基于臭氧氧化化学发光新体系的海水化学需氧量(COD)现场测量仪研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水化学需氧量(COD)是表征海水中有机污染物的综合指标,是海洋水质常规监测最重要的项目之一。海水COD数据是海洋污染评估和海洋水质污染灾害预报、预警的基础,加强其成因机制以及监测技术水平,对于全面了解和掌握多介质海洋生态环境的综合质量状况及其变化规律,以缓解海洋经济发展与海洋生态环境污染之间的矛盾尤为重要。
     目前海水COD的测量还是以实验室为主,采用国家标准规定的海水COD测量方法一碱性高锰酸钾法,该方法分析过程繁杂,持续时间长,时效性差。另外,我国海洋有机物污染具有相当大的复杂性,一方面污染物质进入海洋以后,在海水中进行复杂的物理、化学和生物过程,通过这三种过程的作用,污染物质在海水中被稀释、吸收、沉降或转化;另一方面污染物质受本身的性质和浓度影响外,还与海岸地形、水文条件、水中微生物的种类和数量、海水温度和含氧状况等环境条件密切相关,因此污染有机物的形态和浓度受时空影响大,这决定了目前海水COD测定方法不能有效的反映海洋现场真实状况,无法胜任现场的COD跟踪,更不适用于大范围内的COD实时调查,测量结果的时效性和代表性不能满足我国海洋生态环境监测与保护的需要。防灾减灾的关键是对灾害性海况进行准确的预报,卓有成效的预报需要及时准确的现场数据,因此高质量数据的获取必须依靠现场、实时测量仪,研制开发海水COD现场测量仪势在必行。
     研制现场、实时、快速海水COD测量仪一方面可以帮助广大海洋科学工作者研究海洋COD细微变化程度,了解海洋COD形成和去除机制及与其他海洋生态要素之间的函数关系,为海洋污染评价以及生态环境研究提供重要资料;另一方面能够有效降低海洋调查、海洋监测人员的劳动强度,提高我国对突发海洋污染事件的反应能力。
     针对目前海水COD测量方法现状,本论文研制了一种具有现场、实时、快速工作特性的海水COD现场测量仪,并将之应用到了现场COD的测量。主要结论如下:
     (1)研制成功了海水COD现场测量仪,该仪器基于臭氧氧化化学发光原理,应用化学发光动力学方法进行海水COD现场测量,仪器具有不产生二次污染,分析响应速度快,可在海洋环境中长期工作,适合于船载、海洋台站、海洋石油平台等场合使用。在布点方式上可采用定点或走航方式对沿海海洋经济带进行现场、实时、连续的测量。该测量仪的研制成功不仅避免了现场采样和实验室分析的繁杂过程,同时也满足了海洋水质污染要素监测的特别需要,能真正反映出海洋现场复杂多变的现状,增强了我国海洋生态环境中COD监测技术水平,同时也提高了现场监测能力和监测速度。
     (2)本仪器用VC++高级语言编写了上位机处理软件,包括信号采集以及信号优化处理、分析测量运算、实时监测曲线显示以及人机对话等各种处理程序。仪器能够实现自动控制、实时分析计算、实时监测曲线显示、数据自动存储以及数据图谱回放等各项功能。可以根据实际要求设定各种测量模式,上位机软件协调控制整个仪器各执行部分的动作顺序,在程序指令控制下自动完成测试工作。通过实验室性能测试以及现场实验,上位机软件运行稳定,各项功能执行良好。
     (3)通过对所研制的仪器进行系统测试和实验分析,首先确定了工作曲线,y=0.033x+0.0503R2=0.9955,数据表明,工作曲线线性度满足仪器测量要求。在此基础上进行了仪器测量准确度、精密度、检出限试验,通过试验分析,仪器准确度,在海水样品COD值小于1.0mg/L时,土0.1mg/L,在海水样品COD值大于等于1.0mg/L时,土10%;精密度为10%,检出限为0.08mg/L,低于GB17378.4中碱性高锰酸钾法的检出限(0.15mg/L)。海水COD是个条件参数,而仪器采用的原理与国标法有一定的差别,因此又进行了仪器回收率以及线性关系实验,通过添加标准品试验,回收率范围在90%-120%之间,通过现场水样等比例稀释测量,仪器具有很好的线性关系。因此仪器完全满足现场、实时快速分析的要求,数据与国标法具有非常好的线性关系。
     (4)通过在青岛胶州湾两次海试,仪器运行平稳,系统工作正常,仪器测量数据与国标法—碱性高锰酸钾法误差处于所研制仪器的正常误差范围内,仪器可以满足现场测量工作,可以为海洋水质监测、海洋生态环境研究、海洋污染预警、预报以及海洋污染评估等方面提供方便快捷的海水COD测量仪器。
Seawater Chemical Oxygen Demand (COD) indicates the contents of organicpollutants in seawater, thus is one of the most important items of routine monitoring.Seawater COD supplies the basis of marine pollution assessment and disasterforecasting. Studying the control factors and monitoring technologies can help fullyunderstand the environment quality and its variation of the multi-media integratedmarine, in order to decrease the contradiction between marine economy developmentand environment pollution.
     In the current COD measurement rely on the laboratory technologies, in whichalkaline potassium permanganate method is the national standard COD measurementof seawater. The standard method has a series of complex procedures and consumes along time. However, the organic pollutants in our marine is largely complex for theseries of physical, chemical and biological processes and the influence factors such asthe quality and concentration of organic pollutants, the coastal topography, thehydrological conditions, the microorganisms in water, water temperature and oxygenconditions etc. That is, the type and concentration of organic pollutants vary in thespace and time scales; therefore, the current COD measurement can not meet thein-situ studies at both the small and large scales. In addition, disaster forecasting is theaim of marine environmental monitoring and protection, which rely on the accuratein-situ technologies. Therefore, it is critical to study the in-situ equipment of CODmeasurement.
     The instrument of in-situ COD measurement can help the marine scientists tounderstand the COD variation and its control factors, which supply the data forevaluation of the marine environmental pollution and study of the marine ecology. On the other hand, the equipment can effectively reduce the labor intensity in marinesurvey and monitoring and improve the response capabilities on the marine pollutionemergency.
