的分析方法,并讨论了部分化学发光反应体系的反应机理。
     第一章简要评述了近年来应用于氨基酸分析的主要方法,包括色谱分离方法、化学计量学解析,各类光学检测方法和其它分析方法等。
     第二章将顺序注射进样技术与化学发光检测技术联用,详细研究了顺序注射条件下特有的进样顺序对发光信号强度的影响。模拟实验结果表明,对于快速发光反应体系,因待测试样区带排序位置不同引起的试样分散程度不一是发光强度变化的主要因素。基于丁二酮肟存在下组氨酸能够增强Mn(Ⅱ)盐对鲁米诺与过氧化氢发光反应的催化能力,建立了顺序注射化学发光联用技术选择性测定组氨酸含量的新方法,线性响应范围为5.0×10-7~1.0×10-3 mol/L,检出限(3σ)为2×10-7mol/L,方法的相对标准偏差(R.S.D.)为0.97%(4.0×10-5mol/L,n=11)。在实际样品分析中,回收率在90.0~103.3%之间。
     第三章研究了Ce(Ⅳ)-Tween20-Trp发光体系。在酸性介质中,色氨酸能够显著增强Ce(Ⅳ)和Tween20的发光反应。据此,建立了顺序注射化学发光联用技术测定色氨酸的新方法。线性分析范围为2.0×10-7~8.0×10-6mol/L,检出限为1.5×10-7 mol/L,方法的相对标准偏差为0.7%。与Ce(Ⅳ)-Trp直接发光反应相比较,本方法线性分析范围下降了一个数量级。该方法用于氨基酸注射液和啤酒中色氨含量的测定,结果满意。此外,本章通过研究相关反应物和反应产物的化学发光光谱、吸收光谱和荧光光谱,探讨了Ce(IV)-Tween20-Trp体系可能的发光反应机理。该反应的发光体为Tween20的中间氧化产物,在这个化学发光反应中,色氨酸是Ce(Ⅳ)与Tween20反应的增敏剂。
     第四章研究了色氨酸和酪氨酸对Ce(IV)-quinine-Cys发光体系的抑制效应;提出了利用Ce(IV)-quinine-Cys-(Trp+Tyr)反应体系中色氨酸和酪氨酸的抑制效应和Ce(IV)-Tween40-Trp体系中色氨酸的增强效应,同时测定色氨酸和酪氨酸含量的化学发新方法;采用双泵双阀的顺序注射进样和空气微柱间隔发光信号,消除了顺序注射流路毗邻信号间的干扰,成功实现了酪氨酸和色氨酸同时检测。通过色氨酸和酪氨酸对Ce(IV)-quinine-Cys体系的抑制作用,得出二者总的含量;利用色氨酸对Ce(IV)-Tween40体系的增敏作用,测得色氨酸的含量,总量与色氨酸含量之差就是酪氨酸的含量。对于Ce(IV)-quinine-Cys-(Trp+Tyr)反应体系,测定范围为3×10-7~1.2×10-5 mol/L时,检出限为2.9×10-6 mol/L,方法的相对标准偏差为1.1%(n=9);对于Ce(IV)-Tween40-Trp发光体系,测定范围为2×10-7~1.4×10-5 mol/L,检出限为9.0×10-8 mol/L,连续9次测定色氨酸的相对标准偏差为1.3%。探讨了可能的反应机理,认为Ce(IV)-quinine-Cys-(Trp+Tyr)体系发光反应的发光体为奎宁;而Ce(IV)-Tween40-Trp体系发光反应的发光体可能为Tween40的中间氧化产物。用该方法实现了氨基酸注射液、啤酒、牛奶、豆浆和血清等样品中色氨酸和酪氨酸含量的测定,其中,牛奶和豆浆中色氨酸和酪氨酸测定结果与对照方法一致。该方法检测下限和检出限低,适于痕量色氨酸和酪氨酸的测定。
     综上所述,本文建立了顺序注射与化学发光联用技术选择性测定几种氨基酸的分析方法,方法具有操作简单、试剂和样品的消耗量少、灵敏度高、分析速度快的特点。实现了食品和药品中相应氨基酸的含量测定,提高了顺序注射与化学发光联用技术检测氨基酸的应用能力。研究了相关反应可能的反应机理,为化学发光的机理研究提供了参考。
Life science is one of the most important research domains in this century, and amino acid analysis is one of the important analytical techniques in the investigation of life science. Therefore, it is necessary to develop accurate, sensitive, simple,and rapid methods for the analysis of amino acids.
     Chemiluminescence (CL) method is an attractive and powerful detection technique due to its analytical advantages including low detection limit, very high sensitivity, wide linear dynamic range, and fast response, and it has been used in life science, clinical medicine, and environmental science.
     Flow injection analysis (FIA) is well-established technique for rapid automated solution treatment and detection. Sequential injection analysis (SIA), as a branch of sampling means of FIA or second generation FIA, the principles upon which SI is based are similar to those of FIA, namely controlled partial dispersion and reproducible sample handing. In contrast to FIA, the flow programming in SIA allows the employment of complex chemistry without reconfiguration of the manifold, and the instrumentation is simpler and intrinsically robust, easy to automate and detect on-line with very low reagent consumption.
     When chemiluminescence detection was combined with SIA analysis, its features were reserved, and the shortcomings, such as inconvenience of reaction process control and poor repeatability caused by fast reaction, were overcame. Combination CL with SIA remarkably improved the repeatability, accuracy and analytical frequency of the determination results.
     In this paper, some new CL reaction systems were proposed and studied. Three new SIA-CL methods were developed for selective determination of amino acids. In addition, the possible reaction mechanisms of the CL reaction systems were discussed. The dissertation is divided into four chapters:
     Chapter 1 briefly reviewed main methods for the determination of amino acids in recent years, and these methods include chromatography, chemometrics procedure, and photometric measurement method without chromatograph.
