动力定位船舶非线性自适应控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以动力定位船舶为研究对象,基于矢量backstepping设计工具、动态面控制技术、自适应控制和神经网络逼近等理论,考虑外部扰动、模型参数存在不确定性、状态反馈/输出反馈等情况,对动力定位船舶航迹跟踪控制和定位控制等一系列问题进行了系统的研究。结合船舶控制,参与研制完成了一套船舶操纵与推进仿真系统。主要研究工作包括以下四个方面:
     1.针对受到未知时变扰动作用的动力定位船舶航迹跟踪控制问题,考虑含有科氏向心矩阵和非线性阻尼项的船舶运动数学模型,构造自适应扰动观测器,用于提供未知扰动的估计;同时将构造的扰动观测器与矢量backstepping方法相结合,设计船舶航迹跟踪鲁棒控制律。理论分析证明了所设计的控制律能使船舶跟踪任意航迹同时保证闭环系统中所有信号一致最终有界。仿真计算结果表明所给出的控制方法对外部扰动具有鲁棒性,验证了控制方案的有效性。
     2.针对船舶参数已知、遭受未知时变扰动的船舶动力定位控制问题,采用动态面控制技术改进传统的矢量backstepping设计方法,通过引进一阶滤波器代替了对中间虚拟控制量求导项,可避免复杂计算,简化控制律的结构,更易于在船舶动力定位系统中实现。研究外部扰动界已知/未知、状态反馈/输出反馈等不同情形,分别引入含基于σ-修正的泄露项的参数自适应律和高增益观测器设计控制律,借助Lyapunov函数证明所设计的控制律能驱动船舶达到设定的目标位置,同时保证闭环系统中所有信号一致最终有界。以一艘供给船舶为研究对象仿真验证了所设计的控制方法的有效性。
     3.针对船舶参数、外部扰动均未知的船舶动力定位控制问题,采用矢量backstepping设计工具与神经网络逼近器相结合的方法设计自适应状态反馈控制律;进一步,在船舶速度不可测的情况下,利用动态面控制技术改进传统的矢量backstepping设计方法,将神经网络、状态观测器相结合,设计船舶动力定位自适应输出反馈控制律,借助Lyapunov函数证明了闭环系统中所有信号一致最终有界。以一艘动力定位船舶作为仿真对象,仿真结果表明:设计的控制策略能驱动船舶到达指定位置,所用神经网络具有良好的逼近性能,验证了所设计的控制方案的有效性。
     4.结合船舶控制研究,参与研制生成了船舶操纵与推进装置联合智能控制仿真系统:采用CAN-bus、以太网、MATLAB、VC++编程等技术和工具在实验室环境下搭建了系统仿真平台。该仿真系统既能作为教学演示系统也能为研究先进船舶控制算法、舰船综合船桥系统前期论证提供开发平台。实验结果表明,该仿真系统运行稳定可靠,有利于预先检验控制系统设计的合理性和可靠性,实现减少海上试验、降低成本、缩短研究周期、提高控制系统研制质量的目标。
This dissertation addresses the control problem of a dynamic positioning ship. In the presence of unkown disturbances and model parameter uncertainties, a series of state feedback/output feedback studies is carried out by the vectorial backstepping method, dynamic surface control technology, adaptive control approaches and the theory of neural networks. Morever, the ships manoeuvre and propulsion simulation system is developed by the author and other participators. The following research works have been completed in this dissertation:
     Firstly, we consider the problem of trajectory tracking control for a dynamic positioning ship with unknown time-variant environmental disturbances. The adopted mathematicalmodel of the surface ship movement includes the Coriolis and centripetal matrix and the nonlinear damping terms. An adaptive observer is constructed to provide an estimation of unknown disturbances and is applied to design a novel trajectory tracking robust control law through the vectorial backstepping technique. It is proved that the designed tracking control law can force the ship to track the arbitrary reference trajectory and guarantee that all signals of the closed-loop trajectory tracking control system of ships are uniformly ultimately bounded by Lyapunov function and simulation studties.