     We developed an in-situ measuring instrument of seawater COD based on therecent development on the COD measurement in seawater and apply it in two marinesurveys. The main conclusions are as follows:
     (1) the instrument based on the ozonation chemiluminescence theory has nosecondary pollution, analysis rapidly, work in ship, marine stations, offshore oilplatforms for a long-term. The instrument avoids the complex procedures in thesampling, stock, transportation, and laboratory analysis, also realize the in-situmonitoring of COD, enhancing the capabilities of marine environment monitoring.
     (2) The PC software is written by VC++, including a variety of processes, suchas signal acquisition and optimization processing, operations of analysis andmeasurement, real-time display of monitoring curves, man-machine dialogue, etc.With the software, the instrument can achieve a set of functions, such as automaticcontrol, real-time analysis and calculation, real-time display of monitoring curve, datastorage and playback, etc. With the software, a variety of measurement modes can beset according to the actual requirements. The testing in the laboratory and fieldshowed that the software is stable and its function performs well.
     (3) A working curve (y=0.033x+0.0503, R~2=0.9955) was first developedbased on the system testing and laboratory analysis by the instruments. Resultsshowed that the working curve meet the measurement requirements. Then theinstrument was tested its measurement accuracy, precision, and detection limit.Results showed that the instrument accuracy is±0.1mg/L when the COD in thesample is less than1.0mg/L, and the accuracy is±10%when the COD is greater than1.0mg/L; the precision is10%and the detection limit is0.08mg/L, lower than thedetection limit (0.15mg/L) of the alkaline potassium permanganate method(GB17378.4) the detection limit. COD is a water condition parameters, while theinstrument used in principle with the GB method is different, thus anotherexperiments were used to test the recovery rate and linear relationship between the instrument and the standard method. The recovery rate is in the range of90-120and a high linear relationship was in the instrument. Therefore, the instrument fullymeet the in situ monitoring in that the data measured by the instrument has a highlinear relationship with the national standard method.
     (4) The instrument works well during two sea trials in the Jiaozhou Bay. The datadifference between the instrument measurement and the national standard method isin the normal error range. Therefore, the instrument can meet the in-situ survey formarine water quality, marine environment research, marine pollution warning,assessment and forecasting of marine pollution.
引文
[1] A.M. Jimenez, M.J. Navas. Chemiluminescence Methods (Present and Future).2002,53. Fasc.1,64~75
    [2] Abuzaid, N.S., Al-Malack, M. H., El-Mubarak, A. H. Alternative method for determination of thechemical oxygen demand for colloidal polymeric wastewater. Bulletin of EnvironmentalContamination and Toxicology,1997,59,626~630
    [3] Alan J. Hills, Patrick R. Zimmerman.A Isoprene Measurement by Ozone-Induced Chemilumines-cence. Anal. chem.,1990,62,1055~1060
    [4] Appleton J M H, Tyson J F and Moouce R P. The rapid determination of chemical oxygen demandin wastewaters and effluents by flow injection analysis. Anal ChimActa,1986,179:269-278.Assess2011,175:321~329
    [5] B. E. Krisyuk, A. V. Maiorov, V. A. Ovchinnikov, et al. The influence of deformation on thereactivity of C=C bonds in reactions with ozone.Russian Journal of Physical Chemistry B, Focus onPhysics2010,4(5):734~741
    [6] B.H. Jin, Y. He, J.C. Shen,et al. Measurement of chemical oxygen demand (COD) in natural watersamples by flow injection ozonation chemiluminescence (FI-CL) technique.Journal of Environmental Monitoring,2004,6(8):673~678
    [7] Baoxin Li, Zhujun Zhang, Juan Wang, et al. Chemiluminescence system for automatic determination of chemical oxygen demand using flow injection analysis. Talanta,2003,61:651~658
    [8] BELT RáA P, INIESTA J, GRAS L, et al. Development of a Fully Automatic Assisted ChemicalOxygen Demand (COD) Measurement Device. Instrumentation Science&Technology,2003,31(3):249~259
    [9] Best D. E., De Casseres K. E. Determination of COD using a sealed-tube method.Water PollutionControl.1978,77(1):138~140
    [10] Bikas V, Steve W W, Shelley J C, et al. Reduchon of Chloride Ion Interferencl in Chenineal OxygenDemand (COD)Determinat ions Using Bismnth-based Adso rbents. Analytica Chimica Acta,1997,357(1-2):167~175
    [11] Burr J. Chemic and Bioluminescence. Marcel Dekker: New York,1985.215~244
    [12] C. Dodeigne, L. Thunus, R. Lejeune. Chemiluminescence as a diagnostic tool Talanta,2000,51(3):415~439
    [13] Canals A, Hernandez M D R. Ultrasound-assisted Method for the Determinat ion of Chemical Oxygen Demand. Analytical and Bioanalytical Chemistry,2002,374(6):1132~1140
    [14] ChenJunMing etal A modified sealed oven-UV method of COD determination Toxicol EnvironHealth199440(4)338~343