     In Chapter 2 of the dissertation, a simulation experiment was proceeded to explain the reason in which various zone stacking sequences influence the CL intensity in sequential injection sampling. As a result, physical dispersion caused by sampling sequences for rapid CL reaction is the major factor that influenced luminescent intensity. In addition, a SIA-CL method for the determination of histidine was developed, based on the reaction that histidine increased the catalytic activity of manganese (Ⅱ) salts in luminol-hydrogen peroxide reaction system in the presence of dioximes in sodium borate medium. At optimized conditions, histidine can be determined in the linear range from 5.0×10-7 to 1.0×10-3 mol/L with a detection limit (3σ) of 2×10-7 mol/L for 60μL sample. The relative standard deviation (R.S.D.) for eleven repeated measurements of 4×10-5 mol/L histidine was 0.97%, and the sampling frequency was 80 h-1, and the recoveries were 90.0~103.3%. The proposed method has been successfully applied to the determination of histidine in some beer.
     In Chapter 3 of the dissertation, it was observed that the chemiluminescence intensity from the reaction of acidic Ce(Ⅳ) and Tween20 was greatly enhanced by tryptophan. Based on Ce(Ⅳ)-Tween20-Trp reaction, a sequential injection procedure with chemiluminescence detection was proposed for the determination of tryptophan. The influences of several physical and chemical parameters were assessed.
     Under the selected working conditions, a linear dynamic range of 2.0×10-7~8.0×10-6 mol/L, a 3σdetection limit of 1.5×10-7 mol/L and a coefficient of variation of 0.7% at 3.0×10-6 mol/L level were obtained. The procedure was applied to the determination of tryptophan in beer and amino acid injections, and the recoveries were 91.4~106.9%. At the same time, the possible reaction mechanism was studied, the emitter in the CL reaction is probably a transient intermediate product of Tween20 oxidized by Ce(IV), and tryptophan is an enhancer for the reaction of Ce(IV) and Tween20.
     In Chapter 4 of the dissertation, two new chemiluminescence reaction systems, namely Ce(Ⅳ)-quinine-Cys-(Trp+Tyr) and Ce(Ⅳ)-Tween40-Trp were studied. The possible reaction mechanisms were also investigated. Furthermore, a SIA manifold with double-pump and double-multiposition valve was developed for simultaneous determination of tryptophan and tyrosine. The total amounts of tyrosine and tryptophan could be obtained by their quantificational inhibition to the CL reaction of Ce(Ⅳ)-quinine-Cys, and the accurate content of tryptophan was obtained from its quantificational enhancement to the CL reaction of Ce(Ⅳ)-Tween40, and the content of tyrosine was obtained by subtracted content of tryptophan from the total content of tyrosine and tryptophan.
     To the CL reaction of Ce(Ⅳ)-quinine-Cys-(Trp+Tyr) and Ce(Ⅳ)-Tween40-Trp, the dynamic range of 3.0×10-7~1.2×10-5 mol/L and 2.0×10-7~1.4×10-5 mol/L, the detection limits (3σ) of 2.9×10-7 mol/L and 9.0×10-8 mol/L, and the relative standard deviation (R.S.D.) of 1.1% and 1.3% were obtained, respectively. The method was applied to determination of tyrosine and tryptophan in amino acid injection, beer, serum, soybean milk and milk.
     A microwave-assistance treatment procedure was used to hydrolyze soybean milk and milk samples with 5.0 mol/L sodium hydroxide for 50 s, and the procedure dramatically improved the treatment efficiency.
     In conclusion, this dissertation demonstrated selective determinations of amino acids by sequential injection with chemiluminescence detection. These proposed methods are sensitive, simple, and less reagents consumption and waste output, and the methods were applied to determination of three amino acid contents in food beverage, blood serum, and amino acid injection.
引文
1.邹忠梅,喻长远.人体生命之源-氨基酸[M],北京:中国医药科技出版社,2000.2,16-25.
    2.徐国财,张晓梅.有机化学[M],北京:科学出版社,2008.6,409-410.
    3. Moore S, Spackman D H, Stein W H. Chromatography of arnino acids on sulfonated polystyrene resins, an improved system [J], Anal. Chem.,1958,30(7):1185-1190.
    4. Spackman D H, Stein W H, Moore S. Automatic recording apparatus for use in chromatography of amino acids [J], Anal. Chem.,1958,30(7):1190-1206.
    5.中华人民共和国国家标准食物中氨基酸的测定方法(GB/T 14965—1994).
    6. Tateda N, Matsuhisa K, Hasebe K, Kitajima N, Miura T. High-performance liquid chromatographic method for rapid and highly sensitive determination of histidine using postcolumn fluorescence detection with o-phthaldialdehyde, J. Chromatogr. B,1998,718(1):235-241.
    7.于泓,牟世芬.氨基酸分析方法的研究进展[J],分析化学评述与进展,2005,3(33):398-404.
    8. Tsikas D, Sandmarm J, Holzberg D, Pantazis P, Raida M, Frolich J C. Determination of s-nitrosoglutathione in human and rat plasma by high-performance liquid chromatography with fluorescence and ultraviolet absorbance detection after precolumn derivatization with o-phthalaldehyde [J], Anal. Biochem.,1999,273(1):32-40.
    9. Antoine F R, Wei C I, Littell R C, Marshall M R. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization [J], J. Agric. Food Chem.,1999,47 (12): 5100-5107.
    10. Beketov V I, Voronina R D, Filatova D G, Zorov N B. Spectrophotometric and fluorimetric determination of amino acids by their reaction with o-phthalicaldehyde in the presence of sulfite and cyanide ions [J], J. Anal. Chem.,2000,55(12):1148-1151.
    11. Antoine F R, Wei C I, Littell R C, Quinn B P, Hogle A D, Marshall M R. Free amino acids in dark-and white-muscle fish as determined by O-phthaldialdehyde precolumn derivatization [J], J. Food Sci., 2001,66(1):72-77.