     Secondly, adaptive robust control laws are proposed for a dynamic position ship combining dynamic surface control into vectorial backstepping in the presence of unknown bounded time-variant environmental disturbances and konwon ship parameters. The proposed nonlinear control laws utilize the differentiation of the first-order low-pass filter to replace the differentiation of virtual control vector due to introduction of dynamic surface control technique. As a result, the differentiation operations in the control law design are replaced by simple algebraic operations. Hence, the control laws are easily implemented in engineering practice. Leakage terms based on a variation of σ-modification and the high gain observer are incorporated into the state feedback and output feedback control laws respectively. The stability analysis of the closed-loop system is given by means of Lyapunov function and simulation results on a supply ship are presented to validate the effectiveness of the proposed strategies.
     Thirdly, an adaptive state feedback control law is presented using vectorial backstepping and the neural network (NN) approximator for a dynamic positioing ship with unkown external disturbances and ship parameters. Morever, a robust NN-based adaptive output feedback control scheme is proposed for a dynamic positioning ship by employing the theory of neural networks, observer and dynamic surface control tehnology. It is proved that the proposed control strategy guarante the designed closed-loop dynamic positioning system is uniformly ultimately bounded by means of Lyapunov function. Simulation results on a dynamic positioning ship illustrate the effectiveness of the neural netwok approximator and the control law can force the ship to the desired position.
     Fourthly, the ship manoeuvre and propulsion simulation system is developed by the author and other participators by CAN-bus, Ethernet technology and VC++programming technology combing the research work of ship motion control. Experimental results show that the system is stable and reliable which can be adopted not only as the teaching system for demonstration but also as the platform for studying advanced control algorithm for ships and integrated bridge system of marine surface vessels. What's more, it is available as experiment environment for reliability test for ship control systems and has several advantages such as reducing costs, shortening study period, improveing quality of the system.
引文
[1]Khalil H K. Nonlinear systems (Third Edition). Prentice Hall,2002.
    [2]Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and adaptive control design. Wiley, New York,1995.
    [3]洪奕光,程代展.非线性系统的分析与控制.北京:科学出版社,2005.
    [4]国家海洋局海洋发展战略研究所课题组.中国海洋发展报告(2013).北京:海洋出版社,2013.
    [5]Fossen T I. Marine Control Systems Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Trondheim, Norway:Marine Cyernetics AS,2002.
    [6]M.J.Morgan著,耿惠彬译.近海船舶的动力定位.北京:国防工业出版社,1984.
    [7]边信黔,付明玉,王元慧.船舶动力定位.北京:科学出版社,2011.
    [8]http://news.xinhuanet.com/energy/2012-05/07/c_123089988.htm
    [9]http://www.js.xinhuanet.com/xin_wen_zhong_xin/2012-05/16/content_25243606.htm
    [10]S(?)rensen A J. A survey of dynamic positioning control systems. Annual Reviews in Control,2011,35 (1):123-136.
    [11]Balchen J G, Jenssen N A, Saelid S. Dynamic positioning using Kalman filtering and optimal control theory. Proceedings of the IFAC/IFIP Symposium on Automation in Offshore Oil Field Operation, Bergen, Norway,1976:183-186.
    [12]Balchen J G, Jenssen N A, Mathisen E, Saelid S. Dynamic positioning of floating vessels based on Kalman filtering and optimal control. Proceedings of the 19th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes, Albuquerque, New Mexico, USA,1980:852-864.
    [13]Balchen J G, Jenssen N A, Mathisen E, Sal id S. Dynamic positioning system based on Kalman filtering and optimal control. Modeling, Identification and Control,1980,1 (3):135-163
    [14]Saelid S, Jenssen N A, Balchen J G. Design and analysis of a dynamic positioning system based on the Kalman filtering and optimal control. IEEE Transactions on Automatic Control,1983,28 (3):331-339.