    [15] Chiba Megumi, ItoYoshimichi. Ultraviolet sPctrometry of the evaluation of waterPollution.norio.Sendai-shiEisei Shikenshoho19777:251~254
    [16] Christopher J. Borman, B. Patrick Sullivan, Carrick M. Eggleston,et al.The Use of Flow-InjectionAnalysis with Chemiluminescence Detection of Aqueous Ferrous Iron in Waters Containing HighConcentrations of Organic Compounds.Sensors,2009,9,4390~4406
    [17] Christopher M. Hindson, Paul S. Francis, Graeme R. Hanson, et al. Mechanism of PermanganateChemiluminescence. Anal. Chem.,2010,82:4174~4180
    [18] Chunde Wu, Xinhui Liu, Dongbin Wei, et al. PHOTOSONOCHEMICAL DEGRADATION OFPHENOL IN WATER. Elsevier Science,2001,35(16):3927~3933
    [19] Cuesta A, Todoli J L, Mora J, Canals A. Rapid determination of chemical oxygen demand by asemi-automated method based on microwave sample digestion, chromium(VI)organic solventextraction and flame atomic absorption spectrometry.Anal ChimActa,1998,372:399
    [20] Cuesta, J. L. Todoli, A Canals. Flow Injection Method for the Rapid Determination of ChemicalOxygen Demand Based on Microwave Digestion and Chromium Speciation in Flame AtomicAbsorption Spectrometry. Spectrochimica. Acta. Part B.1996,51:1791~1800
    [21] D.Ballinger, A. Lloyd and Ann Morrish Determination of chemical oxygen demand of wastewaterswithout the use of mercury salts Analyst,1982,107,1047~1053
    [22] DAN Dezhong, DOU Fulai, XIU Dianjie, et al. Chemical oxygen demand determination inenvironmental waters by mixed acid digestion and single sweep polarography. Analytica ChimicaActa,2000,420:39~44
    [23] Dattatray M. Dharmadhikari, Atul P. Vanerkar, Nivedita M. Barhate. Chemical Oxygen DemandUsing Closed Microwave Digestion System. Environ. Sci. Technol.,2005,39(16):6198~6201
    [24] Denis Sh. Sabirov, Ramil G. Bulgakov, Sergey L. Khursan. Reactivity of carbonyl oxides generatedby the ozonolysis of C60and C70fullerenes: a chemiluminescence study and quantum-topologicalanalysis.Mendeleev Commun.,2010,20:231~233
    [25] Donald G. Miller, Scott V. Brayton, Wayne T. Boyles. Chemical Oxygen Demand Analysis ofWastewater Using Trivalent Manganese Oxidant With Chloride Removal by Sodium BismuthatePretreatment. Water Environ. Res.2001,73(1):63~71
    [26] Elizabeth A. HIII, Julie K. Nelson, John W. Blrks. Ozone-Induced Chemiluminescence of OrganicAnalytes Deposited on Solid Substrates.Anal. Chem.,1982,54:541~546
    [27] Fujimori K, Nakajima H, Akutsu K, et al. Chemiluminescence of cypridina luciferin analogues. Part1. Effect of pH on rates of spontaneous autoxidation of CLA in aqueous buffer solutions. J ChemSoc Perkin Trans.1993,2405~2409
    [28] Fujimori K, Takenaka N, Bandow H, et al. Continuous monitoring method for organic pollutants inwater based on chemiluminescence reaction with potassium permanganate.Anal Commun.,1998,35:307
    [29] Goto H, Lin J-M, Yamada M. Characterization of reactive species on basic metal peroxides asreaction media for luminol and lucigenin chemiluminescence sensing. Bunseki Kagaku,1998,47(7):417~422
    [30] Gundermann KD, McCapra F. Chemiluminescence in organic chemistry. Springer-Verlag: Berlin,1987.77~108
    [31] Hong Yao, BinWu, Haibin Qua,et al. A high throughput chemiluminescence method fordetermination of chemical oxygen demand in waters. Analytica Chimica Acta,633(2009):76~80
    [32] Honglei Chen,Yuancai Chen, Huaiyu Zhan, et al. Chemometrics-assisted spectrophotometrymethod for the determination of chemical oxygen demand in pulping effluent Environ MonitAssess2011,175:321~329
    [33] Houda El Khorassani, Trebuchon P, Bi ar H, et al. A simple UV spectrophotometric procedure forthe survey of industrial sewage system. Wat Sci tech,1999,39:77~82
    [34] James M.Cripps, David Jenkins, A COD method suitable for the analysis of highly saline waters.water Pollut.Control Fed1964,36:1240
    [35] Jeffrey R. Kanofsky, Paul Sima.Singlet Oxygen Production from the Reactions of Ozone withBiological Molecules. THE JOURNAL OF B IOLOGICACHL CHEMISTRY,1991,266(14):9039~9042
    [36] JIN Baohui, HE Ying, SHEN Jincan, et al. Measurement of Chemical Oxygen Demand in NaturalWater Samples by Flow Injection Ozonation Chemiluminescence (FI-CL) Technique. Journal ofEnvironmental Monitoring,2004,6(8):673~678
    [37] Jinjun TIAN, Yonggang HU, Jie ZHANG. Chemiluminescence detection of permanganate index(CODMn) by a luminol-KMnO4based reaction.Journal of Environmental Sciences,2008,20(2):252~256
    [38] Jones BM, Sakaji RH and Daughton CG. Comparison of the microcolorimetric and macrotitrimetricmethods for chemical oxygen demand of oil shale wastewaters. Anal. Chem.,571985,2334~2337
    [39] K. C. Thompson, D. Mendham, D. Best and K. E. de Casseres Communication. Simple method forminimising the effect of chloride on the chemical oxygen demand test without the use of mercurysalts Analyst,1986,111,483~485
    [40] Keiichi Fujimori, Weilian MA, Takayo Moriuchi-kawakami, et al.Chemiluminescence Method withPotassium Permanganate for the Determination of Organic Pollutants in Seawater AnalyticalSciences,2001,17(8):975~976