    12. Bruckner H, Westhauser T. Chromatographic determination of L-and D-amino acids in plants [J], Amino Acids,2003,24 (1-2):43-55.
    13. Zhang W Z, Kaye D M. Simultaneous determination of arginine and seven metabolites in plasma by reversed-phase liquid chromatography with a time-controlled ortho-phthaldialdehyde precolumn derivatization [J], Anal. Biochem.,2004,326(1):87-92.
    14. Chernobrovkin M G, Ananeva I A, Shapovalova E N, Shpigun O A. Determination of amino acid enantiomers in pharmaceuticals by reversed-phase high-performance liquid chromatography [J], J. Anal. Chem.,2004,59(1):55-63.
    15. Lozanov V, Petrov S, Mitev V. Simultaneous analysis of amino acid and biogenic polyamines by high-performance liquid chromatography after pre-column derivatization with N-(9-fluorenylmethoxycarbonyloxy) succinimide [J], J. Chromatogr. A,2004,1025 (2):201-208.
    16. Paramas A M G, Barez J A G, Marcos C C, Garcia-Vilanova R J, Sanchez J S. HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen) [J], Food Chem., 2006,95(1):148-156.
    17. Pereira V, Pontes M, Camara J S, Marques J C. Simultaneous analysis of free amino acids and biogenic amines in honey and wine samples using in loop orthophthalaldeyde derivatization procedure [J], J. Chromatogr. A,2008,1189(1-2):435-443.
    18. Sanz M L, Castillo M D D, Corzo N, Olano A.2-Furoylmethyl amino acids and hydroxymethylfurfural as indicators of honey quality [J], J. Agric. Food Chem.,2003,51(15):4278-4283.
    19.陈文,王光辉,李丹,黄龙,陈祖刚.反相高效液相色谱法测定烟叶中的游离氨基酸[J],氨基酸和生物资源,2002,24(1):54-56.
    20.陈华萍,陈黎,魏育明,郑有良.柱前衍生反相高效液相色谱法测定小麦中氨基酸含量[J],分析化学,2005,33(12):1689-1692.
    21.宋志峰,王丽,纪锋,黄璜,于志晶.柱前在线衍生—反相高效液相色谱内标法快速测定饲料中氨基酸[J],分析化学,2007,35(1):25-30.
    22.瞿其曙,汤晓庆,胡效亚,李寿椿.柱前衍生法在氨基酸分析测定中的应用[J],化学进展,2006,18(6):789-793.
    23. Koros A, Varga Z, Molnar-Perl I. Simultaneous analysis of amino acids and amines as their o-phthalaldehyde-ethanethiol-9-fluorenylmethyl choloroformate derivatives in cheese by high-performance liquid chromatography [J], J. Chromatogr. A,2008,1203(1):146-152.
    24. Hua D, Guan S, Zhao Y X, Han H W, Zhao R, Liu G Q. Derivatizaticn and fluorescence detection of amino acids and peptides with 9-fluorenylmethyl chloroformate on the surface of a solid adsorbent [J], Anal. Chem.,2001,73(9):2054-2057.
    25. Lopez-Cervantes J, Sanchez-Machado D I, Rosas-Rodriguez J A. Analysis of free amino acids in fermented shrimp waste by high-performance liquid chromatography [J], J. Chromatogr. A,2006, 1105(1-2):106-110.
    26. Komarova N V, Kamentsev J S, Solomonova A P, Anufrieva R M. Determination of amino acids in fodders and raw materials using capillary zone electrophoresis [J], J. Chromatogr. B,2004,800(1-2): 135-143.
    27. Campanella L, Crescentini G, Avino P. Simultaneous determination of cysteine, cystine and 18 other amino acids in various matrices by high-performance liquid chromatography [J], J. Chromatogr. A, 1999,883(2):137-142.
    28. Chung I M, Kim J J, Lim J D, Yu C Y, Kim S H, Hahn S J. Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress [J], Environ. Exp. Bot.,2006,56 (1):44-53.
    29. Vilasoa-Martinez M, Lopez-Hernandez J, Lage-Yusty M A. Protein and amino acid contents in the crab [J], Food Chem.,2007,103 (4):1330-1336.
    30. Gheshlaghi R, Scharer J M, Moo-Young M, Douglas P L. Application of statistical design for the optimization of amino acid separation by reverse-phase HPLC [J], Anal. Biochem.,2008,383(1): 93-102.
    31.闰淑莲,赵光,刘永利.反相高效液相色谱-丹酰氯柱前衍生法的氨基酸分析测定[J],首都医科大学学报,2003,24(3):338-339.
    32. Naval M V, Gomez-Serranillos M P, Carretero M E, De Arce C. Value of high-performance liquid chromatographic analysis of amino acids in the determination of panax ginseng radix extract effect in cultured neurons [J], J. Chromatogr. A,2006,1121(2):242-247.
    33.沈佐君,李小鹏,孙曾培,杨树德.一种新的氨基酸测定衍生化方法[J],基础医学与临床,1998,18(4):75-80.
    34. Ru Q H, Yao J, Luo G A, Zhang Y X, Chao Y. Pressurized gradient capillary electrochromatographic separation of eighteen amino acid derivatives [J], J. Chromatogr. A,2000,894(1-2):337-343.
    35. Chen L, Chen Q, Zhang Z Z, Wan X C. A novel colorimetric determination of free amino acids content in tea infusions with 2,4-dinitrofluorobenzene [J], J. Food Compos. Anal.,2009,22(1): 137-141.
    36.万绍晖,杨 浩,耿秀梅.柱前衍生化反相高效液相色谱法测定板蓝根中的氨基酸[J],色谱,2005,23(4):408-410.
    37. Cohen S A, Michard D P. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography [J], Anal. Biochem.,1993,211(2):279-287
    38. Waters millipore corporation, Waters AccQ. Tag chemistry package, instruction manual, millipore waters chromatography, April,1993.