    [15]Fung P T, Grimble M J. Dynamic ship positioning using a self-tuning Kalman filter. IEEE Transactions on Automatic Control,1983,28 (3):339-350.
    [16]Gr(?)vlen A, Fossen T I. Nonlinear control of dynamic positioned ships using only position feedback:an observer backstepping approach. Proceedings of the 35th IEEE Conference on Decision Control, Kobe, Japan,1996:3388-3393.
    [17]Fossen T I, Gr(?)vlen A. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. IEEE Transactions on Control Systems Technology,1998,6 (1):121-128.
    [18]Fossen T I, Strand J P. Passive nonlinear observer design for ships using Lyapunov methods:full-scale experiments with a supply vessel. Automatica,1999,35 (1):3-16.
    [19]Loria A, Fossen T I. A separation principle for dynamic positioning of ships: theoretical and experimental results. IEEE Transactions on Control Systems Technology, 2000,8 (2):332-343.
    [20]杜佳璐,李文华,郑凯,于双和.船舶动力定位系统的非线性输出反馈控制.华南理工大学学报:自然科学版,2012,40(2):70-75.
    [21]Du J L, Zhang X K, Wang S Y, Jiang F. The design of adaptive nonlinear controller for dynamic positioning system of ships. Proceedings of the 29th Chinese Control Conference, Beijing, China,2010:585-589.
    [22]Do K D. Global robust and adaptive output feedback dynamic positioning of surface ships. Journal of Marine of Science and Application,2011,10 (3):325-332.
    [23]Yang Y, Du J L, Li G Q, Li W H, Guo C. Dynamic surface control for nonlinear dynamic positioning system of ship. Mechanical Engineering and Technology:Advances in Intelligent and Soft Computing,2012:237-244.
    [24]David A. Smallwood, Louis L. Whitcomb. Model-based dynamic positioning of underwater robotic vehicles:theory and experiment. IEEE Journal of Oceanic Engineering,2004,29 (1):169-186.
    [25]Tannuri E A, Agostinho A C, Morishita H M, Moratelli L J. Dynamic positioning systems:an experimental analysis of sliding mode control. Control Engineering Practice,2010,18 (10):1121-1132.
    [26]王元慧,隋玉峰,吴静.基于非线性模型预测的船舶动力定位控制器设计.哈尔滨工程大学学报,2013,34(1):1-7.
    [27]李和贵,翁正新,施颂椒.基于模糊控制的船舶动力定位系统设计与仿真.系统工程与电子技术,2002,24(11):42-44.
    [28]夏国清,D. R. Corbett基于DRNN神经网络的PD混合控制技术在船舶动力定位系统中的应用.中国造船,2006,47(1):48-54.
    [29]邓志良,胡寿松,张军峰.船舶动力定位系统的在线模型预测控制.中国造船,2009,50(2):87-96.
    [30]Hassani V, Sorensen A J, Pascoal A M, et al. Multiple model adaptive wave filtering for dynamic positioning of marine vessels. Proceedings of 2012 American Control Conference, Montral, Canada,2012:6222-6228.
    [31]谢文博,付明玉,施小成.动力定位船舶自适应滑模无源观测器设计.控制理论与应用,2013,30(1):131-136.
    [32]Muhammad S, Doria-Cerezo A. Passivity-based control applied to the dynamic positioning of ships. IET Control Theory and Applications,2012,6 (5):680-688.
    [33]Lei Z L, Guo C, Liu Y. ADRC controller used in dynamic positioning system of a rescue ship. Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, China,2012:1942-1947.
    [34]赵大威,边信黔,丁福光.非线性船舶动力定位控制器设计.哈尔滨工程大学学报,2011,32(1):57-61.
    [35]郭晨,汪洋,孙富春,沈智鹏.欠驱动水面船舶运动控制研究综述.控制与决策,2009,24(3):321-329.
    [36]Holzhuter T. LQG approach for the High-precision track control of ships. IEE Proceedings on Control Theory Applications,1997,144 (2):121-127.