    [41] Korenaga T, Ikatsu H. Continuous-flow injection analysis of aqueous environmental samples forchemical oxygen demand. Analyst.1981,106:653
    [42] Korenaga T, Ikatsu H.The determination of chemical oxygen demand in waste-waters withdichromate by flow injection analysis.Anal ChimActa,1982,141:301
    [43] Korenaga T, Zhou X, Okada K, Moriwake T, Shinoda S.Determination of chemical oxygen demandby a flow-injection method using cerium(IV) sulphate as oxidizing agent. Anal Chim Acta,1993,272:237
    [44] Korenaga T. Flow-injection analysis using potassium permanganate: an approach for measuringchemical oxygen demand in organic wastes and waters. Anal Lett.,1980,13:1001
    [45] LEE K-H, ISHIKAWA T, SASAKIS, et a1. Chemical oxygen demand (COD) sensor using astopped-flow thin layer electrochemical cell. Electroanalysis,1999,11:1172~1179
    [46] Li Fangbai, Gu Guobang, Cheng Weibin, et a1. Dye waste water treatment by means offlocculent-photocatalyst process[J]. Soil and Environmental Sciences,1999,8(3):189-192
    [47] Li J Q, Li L P, Zheng L, et al. Amperometric determination of chemical oxygen demand withflowinjection analysis using F-PbO2modified electrode. AnalChimActa,2005,548:199
    [48] Li-Ching Tian and Sao-Ming Wu. Determination of Chemical Oxygen Demand in AqueousEnvironmental Samples by Segmented Flow-Injection Analysis.Analytica Chimica Acta.1992,(261):301~305
    [49] Liu Ying, Ji Hongwei, Xin Huizhen, et al. A new SPECTROPHOTOMETRIC method formeasuring COD of seawater. journal of ocean university of china,2006,15(2):137~140
    [50] LIULI. Ji Hongwei, Liuying, et al. chemical oxygen demand of seawater determined with amicrowave heating method. journal of ocean university of china,2005,4(2):152~156
    [51] Lloyd. Simplified procedure for the determination of chemical oxygen demand using silver nitrate tosuppress chloride interferenceAnalyst,1982,107,1316-1319
    [52] M.L.Davis, D.A. Cornwell. Introduction to Environmental Engineering,3rd ed., McGraw-Hill,Boston,1998
    [53] Margareta Eriksson. Ozone chemistry in aqueous solution-Ozone decomposition and stabilisationDepartment of ChemistryRoyal Institute of TechnologyStockholm, Sweden,2005
    [54] MILLER, Donald, Gene; BRAYTON, Scott, Vance METHOD FOR CHLORIDE IONREMOVAL PRIOR TO CHEMICAL OXYGEN DEMANDANALYSIS WO1997012240
    [55] Nakano M, Sugioka K, Ushijima Y, et al. Chemiluminescence probe with cypridina luciferin analog,2-methyl-6-phenyl-3,7-di-hydroimidazo[1,2-a]pyrazin-3-one, for estimating the ability of humangranulocytes to generate O-2. Anal Biochem,1986,159:363~369
    [56] OhZeki Masaharu, MasaharuYoshio.UV absorption of the determination of organic Pollutants.Niigata rikagkau,1978,432~435
    [57] Ph. Namour, N. Jaffrezic-Renault. Sensors for measuring biodegradable and total organic matter inwater. Trends inAnalytical Chemistry,2010,29(8)
    [58] Pilz Urich Rapid electrochemical determination of COD. WasserAbwas-serAbfall19928525
    [59] Pilz Ulrich Online COD analysis experience from application of an elecTrochemical measuringProeedure Chem.Anlagen.Verfahren.,1993,26(8),14~15
    [60] Qing Zheng, Baoxue Zhou, Jing Bai, et al. Self-Organized TiO2Nanotube Array Sensor for theDetermination of Chemical Oxygen Demand. Adv. Mater.2008,20,1044~1049
    [61] R. A. Dobbs, R. T. Williams Elimination of Chloride Interference in the Chemical Oxygen DemandTest.Anal. Chem.,1963,35(8), pp1064~1067
    [62] R. G. Bulgakov, A. S. Musavirova, A. M. Abdrakhmanov.CHEMILUMINESCENCE IN OZONO-LYSIS OF SOLUTIONS OF FULLERENE C60. Journal of Applied Spectroscopy,2002,69(2):220~224
    [63] R. G. Bulgakov, S. P. Kuleshov, Z. S. Kinzyabaeva. Chemiluminescence in the reaction of LnI2(Ln=Dy, Nd) with water. Russian Chemical Bulletin, International Edition,2007,56(10):1956~1959
    [64] R.G.Bulgakov, E.Yu.Nevyadovsky, Yu. G. Ponomareva. A new type of a chemiluminescentreaction:hydrolysis of ozonides of fullerenes C60and C70.Russian Chemical Bulletin, InternationalEdition,2005,54(10):2468~2470
    [65] Ramon Ramon, Francisco Valero, Manuel del Valle,et al. Rapid determination of chemical oxygendemand using a focused microwave heating system featuring temperature control. AnalyticaChimica Acta,2003,491:99~109
    [66] Robert L. Bowman,NelsonAlexander. Ozone-Induced Chemiluminescence of Organic Compoun-ds.Science, New Series,1966,154(3755):1454~1456
    [67] S. Belkin, A.Brenner, A. Abeliovich Effect of inorganic constituents on chemical oxygen demand: I.Bromides are unneutralizable by mercuric sulfate complexation, Water Res.1992,26(12),1577~1580
    [68] Silva, C. R., Conceic o, C. D. C., Bonifácio, V. G., et al. Determination of the chemical oxygendemand (COD) using a copper electrode:A clean alternative method. Journal of Solid StateElectrochemistry,2009,13,665~669
    [69] Sugiura S, Kakoi H, Inoue S, et al. Synthesis of cypridina luciferin and related compounds. VII.Condensation of glyoxals with2-aminopyridines or aminopyrazines. Yakugaku Zasshi (Jpn. J.Pharm.),1970,90:441~444
    [70] Suzuki N, Suetsuna K, Mashiko S, et al. Reaction rates for the chemiluminescence of cypridinaluciferin analogues with superoxide: A quenching experiment with superoxide dismutase. Agric BiolChem,1991,55:157~160