    39.陈永波,汪大顺,覃建华,饶斌,覃兰.Accq.Tag法测定氨基酸口服液的氨基酸含量[J],氨基酸和生物资源,2001,23(2):59-63.
    40.侯松嵋,孙敬,何红波,张旭东,王颜红.AQC柱前衍生反相高效液相色谱法测定土壤中氨基酸[J],分析化学,2006,34(10):1395-1400.
    41. Hernandez-Orte P, Ibarz M J, Cacho J, Ferreira V. Amino acid determination in grape juices and wines by HPLC using a modification of the 6-aminoquinolyl-n-hydroxysuccinimidyl carbamate (AQC) method [J], Chromatographia,2003,58(1):29-35.
    42. Bosch L, Alegria A, Farre R. Application of the 6-aminoquinolyl-N-hydro-xysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods [J], J. Chromatogr. B, 2006,831(1-2):176-183.
    43. Boogers I, Plugge W, Stokkennans Y Q, Duchateau A L L. Ultra-performance liquid chromatographic analysis of amino acids in protein hydrolysates using an automated pre-column derivatisation method [J], J. Chromatogr. A,2008,1189 (1-2):406-409.
    44.张琳,尤进茂,单亦初,张维冰,张玉奎.氮基酸的咔唑-9-乙基氯甲酸酯柱前衍生高效液相色谱分析[J],分析测试学报,2002,21(5):16-19.
    45. You J M, Shan Y C, Zhen L A, et al. Determination of peptides and amino acids from wool and beer with sensitive fluorescent reagent 2-(9-carbazole)-ethyl chloroformate by reverse phase high-performance liquid chromotography and liquid chromotography mass spectrometry [J], Anal. Biochem.,2003,313(1):17-27.
    46.刘洪基,房其年,谢光华.DABS-C1柱前衍生HPLC法测定人脑脊液中的游离氨基酸[J],苏州医学院学报,1993,3(5):33-35.
    47.王玳珠,张露蓉,江国荣.DABS-CI柱前衍生RP-HPLC法在氨基酸分析中的应用[J],苏州大学报,2003,23(6):664-667.
    48. Polta J A, Johnson D C. Direct electrochemical detection of amino-acids at a platinum electrode in an alkaline chromatographic effluent [J], J. Liq. Chromatogr.,1983,6(10):1727-1743.
    49. Welch L E, LaCourse W R, Mead D A, Johnson D C, Hu T. Comparison of pulsed coulometric detection and potential-sweep-pulsed coulometric detection for underivatized amino acids in liquid chromatography [J], Anal. Chem.,1989,61(6):555-559.
    50. Clarke A P, Jandik P, Rocklin R D, Liu Y, Avdalovic N. An integrated amperometry waveform for the direct, sensitive detection of amino acids and amino sugars following an ion-exchange chromatography [J], Anal. Chem.,1999,71(14):2774-2781.
    51. Jandik P, Clarke A P, Avdalovic N, Andersen D C, Cacia J. Analyzing mixtures of amino-acids and carbohydrates using bi-modal integrated amperometric detection [J], J. Chromatogr. B,1999,732(1): 193-201.
    52. Yu H, Ding Y S, Mou S F, Jandik P, Cheng J. Simultaneous determination of amino acids and carbohydrates by anion-exchange chromatography with integrated pulsed amperometric detection [J], J. Chromatogr. A,2002,966(1-2):89-97.
    53.于泓,丁永胜,牟世芬.阴离子交换色谱-积分脉冲安培检测法分离测定氨基酸注射液中的氨基酸和葡萄糖[J],色谱,2002,20(5):398-402.
    54. Yu H, Ding Y S, Mou S F. Direct and simultaneous determination of amino acids and sugars in rice wine by high-performance anion-exchange chromatography with integrated pulsed amperometric detection [J], Chromatographia,2003,57(11/12):721-728.
    55. Ding Y S, Yu H, Mou S F. Direct determination of free amino acids and sugars in green tea by anion-exchange chromatography with integrated pulsed amperometric detection [J], J. Chromatogr. A, 2002,982(2):237-244.
    56. Jandik P, Cheng J, Jensen D, Manz S, Avdalovic N. Simplified in-line sample preparation for amino acid carbohydrate containing samples [J], J. Chromatogr. B,2001,758(1):189-196.
    57. Ding Y S, Yu H, Mou S F. Off-line elimination of carbohydrates for amino acid analysis of samples with high carbohydrate content by ion-exchange chromatography [J], J. Chromatogr. A,2003, 997(1-2):155-160.
    58. Hanko Valoran P, Rohrer J S. Determination of amino acids in cell culture and fermentation broth media using anion-exchange chromatography with integrated pulsed amperometric detection [J], Anal. Biochem.,2004,324(1):29-38.
    59. Jandik P, Cheng J, Jensen D, Manz S, Avdalovic N. New technique for increasing retention of arginine on an anion-exchange column [J], Anal. Biochem.,2000,287(1):38-44.
    60. Chan K C, Janini G M, Muschik G M, Issaq H J. Laser-induced fluorescence detection of 9-fluorenylmethyl chloroformate derivatized amino acids in capillary electrophoresis [J], J. Chromatogr. A,1993,653(1):93-97.
    61. Timperman A T, Oldenburg K E, Sweedler J V. Native fluorescence detection and spectral differentiation of peptides containing tryptophan and tyrosine in capillary electrophoresis [J], Anal. Chem.,1995,67(19):3421-3426.
    62. Hempel G, Blaschke G. Direct determination of zolpidem and its main metabolites in urine using capillary electrophoresis with laser-induced fluorescence detection [J], J. Chromatogr. B,1996,675(1): 131-137.
    63. Chan K C, Muschik G M, Issaq H J. Solid-state UV laser-induced fluorescence detection in capillary electrophoresis [J], Electrophoresis,2000,21(10):2062-2066.