    [37]Ma Z, Wan D, Huang L. A novel fuzzy PID controller for Tracking Autopilot. Ship Electronic Engineering,1999,19 (6):21-25.
    [38]Zhang G C, Ren G. Self-tuning adaptive control for ship's track based on neural network. Journal of Central South University of Technology,2007,38(1):62-68.
    [39]Jiang Z P. Global tracking control of underactuated ships by Lyaounov's direct method. Automatica,2002,38 (2):301-309.
    [40]Pettersen K Y, Ni jmei jer H. Tracking control of an underactuated surface vessel. Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida, USA: 1998:4561-4566.
    [41]Pettersen K Y, Nijmeijer H. Underactuated ship tracking control:theory and experiments. International Journal of Control,2001,74 (14):1435-1446.
    [42]Lefeber E, Pettersen K Y, Nijmei jer H. Tracking control of an underactuated ship. IEEE Transactions on Control Systems Technology,2003,11 (1):52-61.
    [43]Yu R, Zhu Q, Xia G, Liu Z. Sliding mode tracking control of an underactuated surface vessel. IET Control Theory and Applications,2012,6 (3):461-466.
    [44]Pettersen K Y, Nijmeijer H. Output feedback tracking control for ships. New Directions in nonlinear observer design, Lecture Notes in Control and Information Sciences,1999,244,7:311-334.
    [45]Wondergem M, Lefeber E, Pettersen K Y, Nijmeijer H. Output feedback tracking for ships. IEEE Transactions on Control Systems Technology,2011,19 (2):442-448.
    [46]Du J L, Wang L, Jiang C L. Nonlinear ship trajectory tracking control based on backstepping agotirhm. Ship Engineering,2010,32 (1):41-44.
    [47]Aschemann H, Rauh A. Nonlinear control and disturbance compensation for underactuated ships using extended linearisation techniques. Proceedings of 8th IFAC Conference on Control Applications in Marine Systems, Rostock, Germany,2010:167-72.
    [48]Ghommam J, Mnif F, Benal A, Derbel N. Asymptotic backstepping stabilization of an underactuated surface vessel. IEEE Transactions on Control Systems Technology, 2006,14 (6):1150-1157.
    [49]Ghommam J, Mnif F, Benal A, Derbel N. Global stabilisation and tracking control of underactuated surface vessels. IET Control Theory and Applications,2010,4 (1):71-88.
    [50]Do K D, Jiang Z P, Pan J. Robust global stabilization of underactuated ships on a linear course:State and output feedback. International Journal of Control,2003, 76(1):1-17.
    [51]Do K D. Practial control of underactuated ships. Ocean Engineering,2010, 37, (13):1111-1119.
    [52]Li R H, Li T S, Bu R X. Active disturbance rejection control based path following of underactuated surfaces ships. ICIC Express Letters,2013,7 (3):675-680.
    [53]Li R H, Li T S, Bu R X. Disturbance decoupling control based trajectory-tracking for underactuated ships. Proceedings of the 32th Chinese Control Conference, Xi'an, China,2013:8108-8113.
    [54]Isidori A. Nonlinear Control Systems(Third Edition). Springer,1995.
    [55]程代展.非线性系统的几何理论.北京:科学出版社,1988.
    [56]Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers for feedback linearizable systems. IEEE Transactions on Automatic Control, 1991,36 (11):1241-1253.
    [57]杨俊华,吴捷,胡跃明.反步方法原理及在非线性鲁棒控制中的应用.控制与决策,2002,17(S):641-647.
    [58]Lin F J, Shen P H, Hsu S P. Adaptive backstepping sliding mode control for linear induction motor drive. IEE Proceedings-Electric Power Applications,2002,149 (3):184-194.
    [59]Koshkouei A J, Zinober A S I. Adaptive backstepping control of nonlinear systems with unmatched uncertainty. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia,2000:4765-4770.