    [71] Takashi Korenaga, Hisa Yoshi Ikatsu. The determination of Chemical Oxygen Demand inWastewaters with Dichromate by Flow-Injection Analysis.Analytica Chimica Acta.1982,(141):301~309
    [72] Theingi KYAW, Terufumi FUJIWARA, Hidekazu INOUE, et al.Reversed Micellar MediatedLuminol Chemiluminescence Detection of Iron(II, III) Combined with On-Line Solvent ExtractionUsing8-Quinolinol.Analytical Sciences,1998,14(1):203
    [73] Thompson K. C., Mendham D,D. Best, et al. Communication.Simple Method for Minimising theEffect of Chloride on the Chemical Oxygen Demand Test Without the Use of Mercury Salts.Analyst.1986,111(4):483~485
    [74] Toshio Takayanagi, Purnendu K. Dasgupta. A chemiluminescence-based continuous flow aqueousozone analyzer using photoactivated chromotropic acid. Talanta.2005,66:823~830
    [75] Trapido M. Ozonation an advanced oxidation process of polycylicaromatic hydrocarbons in aqueoussolutions a kinetic study. Environ Technol,1995,16:729~740
    [76] Tsonis, SP A Modified Method for the Determination of Chemical Oxygen Demand in Sea WaterIN: Modelling, Measuring and Prediction. Water Pollution II. Computational Mechanics, Boston,MA.1993,723~729
    [77] Vaidya Bikas, Watson Steve W,Shelley J. Coldiron.et al. Reduction of Chloride Ion Interference inChemical Oxygen Demand Determination Using Bismuth-Based Adsorbents[J].Anal. Chem. Acta.,1997,357(1-2):167~175
    [78] W. A. Moore, R. A. KolbesonDetermination of Anionic Detergents in Surface Waters and Sewagewith Methyl GreenAnal. Chem.,1956,28(2),161~164
    [79] W. M. Cameron and T. B. Moore The influence of chloride on the dichromate-value test Analyst,1957,82,677~682
    [80] Wei Liu, Zhujun Zhang, Youyi Zhang. Chemiluminescence micro-flow system for rapid determi-nation of chemical oxygen demand in water. microchim acta,2008,160:141~146
    [81] Westbroek P, Temmerman E. In line measurement of chemical oxygen demand by means of multi-pulse amperometry at a rotating Pt ring-Pt/PbO2disc electrode. Anal ChimActa,2001,437:95
    [82] William A. Pryor, Norio Ohto, and Daniel F. Church Reaction of Cumene with Ozone To FormCumyl Hydrotrioxide and the Kinetics of Decomposition of Cumyl Hydrot rioxide J. Am. Chem.Soc.1983,105,3614~3622
    [83] XU Xian-wen(), SHI Hui-xiang(),WANG Da-hui(). Ozonation withultrasonic enhancement of p-nitrophenol wastewater. Journal of Zhe jiang University SCIENCE,2005,68(5):319~323
    [84]Yingying Su, He Chen, Zhimeng Wang, et al. Recent Advances in Chemiluminescence. Applied Spectroscopy Reviews,2007,42:139-176
    [85]Yingying Su, Xiaohong Li, He Chen,et al. Rapid, sensitive and on-line measurement of chemical oxygen demand by novel optical method based on UV photolysis and chemiluminescence Microchemical Journal87(2007)56-61
    [86]Yonggang Hu, Zeyu Yang. A simple chemiluminescence method for determination of chemical oxygen demand values in water. Talanta,2004,63:521-526
    [87]Yoon-Chang Kim, Kyong-Hoon Lee, Satoshi Sasaki, et al. Photocatalytic Sensor for Chemical Oxygen Demand Determination Based on Oxygen Electrode. Anal. Chem.,2000,72(14),3379-3382
    [88]Yoon-Chang Kim, Satoshi Sasaki, Kazuyoshi Yano et al. Photocatalytic sensor for the determina-tion of chemical oxygen demand using flow injection analysis,Analytica Chimica Acta,432(2001):59-66
    [89]Yoon-Chang Kim, Satoshi Sasaki, Kazuyoshi Yano, et al. Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis. Analytica Chimica Acta,2001,432:59-66
    [90]Yue Lin,Zhang Xiaoming Rapid determination of chemical oxygen demand in water samples by flow injection-flame atomic absorption spectrometry (FI-FAAS)《Environmental Pollution&Control》2008-10
    [91]Z.X. Zhuang, X.O. Wang, C.L.Yang et al. Chemometric Analysis of Coastal Water Pollution by Examination of Marine Organisms Using Atomic Spectrometry. Microchemical Journal,1995,51(1-2):138-114
    [92]Zhang Shanqing, Jiang Dinglu, Zhao Huijun. Development of Chemical Oxygen Demand on-Line monitoring system based on a photoelectronchemical degradation principle [J]. Environmental Sciences Technol,2006,40:2363-2368
    [93]Zhao Huijun, Jiang Dinglu, Zhang Shanqing, et al. Development of a direct photoelectrochemical method for determination of Chemical Oxygen Demand. Analytica Chemist,2004,76:155-160
    [94]Fernando J.Beltra.水和废水的臭氧反应动力学,周云端译.北京:中国建设工业出版社,2007.5-11
    [95]艾仕云,李嘉庆,杨娅,等.一种新的光催化氧化体系用于化学需氧量的测定研究.高等学校化学学报,2004,25(5):823-826
    [96]包南,刘和义,尚贞晓,等.难生物降解的呋吗唑酮模拟废水臭氧氧化的降解机理.环境化学,2004,23(3):289-293
    [97]边晓娜,赵立志,刘波粒.船载海水COD值的检测系统.舰船科学技术,2008,30(4): 98-100
    [98]曾志刚,秦蕴珊.21世纪海洋生态地球化学的发展.见:王志雄,编.世纪之交的海洋高新技术发展探讨-’99海洋高新技术发展研讨会论文集.北京:海洋出版社,2000.71-474
    [99]陈东顺等.氯离子对COD测定的干扰及校正方法的研究.化工环保,2002,14(1):33-38
    [100]陈光,刘廷良,孙宗光.水体中TOC与COD相关性研究.中国环境监测,2005,5:9-12
    [101]陈洪雷,陈元彩,詹怀宇,等.导数光谱-化学计量学方法测定制浆废水COD.华南理工大学学报(自然科学版),2009,37(10):150-154
    [102]陈克局,陈光辉,王素芳.化学需氧量测定改进方法的研究进展.山西建筑,2007,33(25):201-102
    [103]陈立波.高浓度含盐废水COD的测定.中国给水排水,1997,13(1):32-33
    [104]陈立波.高浓度含盐废水COD的测定.中国给水排水,1997,13(1):32-33.