    64. Bayle C, Siri N, Poinsot V, Treilhou M, Causse E, Couderc F. Analysis of tryptophan and tyrosine in cerebrospinal fluid by capillary electrophoresis and "ball lens" UV-pulsed laser-induced fluorescence detection [J], J. Chromatogr. A,2003,1013(1-2):123-130.
    65.杨莉丽,袁倬斌.高效毛细管电泳法在芳香族手性氨基酸与年龄的关系研究中的应用[J],分析化学,1999,27(9):1065-1068.
    66. Zahou E, Jornvall H, Bergman T. Amino acid analysis by capillary electrophoresis after phenylthiocarbamylation [J], Anal. Biochem.,2000,281(1):115-122.
    67. Shen Z J, Sun Z M, Wu L, Wu K, Sun S Q, Huang Z B. Rapid method for the determination of amino acids in serum by capillary electrophoresis [J], J. Chromatogr. A,2002,979(1-2):227-232.
    68. Martin-Girardeau A, Renou-Gonnord M F. Optimization of a capillary electrophoresis-electrospray mass spectrometry method for the quantitation of the twenty natural amino-acids in children's blood [J], J. Chromatogr. B,2000,742(1):163-171.
    69. Zunic G, Jelic-Ivanovic Z, Colic M, Spasic S. Optimization of a free separation of 30 free amino acids and peptides by capillary zone electrophoresis with indirect absorbance detection:a potential for quantification in physiological fluids [J], J. Chromatogr. B,2002,772(1):19-33.
    70. Jaworska M, Szulinska Z, Wilk M. Development of a capillary electrophoretic method for the analysis of amino acids containing tablets [J], J. Chromatogr. A,2003,993(1-2):165-172.
    71. Zhang L, Liu Y H, Chen G N. Simultaneous determination of allantoin, choline and 1-arginine in Rhizoma Dioscoreae by capillary electrophoresis [J], J. Chromatogr. A,2004,1043(2):317-321.
    72. Zhang L Y, Sun M X. Determination of histamine and histidine by capillary zone electrophoresis with pre-column naphthalene-2,3-dicarboxaldehyde derivatization and fluorescence detection [J], J. Chromatogr. A,2004,1040(1):133-140.
    73.陈永波,饶斌,贾兰.高效液相色谱法快速直接测定酪氨酸、苯丙氨酸和色氨酸[J],氨基酸和生物资源,2000,22(1):55-58.
    74.文江平,唐爱国.高效液相色谱法快速测定血清中的芳香族氨基酸[J],色谱,2003,21(2):154-157.
    75.洪敏,唐爱国.高效液相色谱—荧光法测定血清苯丙氨酸和酪氨酸[J],中南大学学报(医学版),2004,29(1):67-71.
    76. Allen K R, Degg T J, Rushworth P A, Smith M, Henderson M J. Measurement of phenylalanine and tyrosine in plasma by high-performance liquid chromatography using the inherent fluorescence of aromatic amino acids [J], Ann Clin Biochem,1999,36 (2):207-211.
    77.曲冬梅,弓爱君,高鹤永,邱丽娜.反相高效液相色谱法直接检测芳香族氨基酸[J],氨基酸和生物资源,2004,26(1):71-73.
    78. Yokoyama Y, Yamasaki K, Sato H. Simultaneous determination of urinary creatinine and UV-absorbing amino acids using a novel low-capacity cation-exchange chromatography for the screening of inborn errors of metabolism [J], J. Chromatogr. B,2005,816 (1-2):333-338.
    79. Husek P, Macek K. Gas chromatography of amino acids [J], J. Chromatogr.,1975,113:139-230.
    80. Kuhara T, Shinka T, Inoue Y. Pilot study of gas chromatographic-mass spectrometric screening of newborn urine for inborn errors of metabolism after treatment with urease [J], J. Chromatogr. B,1999, 731(1):141-147.
    81. Deng C H, Deng Y G, Wang B, Yang X H. Gas chromatography-mass spectrometry method for determination of phenylalanine and tyrosine in neonatal blood spots [J], J. Chromatogr. B,2002, 780(2):407-413.
    82. Deng C, Shang C, Hu Y, Zhang X, Rapid diagnosis of phenylketonuria and other aminoacidemias by quantitative analysis of amino acids in neonatal blood spots by gas chromatography-mass spectrometry [J], J. Chromatogr. B,2002,775 (1):115-120.
    83. Bruckner H, Schieber A. Determination of amino-acid enantiomers in human urine and blood serum by gas chromatography-mass spectrometry [J], Biomed. Chromatogr.,2001,15(3):166-172.
    84. Kaspar H, Dettmer K, Gronwald W, Oefner P J. Automated GC-MS analysis of free amino acids in biological fluids [J], J. Chromatogr. B,2008,870(2):222-232.
    85.严拯宇,姜新民,张圣华.人工神经网络用于紫外光谱同时测定Zn、Cu、Co含量的研究[J],光谱学与光谱分析,2000,20(3):409-411.
    86.吴根华,何池洋,陈荣.荧光光谱—人工神经网络法同时测定注射液中色氨酸和酪氨酸[J],光谱学与光谱分析,2003,23(2):318-321.
    87.王志有,于洪梅,李井会,臧娜,王海洋.BP人工神经网络紫外分光光度法同时测定三种氨基酸[J],生物数学学报,2005,20(2):240-244.
    88. Hasani M, Yaghoubi L, Abdollahi H. A kinetic spectrophotometric method for simultaneous determinationof glycine and lysine by artificial neural networks [J], Anal. Biochem.,2007,365 (1): 74-81.
    89.丁亚平.金属卟啉螯合体系偏最小二乘荧光光度法同时测定锌镉铅[J],光谱学与光谱分析,1998,18(4):472-476.