    [105]陈丽琼,胡勇.化学需氧量测定方法的现状及研究动态.环境科学导刊,2009,28(增刊):114-118
    [106]陈琳,刘国光,吕文英.臭氧氧化技术发展前瞻.环境科学与技术,2004,27:143-145
    [107]陈文春.紫外分光光度法在纯水COD测定中的应用.水处理技术,1998,24(6):333-335
    [108]陈云华,周鑫玉.臭氧氧化去除水中芳香族化合物机理初探.化工环保,1998,18:74-78
    [109]程秉珂,池靖,李海琼等.密封法测定COD.上海环境科学,1989,8(10):22-24
    [110]程岩,任国兴,成文.一维小波的信号处理在海水中总有机碳测量中的应用研究.山东科学,2011,24(1):6-9
    [111]储金宇,吴春笃,陈万金等.臭氧技术及应用.北京:化学工业出版社,2002
    [112]崔娜.高氯离子废水低浓度COD的分析技术.中国环境监测,2003,19(2):44-45
    [113]崔莹,臧维玲,马海娟.碱性高锰酸钾法测定化学需氧量的方法比较.上海水产大学学报,2003,12(2):182-184
    [114]戴民汉,翟惟东,鲁中明,等.中国区域碳循环研究进展与展望.地球科学进展,2004,19(1):120-130
    [115]戴竹青,申开莲,林大泉,等.高氯离子废水化学需氧量分析方法的研究.中国环境监测,2002,18(3):21-25
    [116]丁红春,柴怡浩,张中海,等.光催化氧化法测定地表水化学需氧量的研究.化学学报,2005,63(2):148-152
    [117]丁红春.纳米二氧化钛光催化机理及其新型COD测定方法与仪器的研究:[博士学位论文].上海:华东师范大学理工学院化学系,2006
    [118]杜树新,吴铁军.紫外光谱水质分析仪中的支持向量机方法.化工自动化及仪表,2004,31(3):54-56
    [119]范世华,方肇伦.环境水中化学耗氧量的FI分光光度法自动在线检测.分析科学学报,1996, 12(2):103-106
    [120]范世华,方肇伦.环境水中化学需氧量的FI分光光度法自动在线检测.分析科学学报,1996,12(2):103-106
    [121]范志杰,宋春印,我国海洋倾废活动的发展历程,交通环保,1994,15(5):19-24
    [122]方骏,戴连奎.基于混合神经网络模型的污水COD值预估法.中国给水排水,2003,19(12):6-9
    [123]方肇伦著.流动注射分析法.北京:科学出版社,1999
    [124]符冠烨.鲁米诺化学发光体系在药物分析中的应用.海南医学院学报,2002,8(3):187-189
    [125]傅嘉媛,冯易君,钟兵,等.臭氧分解的动力学和机理概述.四川环境,2001,20(3):10-12
    [126]傅云娜,徐光环.碱眭高锰酸钾法测定海水COD的影响因素研究.海洋通报,1997,16(5):44—47
    [127]关胜,郝电,王玉杰,等.化学需氧量(COD)在线自动监测仪开发应用及最新进展.四川环境,2002,2l(3):24-28
    [128]国家环境保护总局,水和废水监测分析方法(第四版),北京:中国环境科学出版社,2002:223-227
    [129]韩相奎,姚秀琴,刘颖.无汞盐化学需氧量测定方法研究.环境科学,1990,(6):32
    [130]胡国强,张玉林.化学需氧量测定方法的改进.辽阳石油化专学报,1990,6(2):57-63
    [131]黄溶,展卫红.含Cl-水样的COD的测定.中国环境监测,1989,5(4):19
    [132]黄溶,展卫红.含Cl-水样的COD的测定.中国环境监测,1989,5(4):19
    [133]黄梓平.王建宁.利用化学发光技术对有机磷农药进行检测分析.青海师范大学学报:自然科学版.2003,1:59-62
    [134]惠绍棠.海洋监测高技术的需求与发展现状.见:王志雄,编.世纪之交的海洋高新技术发展探讨~99海洋高新技术发展研讨会论文集.北京:海洋出版社,2000.115-124
    [135]贾生华,陆江银,张华芹.鲁米诺-双氧水-铬(Ⅲ)化学发光体系测定化探样品中痕量砷.分析实验室,1998,17(1):16-18
    [136]蒋然,柴欣生,张翠,等.一种检测低浓度化学需氧量的双波长光谱方法.光谱学与光谱分析,201l,3l(7):2007-2010
    [137]金鹏康,王晓昌.水中天然有机物的臭氧氧化处理特性.环境化学,2002,2l(3):260-265
    [138]靳保辉,何鹰,庄峙厦,等.化学耗氧量(COD)监测技术的发展及在海洋监测中的应用.海洋技术,2003,22(2):77-81
    [139]靳保辉.液相臭氧化反应机理研究及在化学耗氧量测定中的应用:[博士学位论文].厦门:化学系,2004
    [140]克里斯蒂安.戈特沙克等.水和废水臭氧氧化-臭氧及其应用指南,李风亭译.北京:中国建设工 业出版社,2004,9-13
    [141]乐琳,张志琪.流动分析在化学耗氧量测定中的应用.PTCA (PARTB:CHEM.ANAL.),2005,41(12):960~963
    [142]乐琳.流动注射快速测定化学耗氧量的研究:[硕士学位论文].西安:陕西师范大学化学院,2003
    [143]李波,徐泽民,李方,等.环境监测与COD测定.中国皮革,2002,31(13):33-36
    [144]李光浩,张娜,牟冠文.流动注射光泽精化学发光法测定痕量铜.PTCA(PARTB:CHEM. ANAL.),2007,43:2153~2155
    [145]李光浩.光泽精化学发光体系的研究与应用.光谱实验室,2002,19(6):736-740
    [146]李海艳,曲久辉.饮用水中的DBP的臭氧氧化效能与影响因素.环境化学,1995,13(3):47-53
    [147]李景印,段惠敏,郭玉凤,等.海水中有机污染物的光度法测定.分析试验室,2006,25(1):73-75
    [148]李可,赵仕林,赵凡,等.化学需氧量绿色测定方法研究.四川师范大学学报(自然科学版),2003,26(6):649-651
    [149]李雨仙,严辉宇,雷志芳.库仑法测定化学需氧量.环境化学,1982,2(5):8-12
    [150]林金明.化学发光基础理论与应用.北京:化学工业出版社,2004
    [151]林金明.活性氧的化学发光测定法.环境科学报,2003,23(2):230-235
    [152]林星杰,杨慧芬,宋存义.UV254在水质监测中应用的研究.能源与环境,20¨06,1,22-24
    [153]林桢.紫外扫描式水质COD测量技术与仪器设计:[硕士学位论文].杭州:浙江大学信息学院,2006
    [154]刘海燕.流动注射化学发光法在药物分析及农药残留分析中的应用研究:[博士学位论文].上海:华东师范大学生命学院,2006