    90.丁亚平,苏庆德,吴庆生.导数荧光-偏最小二乘法同时测定注射液中色氨酸、酪氨酸和苯丙氨酸[J],光谱学与光谱分析,2001,21(12):212-214.
    91.李东华,倪永年.荧光光度法同时测定氨基酸口服液和注射液中的三种芳香族氨基酸荧光光度法同时测定氨基酸口服液和注射液中的三种芳香族氨基酸[J],南昌大学学报,2002,26(1):71-74.
    92.吴军,白琪林,苏胜宝,陈绍江,孟庆翔,严衍禄.近红外反射光谱法分析玉米秸秆纤维素含量的研究[J],分析化学,2005,33(10):1421-1423.
    93. Meher L C, Vidya S D, Naik S N. Technical aspects of biodiesel production by transesterification-a review [J], Renew. Sustainable Energy Rev.,2006,10(3):248-268.
    94.张维军,江逆.近红外技术及其在预测饲料原料总氨基酸含量上的应用[J],中国饲料,2000,(7):28-29.
    95.刘波平,秦华俊,罗香,曹树稳,王俊德.偏最小二乘—反向传播—近红外光谱法同时测定饲料中4种氨基酸[J],分析化学,2007,35(4):525-528.
    96.李金屏.复合氨基酸注射液中L-色氨酸含量测定方法的研究[J],氨基酸和生物资源,2000,22(4):54-55.
    97.张淑芳,秦梅.一阶导数光谱法测定指示剂类多元酸离解常数[J],分析化学,1998,(8):931-934.
    98.刘本才,赵殊,宋治.Meso-四(4-氨基苯基)卟啉二阶导数光度法测定痕量锌[J].分析化学,1998(8):1040-1040.
    99.程霜.导数光谱法直接测定大豆水溶性蛋白中色氨酸和酪氮酸[J],中国粮油学报,2002,17(5):61-63.
    100.孙衍华,杨景芝,周杰,付蕾.阻抑速差催化光度法测定痕量色氨酸和酪氨酸[J],分析化学研究报告,2004,32(8):1067-1069.
    101.何金兰,杨克让,李小戈。仪器分析原理[M],北京:科学出版社,2002,8,67-71.
    102. Liang Y D, Song J F. Flow-injection chemiluminescence determination of fluoroquinolones by enhancement of weak chemiluminescence from peroxynitrous acid [J], Anal. Chim. Acta,2004,510(1): 21-28.
    103. Liang Y D, Song J F. Flow-injection chemiluminescence determination of tryptophan through its peroxidation and epoxidation by peroxynitrous acid [J], J. Pharm. Biomed. Anal.2005,38(1): 100-106.
    104. Gerardi R D, Barnett N W, Lewis S W. Analytical application of tris(bipyridyl) ruthenium(Ⅲ) as a chemiluminescence reagent [J], Anal. Chim. Acta,1999,378(1):1-41.
    105. Jackson W A, Bobbitt D R. Chemiluminescence detection of amino acids using in situ generated Ru(bpy)32+[J]. Anal. Chim. Acta,1994,285(3):309-320.
    106. Brune S N, Bobbitt D R. Effect of pH on the reaction of tris(2,2-bipyridyl) ruthenium(Ⅲ) with amino-acids:implications for their detection [J], Talanta,1991,38 (4):419-424.
    107.史伯安,郗娟,何治柯.流动注射-化学发光法测定色氨酸[J],湖北民族学院学报(自然科学版),2004,22(4):1-4.
    108. Xi J, Ai X P, He Z K. Chemiluminescence determination of barbituric acid using Ru(phen)32+-Ce(IV) system [J], Talanta,2003,59(5):1045-1049.
    109.史伯安,郗娟,何治柯.流动注射—化学发光法测定半胱氨酸[J],分析测试学报,2005,24(6):102-105.
    110. Yang W P, Zhang Z J, Deng W. A capillary electrophoresis detection scheme for underivatized amino acids based on luminal-BrO" chemiluminescence system [J], Talanta,2003,59(5):951-958.
    111. Shamsipur M, Chaichi M J. A study of quenching effect of sulfur-containing amino acids L-cysteine and L-methionine on peroxyoxalate chemiluminescence of 7-amino-4-trifluoromethylcumarin [J], Spectrochim. Acta, Part A,2005,61 (6):1227-1231.
    112. Lau C W, Qin X J, Liang J Y, Lu J Z. Determination of cysteine in a pharmaceutical formulation by flowinjection analysis with a chemiluminescence detector[J], Anal. Chim. Acta,2004,514(1):45-49.
    113. Nie L H, Ma H M, Sun M, Li X H, Su M H, Liang S C. Direct chemiluminescence determination of cysteine in human serum using quinine-Ce(IV) system [J], Talanta,2003,59 (5):959-964.
    114.何云华,王志银.流动注射化学发光法测定DL-酪氨酸[J],分析试验室,2002,21(3):70-72.
    115. Sanfeliu Alonso M C, Lahuerta Zamora L, Martinez Calatayud J. Determination of tyrosine through a FIA-direct chemiluminescence procedure [J], Talanta,2003,60(2-3):369-376.
    116.张小燕,范晓东,高新,张粉艳,张勤.酪氨酸的流动注射化学发光法测定[J],分析化学,2004,32(12):1693-1693.
    117.聂菲, 祝兴华,何云华,吕九如.锰(Ⅳ)-甲醛流动注射化学发光体系测定酪氨酸[J],陕西师范大学学报,2004,32(3):75-77.
    118.杨红兵,梁兰秋,鲁立良.流动注射电化学发光法测定色氨酸[J],石河子大学学报(自然科学版),’2005,23(6):673-675.
    119. Chen G N, Lin R E, Zhao Z F, Duan J P, Zhang L. Electrogenerated chemiluminescence for determination of indole and tryptophan [J], Anal. Chim. Acta,1997,341(2-3):251-256.