    [155]刘军礼.臭氧法海水化学需氧量测量仪的研制-[硕士学位论文].青岛:中国海洋大学工程学院,2009
    [156]刘兴艳.用微波消解快速测定化学需氧量.四川师范大学学报(自然科学版),1994,3:35-40
    [157]刘莹,李兆新,耿霞,等.分光光度法测定海水样品化学耗氧量的研究.海洋水产研究,2006,27(5):62-67
    [158]刘兆荣,龚惠明.β-蒎烯的液相臭氧化反应研究.环境科学,1999,20(4):59-62
    [159]刘真.高氯废水中有机物污染指标CODCr测定方法研究.中国环境监测,2000,16(4):39-40
    [160]刘子毓.紫外法水质COD检测的理论与实验研究:[硕士学位论文].天津:天津大学精仪学院,2010
    [161]鲁敏,李海燕,曾庆福.地表水的臭氧化处理研究.武汉科技学院学报,2003,16(5)5-8
    [162]骆永莉.海水中化学需氧量自动分析方法的研究:[硕士学位论文].成都:四川大学皮革化学与工程系,2003
    [163]吕锡武,严煦世.光化学氧化饮用水中有机污染物.中国环境科学,1992,12(1):71
    [164]马然,程岩,任国兴,等.基于ARM的海水总有机碳含量现场分析仪的硬件设计.山东科学,2011,24(1):10-15
    [165]马然,任国兴.海水TOC现场分析仪中温控系统的设计开发.工业控制计算机,2011-24(1):7-8
    [166]弥铁刚,武挨厚,杨秋林.臭氧(O3)的制备及水气混合的研究.内蒙古农牧学院学报,1999,20(2):104-107
    [167]庞会从,王振川,邓晓丽,等.臭氧在水处理中的应用.河北科技大学学报,2003,24(2):81-84
    [168]皮运正,王建龙.臭氧氧化水中4-氯酚的机理和反应途径.中国科学B辑化学,2006,36(1):87-92
    [169]皮运正,王建龙.臭氧氧化水中2,4,6-三氯酚的反应机理研究.环境科学学报,2005,25(12):1619-1623
    [170]齐莉,邹俊伟.化学发光分析技术.分析仪器,1998,2:1--6
    [171]饶少敏.分光光度法测定废水中COD.分析测试技术与仪器,2005,11(2):111-113
    [172]饶志明,王建宁,李隆弟.流动注射化学发光测定甲基对硫磷的研究.分析化学.2001.29(4):373-377
    [173]任乃林,王星婷,李红.微波消解光度法测定水中化学需氧量.吉林化工学院学报,2002,19(3):27-29
    [174]任荣芳,卫洪清,柴宜民,等.光泽精化学发光分析进展.山西师范大学学报(自然科学版),2003,17(2):53-56
    [175]申金山,陈立法,高文玲.碘和碘化物在鲁米诺化学发光分析体系中的应用.理化检验.化学分册,1998,34(3):132-134
    [176]沈慧芳,陈焕钦.几种芳烃化合物臭氧氧化反应速率比较及机理探讨.化工环保2004,Z1:30-31
    [177]石爱军,李振声,庄树春,等.废水中有机污染指标监测方法的选择.中国环境监测,2002,18(2):4-7
    [178]苏文斌,兰瑞家,魏永巨.化学需氧量测定方法的研究进展.河北师范大学学报/自然科学版,2007,31(4):508-513
    [179]孙亮.基于LabVIEW的臭氧法海水化学需氧量分析仪的研制:[硕士学位论文].青岛: 中国海洋大学工程学院,2010
    [180]孙宗光,齐文启.在线连续自动监测仪测定废水中CODcr.干早环境监测,1999,13(1):7-9
    [181]谭丽菊.海水中总有机碳自动在线分析仪的研制和应用:[博士学位论文].青岛:中国海洋大学化学化工学院,2010
    [182]童少平,杜桂荣,张鉴清.液相中MnO2催化臭氧降解磺基水杨酸.环境化学,2003,22(5):454-457
    [183]汪新民,石宗明.臭氧的制备及在水处理中的应用.安徽化工,2002(4):32-34
    [184]王江涛,关哈斯高娃,赵卫红.海洋荧光溶解有机物质的研究,中国海洋大学学报,2007,37(5):801-806.
    [185]王娟,李保新,章竹君,等.流动注射化学发光法快速测定化学需氧量.分析试验室,2004,23(7):19-21
    [186]王娟.流动注射化学发光体系测定化学需氧量和有机磷农药残留的分析研究:[硕士学位论文].西安:陕西师范大学化学系,2004
    [187]王俊荣.高氯离子低浓度化学需氧量水样测定方法的研究:[硕士学位论文].济南:山东大学环境工程系,2005
    [188]王瑞慧.COD在线分析仪比对中应注意的问题.环境监测管理与技术,2007,19(3):56-57
    [189]王诗成.2001近海资源和海洋可持续发展战略.见:于大江,编.近海资源和海洋可持续发展战略.北京:海洋出版社,2000.111-1230
    [190]王曙光.加强海洋资源环境管理促进海洋经济可持续发展.见:于大江,编.近海资源和海洋可持续发展战略..北京:海洋出版社.2000.30-33
    [191]王晓萍,林桢,金鑫.紫外扫描式水质COD测量技术与仪器研制.浙江大学学报(工学版),2006,40(11):1951-1959
    [192]王小如,庄峙夏,陈曦,等.海洋生态环境污染监测光纤生物传感器.见:李启虎,编.21世纪初海洋监测高新技术发展战略研讨会论文集.北京:海洋出版社,2000.44,47
    [193]王欣泽,王宝贞,王琳.臭氧-紫外线深度氧化去除水中有机污染物的研究.哈尔滨建筑大学学报,2001,34(2):70-73
    [194]王雪莲,杨琦,甘小莉,等.几种芳香族化合物的结构对其降解性能的影响.襄樊学院学报,2006,27(2):48-51
    [195]王泽良,陶建华,季民等.渤海湾中化学需氧量(COD)扩散、降解过程研究.海洋通报,2004,23(1):28-31
    [196]王海科,吕云鹏.光电倍增管特性及应用.仪器仪表与分析监测,2005(1)
    [197]吴碧玉,黄文国.海水COD测定方法的现状和研究进展.广东化工,2011,38(5):218-219
    [198]吴德星,高会旺,唐学玺,等.海洋海洋生态环境监测与系统集成技术.见:李启虎,编.21 世纪初海洋监测高新技术发展战略研讨会论文集.北京:海洋出版社,2000.65-68
    [199]吴晓军.臭氧在生活饮用水处理工程上的应用.水处理技术,1997,23(5):288-290
    [200]夏树伟,梁玉华,陈兰等.C70与臭氧反应机理的理论研究.化学学报,2003,61(6):824-834
    [201]肖开提·阿布力孜,王吉德,鹿毅等.原子吸收法测定环境水样中化学需氧量.分析实验室,1999,18(3):90-92