    120.储海虹,郭文英,狄俊伟,屠一锋.半胱氨酸对鲁米诺电化学发光的增敏作用[J],分析科学学报,2005,21(6):676-678.
    121. Zhang G F, Purnendu K D, Willianms S E, John N M. Determination of hydrogen peroxide by photoinduced fluorogenic reactions [J], Anal. Chim. Acta,1991,243:207-216.
    122.王冬媛,许金钩,郭祥群,赵一兵.对位取代酚类物质的光化学荧光测定研究[J],分析化学,1995,23(8):870-874.
    123.蔡维平,王细生,朱庆枝,王志红,许金钩.现场光化学荧光法测定酪氨酸[J],分析化学研究简报,2000,28:1535-1537.
    124.龚爱琴,朱霞石,郭荣,马晓芹.Triton X-100微乳液中铈与L-色氨酸荧光反应的研究与应用[J],光谱学与光谱分析,2008,28(4):900-903.
    125. Guilbault G G, HieSerman J. Fluorometric assay of amino acids [J], Anal. Biochem.,1968,26:1-11.
    126. Wibrand F. A microplate-based enzymatic assay for the simultaneous determination of phenylalanine and tyrosine in serum [J], Clin. Chim. Acta,2004,347(1):89-96.
    127. Schulze A, Mayatepek E, Hoffmann G F. Evaluation of 6-year application of the enzymatic colorimelric phenylalanine assay in the setting of neonatal screening for phenylketonuria [J], Clin. Chim. Acta,2002,317(1-2):27-37.
    128. Huang T, Warsinke A, Kuwana T, Scheller F W. Determination of L-phenylalanine based on an NADH-detecting biosensor [J], Anal. Chem.,1998,70(5):991-997.
    129. Fiorucci A R, Cavalheiro E T G. The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations [J], J. Pharm. Biomed. Anal.,2002,28(5): 909-915.
    130. Jin G P, Lin X Q. The electrochemical behavior and amperometric detemination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine [J], Electrochem. Commun., 2004,6(5):454-460.
    131. Agui L, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron J M. Continuous monitoring of amino acids and related compounds with poly(3-methylthiophene)-coated cylindrical carbon fiber microelectrodes [J], Anal. Chim. Acta,1999,401(1-2):145-154.
    132. Saurina J, Hernandez-Cassou S, Fabregas E, Alegret S. Cyclic voltammetric simultaneous determination of oxidizable amino acids using multivariate calibration methods [J], Anal. Chim. Acta, 2000,405(1-2):153-160.
    133. Aastroem O. Flow injection analysis for the determination of bismuth by atomic absorption spectrometry with hydride generation [J], Anal. Chem.,1982,54(2):190-193.
    134. Ruzicka J, H Hansen E. Flow injection analyses:Part Ⅰ. A new concept of fast continuous flow analysis [J], Anal. Chim. Acta.,197578:145-157.
    135. Matveeva E, Kalinichenko I E, Pilipenko A. Chemiluminescence determination of histidine using catalytically active complexes of manganese (Ⅲ) with Schiff bases [J], Zh. Anal. Khim.,1983,38(4): 710-714.
    136. Costin J W., Francis P S., Lewis S W. Selective determination of amino acids using flow injection analysis coupled with chemiluminescence detection [J], Anal. Chim. Acta,2003,480 (1):67-77.
    137.郎惠云,张秀军,李亚荣,张维平.反相流动注射—化学发光法测定氨基酸[J],分析试验室,2003,22(5):44-46.
    138. Alwarthan A A. Chemiluminescence determination of tryptophan in a flow injection system, Anal. Chim. Acta,1995,317 (1-3):233-237.
    139. Hanaoka S, Lin J M, Yamada M. Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper(Ⅱ)-amino acid complexes and its application to the determination of tryptophan and phenylalanine, Anal. Chim. Acta,2000,409 (1-2):65-73.
    140.方肇伦等.流动注射分析法[M],北京:科学出版社,1999,3-3.
    141.周娜,赵燕,谢振伟,但德忠.顺序注射分析及其在环境检测中的应用进展[J],现代科学仪器,2005,(6):21-26.
    142. Ruzicka J, Marshall G D. Sequential injection:a new concept for chemical sensors, process analysis and laboratory assays, Anal. Chim. Acta,1990,237:329-343.
    143. Tucker D J, Toivola B, Pollema C H, Ruzicka J, Christian G D. Fountain cell:a new tool for chemiluminescence analysis by flow-injection [J], Analyst,1994,119(5):975-979.
    144. Liu X Z, Hansen E H. Sequential injection determination of D-glucose by chemiluminescence using an open tubular immobilised enzyme reactor [J], Anal.Chim.Acta,1996,326(1-3):1-12.
    145. Wang Y, Fan S H, Wang S L. Chemiluminescence determination of nitrogen oxide in air with a sequential injection method [J], Anal. Chim. Acta,2005,541(1-2):129-134.
    146.高春英,范世华.顺序注射化学发光联用技术测定空气中的SO2[J],分析试验室,2005,24(7):64-67.
    147. Guzman M, Pollema C, Ruzicka J, Christian G D. Sequential injection technique for automation of complex analytical procedures:fluorometric assay of factor thirteen [J], Talanta,1993,40(1):81-87.
    148. Pollema C H, Ruzicka J. Flow Injection Renewable Surface Immunoassay:A New Approach to Immunoanalysis with Fluorescence Detection [J], Anal.Chem.,1994,66(11):1825-1831.
    149.周桦,范世华,王乃芝.顺序注射荧光分析方法测定环境水中的镁[J],分析化学,2006,34(7):1048-1048.
    150.王伟,范世华,高雁.顺序注射光度滴定法测定食醋和饮料的总酸度[J],分析实验室,2005,24(6):39-42.
    151.王夕云,刘晶,范世华.顺序注射—气体扩散分光光度法测定环境水中无机炭和有机炭[J],冶金分析,2008,28(9):25-29.
    152.陈旭伟,范世华,王世立.大气中SO2顺序注射光度测定方法的初步研究[J],光谱学与光谱分析,2005,25(5):761-764.
    153. Christian G D. Sequential-injection analysis for electrochemical measurements and process analysis [J], Analyst,1994,119(11):2309-2314.
    154. Ek P, Hulden S G, Ivaska A. Sequential injection analysis system for the determination of hydride-forming elements by direct current plasma atomic-emission spectrometry [J], J. Anal. At. Spectrom.,1995,10(2):121-128.
    155. Wang Y, Wang J H, Fang Z L. Octadecyl immobilized surface for precipitate collection with a renewable microcolumn in a lab-on-valve coupled to an electrothermal atomic absorption spectrometer for ultratrace cadmium determination [J], Anal. Chem.2005,77(16):5396-5401.
    156. Yu Y 1, Du Z, Chen M L, Wang J H. A miniature lab-on-valve atomic fluorescence spectrometer integrating a dielectric barrier discharge atomizer demonstrated for arsenic analysis [J], J. Anal. At. Spectrom.,2008,23(2):493-499.
    157.林宇燕.组氨酸测定方法的建立[J],职业与健康,2008,24(8):734-736.
    158. Hermann K, Abeck D. Determination of histidine and urocanic acid isomers in the human skin by high-performance capillary electrophoresis [J], J. Chromatogr. B,2000,749(1):41-47.
    159. Zhang L Y, Sun M X. Determination of histamine and histidine by capillary zone electrophoresis with pre-column naphthalene-2,3-dicarboxaldehyde derivatization and fluorescence detection [J], J. Chromatogr. A,2004,1040(1):133-140.
    160. Takahashi M, Tezuka T. Quantitative analysis of histidine and cis and trans isomers of urocanic acid by high-performance liquid chromatography:a new assay method and its application [J], J. Chromatogr. B,1997,688(1):197-203.
    161. Tateda N, Matsuhisa K, Hasebe K, Kitajima N, Miura T. High-performance liquid chromatographic method for rapid and highly sensitive determination of histidine using postcolumn fluorescence detection with o-phthaldialdehyde [J], J. Chromatogr. B,1998,718(2):235-241.
    162. Tcherkas Y V, Kartsova L A, Krasnova I N. Analysis of amino acids in human serum by isocratic reversed-phase high-performance liquid chromatographyi with electrochemical detection [J], J. Chromatogr. A,2001,913(1-2):303-308.
    163.刘海坤,周端赐,周静森,吴海珊.用库仑滴定法测定组氨酸的研究[J],分析化学,1986,14(1):51-54.
    164.彭爱红,覃连娜.酪氨酸、脯氨酸和组氨酸的示波极谱连续测定[J],分析实验室,2001,20(4):25-27.
    165.化工百科全书编委会.化工百科全书[M],北京:化学工业出版社,1999,86-87.
    166. Ruzicka J, Hansen E H, Flow injection analysis [M].2nd cdn, John Wiley & sons, New York, 1988.133.
    167.陈平,刘耘畦.高效液相色谱法快速测定啤酒中氨基酸[J],池州师专学报,2003,17(3):54-55.
    168.付国亮.生命之重:肽知识手册[M],北京:中国协和医科大学出版社,2003,42-43.
    169. Verma K K, Jain A, Gasparic I. Spectrophotometric determination of tryptophan by reaction with nitrous acid [J],Talanta,1988,35(1):35-39.
    170. Simat T, Meyer K, Steinhart H. Synthesis and analysis of oxidation and carbonyl condensation compounds of tryptophan [J], J. Chromatogr. A,1994,661(1-2):93-99.
    171. Doyle E M, Steinhart C E, Cochrane B A. In Food Safety [M], New York:Marcel Dekker, Inc,1993.
    172.何云华,赵小瑾.流动注射化学发光法测L-色氮酸[J],汉中师范学院学报,2000,18(12):49-52.
    173. Chen G N, Xu X Q, Duan J P, He M M, Zhan F. Chemiluminescent characteristics of some indole-derivatives [J], Analyst,1995,120(6):1699-1704.
    174.杨敏丽,李丽清,封满良,吕九如.L—色氨酸—高锰酸钾—H+化学发光反应的研究[J],陕西师范大学学报,1997,25(1):61-63.
    175.周光明,沈祥,游水英,王莉,黄成.低压离子色谱—吐温-20增敏偶合化学发光检测Cr(Ⅳ)[J],环境化学,2006,25(4):511-513.
    176.李世凤,张莉,宇海银,崔华.流动注射化学发光法测定水杨酸[J],安徽师范大学学报,2002,25(4):360-362.
    177. Cui H, Li S F, Lin X Q., Chemiluminescence of Ce(Ⅳ) and surfactant Tween20 [J], Analyst,2001, 126(5):553-554.
    178.张帆,刘振鸣.应用吐温-40化学发光新体系测定痕量金[J],分析化学,1988,16(6):485-489.
    179. Zhang X R, Baeyens W R G, Van der Weken G, Calokerinos A C, Nakashima K. Chemiluminescence determination of captopril based on a Rhodamine B sensitized cerium(IV) method [J], Anal. Chim. Acta,1995,303(1):121-125.
    180. Zhang Z D, Baeyens W R G, Zhang X R, Van der Weken G. Chemiluminescence determination of penicillamine via flow injection applying a quinine-cerium (IV) system [J], Analyst,1996,121(11): 1569-1572.
    181.张忆华,徐文国,肖勇,郑衍生.蛋白质微波碱水解法的研究[J],吉林大学自然科学学报,1992,(3):117-118.
    182.赵建幸,刘玉群,王光明.微波-NaOH快速水解法测定食品中色氨酸含量的研究[J],营养学报,1992,14(2):197-202.
    183.饲料中色氨酸测定方法分光光度法,GB/T 15400—94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700