    [202]谢振伟,于红,但德忠,等.电化学法直接快速测定COD初步研究.环境工程,2004,22(3):60-63
    [203]熊阳辉.流动注射化学发光测定化学需氧量和蛋白质:[硕士学位论文].武汉:华中科技大学环境科学学院,2006
    [204]徐珊珊.臭氧法COD测量仪测量海水COD的研究:[硕士学位论文].青岛:中国海洋大学环境与工程学院,2008
    [205]徐新华,赵伟荣.水与废水的臭氧氧化.北京:化学工业出版社,2004
    [206]徐学仁,张志忠,张国光,等.海水COD测定的分光光度法研究.海洋环境科学,2003,22(3):56-58
    [207]许芝.臭氧氧化难生化降解有机物的研究.大连铁道学院学报,2001,22(4):82-86
    [208]严莲荷,王凤云.完全氧化法测定高氯废水的CODcr.中国环境监测.1999,15(5):26-29
    [209]杨秋青,朱智甲.流动注射化学发光分析技术的最新应用,河北师范大学学报(自然科学版2005,29:600-604
    [210]杨士建.分析废水中化学需氧量时消除氯离子干扰的方法改进.能源环境保护,2003,17(4):28-29
    [211]杨先锋,但德忠.COD测定法的现状及最新进展.重庆环境科学,1997,19(4):55-59
    [212]杨新林,赵东旭,朱鹤孙.C60及C60衍生物水溶液中氧自由基的检测.自然科学进展,1999,9(8):729-732
    [213]杨泽玉,胡涌刚.化学发光化学需氧量测定新方法.分析化学(FENXI HUAXUE),研究报告,2003,31(12):1430-1432
    [214]衣雪松,孙力平,路远,等.无银催化-分光光度法测定COD的研究.环境工程学报,2009,3(2):298-300
    [215]应骏,陈国华,黄磊,等.中国近海海水紫外吸收及直接用于测定海水COD.中国海洋大学学报,2005,35(2):313-316
    [216]于令第,李绍英.含海水的废水COD的测定方法试验.环境保护,1990,13(4):20-22
    [217]袁洪志.COD的极谱法研究.环境科学与技术.1994(2):26-28
    [218]袁懋.典型水体有机污染物指示指标的研究-[博士学位论文].长春:吉林大学环境学院,2008
    [219]张春燕,汪涵,米治宇.化学耗氧量测定方法的改进.石油化工环境保护,1997,(3):49-51
    [220]张红进,韩永红,刘宗斌.高氯离子水样COD测定方法的研究进展.中国环境管理干部学院学报,2007,17(4):77-79
    [221]张晖,程江,杨卓,等.O3/UV法降解水中对硝基酚.环境化学,1996,15(4):313019
    [222]张建刚,魏刚,熊蓉春.多直线分光光度法快速测定化学需氧量.北京化工大学学报,2007,34(43):89-391
    [223]张磊,王新,饶才鑫等.CODc-测定中代用催化剂的研究.环境科学与技术,1989,45(2):27-29
    [224]张莘民,展卫红..含C1-水样的COD的测定.环境化学,1989,8(2):62
    [225]张世强,宋家驹.碱性高锰酸钾法海水化学耗氧量(COD)在线测量仪的研制.海洋技术,2008,27(1):19-21
    [226]张士权,李英芹,范俊欣.碘化钾碱性高锰酸钾法测定化学需氧量有关问题的释疑.油气田环境保护,2005,15(2):45-47
    [227]张小燕,刘红利,李绍卿.邻菲哕啉银-鲁米诺-过氧化氢化学发光体系与应用.分析化学,2001,29(1):116
    [228]张一,张新申,胡未,等.流动注射法分析海水中的COD.皮革科学与工程,2007,17(4):61-65
    [229]张月.量气法测定化学需氧量(COD)的研究:[硕士学位论文].南京:南京工业大学材料学院,2004
    [230]张占海,刘钦政,于福江.21世纪海洋生态地球化学的发展.见:王志雄,编.世纪之交的海洋高新技术发展探讨~99海洋高新技术发展研讨会论文集.北京:海洋出版社,2000.125-133
    [231]张志忠,徐刚,李芝凤,等.海水COD流动注射测量技术研究.海洋技术,2004,23(2):41-45
    [232]章竹君,吕九如,张新荣.鲁米诺化学发光反应及其在分析化学中的应用.化学试剂,1987,9(3):149-156
    [233]赵登山.无银催化一密封恒温光度法快速测定化学需氧量.光谱实验室,2003,20(6):952-954
    [234]赵进平.发展海洋监测技术的思考与实践.北京:海洋出版社,2005.3--4
    [235]赵丽华,龚时琼,朱丽华,等.纳米TiO2-KMnO4光催化氧化体系快速测定COD.实验技术与管理,2010,271:34-36
    [236]郑洪波,刘素玲,陈郁,等.区域规划中纳污海域海洋环境容量计算方法研究海洋环境.科学,2010,29(1):145-147
    [237]中华人民共和国国家环境保护局,GB11892-89.中华人民共和国国家标准—水质高锰酸盐指数的测定.北京:中国标准出版社,1990-07-01
    [238]中华人民共和国国家环境保护局,GB11914-89.中华人民共和国国家标准—水质化学需氧量的测定重铬酸盐法.北京:中国标准出版社,1990-01-01
    [239]中华人民共和国国家环境保护局,GB3097-1997中华人民共和国国家标准—海水水质标准.北京:中国标准出版社,1994-11-01
    [240]中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会,GB17378-2007.中华人民共和国国家标准-海洋监测规范北京:中国标准出版社,2008-03
    [241]钟理.臭氧湿式氧化氨氮的降解过程的研究.中国给水排水,2000,16(1):14-17
    [242]周彪,谭志琼.海水中COD测定方法研究.内蒙古环境科学,2008,20(5):89-90
    [243]周兰影,孟凡胜,于连贵,等.利用分光光度法测定水体中的化学需氧量.吉林农业大学学报,2002,24(1):69-71
    [244]周志刚,李杰.臭氧污水治理技术应用研究进展.中原工学院学报,2003,14(1):89-91
    [245]朱俊杰,胡娟,郑建斌.示波电位滴定法测定COD的研究.分析科学学报,1994,10(3):44--47
    [246]朱世云,张全兴,王连生,等.萘系化合物臭氧化对其COD、DOC及可生化性影响研究.环境科学进展,1999,7(4):48-53
    [247]庄惠生,陈国南,王琼娥等.用鲁米诺-过氧化氢铜(Ⅱ)考马斯亮蓝G250体系反相流动注射化学发光法测定铜.分析化学,2000,28(5):573-576

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700