    [60]Taylor D G, Kokotovic P V, Marino R et al. Adaptive regulation of nonlinear systems with unmodeled dynamics. IEEE Transactions on Automatic Control,1989,34 (4): 405-421.
    [61]Sastry S S, Isidori A. Adaptive control of linearizable systems. IEEE Transactions on Automatic Control,1989,34 (11):1123-1131.
    [62]Kanellakopoulos I, Kokotovic P V, Marino R. An extended direct scheme for robust adaptive nonlinear control. Automatica,1991,27 (2):247-255
    [63]Kanellakopoulos I, Kokotovic P V, Morse A S. A toolkit for nonlinear feedback design. Systems and Control Letters,1992,18 (2):83-92.
    [64]Krstic M, Kanellakopoulos I, Kokotovic P V. Adaptive nonlinear control without overparametrization. Systems and Control Letters,1992,19 (3):177-185
    [65]Krstic M, Kokotovic P V. Adaptive nonlinear design with controller-identifier separation and swapping. IEEE Transactions on Automatic Control,1995,40 (3):426-440.
    [66]Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control design. Automatica,1996,32 (3):423-427.
    [67]Steinberg M L, Page A B. Nonlinear adaptive flight control with a backstepping design approach. AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, America,1998:10-12.
    [68]Godhavn J M, Fossen T I, Berge S P. Non-linear and adaptive backstepping designs for tracking control of ships. International Journal of Adaptive Control and Signal Processing,1998,12 (8):649-670.
    [69]Ge S S, Lee T H, Wang C. Adaptive backstepping control of a class of chaotic systems. Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona, USA,1999:714-719.
    [70]Campos J, Lewis F L, Davis L, Ikenaga S. Backstepping based fuzzy logic control of active vehicle suspension systems. Proceedings of the American Control Conference, Chicago, America,2000:4030-4035.
    [71]Ge S S, Wang C. Adaptive control of uncertain Chua's circuits. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2000,47 (9):1397-1402
    [72]Kokotovic P V, Arcak M. Constructive nonlinear control:a historical perspective. Automatica,2001,37 (5):637-662.
    [73]苏丙末,曹云峰,陈欣,万胜.基于backstepping的无人机飞控系统设计研究.南京航空航天大学学报,2001,33(3):250-253.
    [74]Du J L,Guo C. Nonlinear adaptive ship course tracking control based on backstepping and Nussbaum gain. Proceedings of the 23th American Control Conference, Boston, America,2004:3845-3850.
    [75]于建江,张天平,顾海军.基于后推技术的直接鲁棒自适应模糊控制.系统工程与电子技术,2004,26(5):633-635.
    [76]Krstic M, Bement M. Nonovershooting control of strict-feedback nonlinear systems. IEEE Transactions on Automatica Control,2006,51 (12):1938-1943.
    [77]Du J L, Guo C, Zhao Y S, Bi Y J. Adaptive robust nonlinear design of course keeping ship steering autopilot. Proceedings of the 8th International Conference on Control, Automation, Robotics, and Vision, Kunming, China,2004:13-18.
    [78]Du J L, Guo C, Yu S H. Adaptive robust nonlinear ship course control based on backstepping and Nussbaum gain. Intelligent Automation and Soft Computing,2007,13 (3):263-272.
    [79]Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica,2009,45 (4):918-927.
    [80]Farrell J A, Polycarpou M M.Adaptive approximation based control:unifying neural, fuzzy, and traditional adaptive approximation approaches. Hoboken, NJ: Wiley-Interseience,2006.
    [81]Powell M J D. Radial basis functions for multivariable interpolation:a review, Proc. IMA Conference on Algorithms for Approximation of Functions and Data, Shrivenham, UK,1985.
    [82]Broomhead D S, Lowe D. Multivariable Functional Interpolation and Adaptive Networks. Complex System,1988,2:321-355.
    [83]Moody J, Darken C J. Fast learning in networks of locally-tuned processing units. Neural Computation,1989,1(2):281-294.
    [84]Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks, IEEE Transactions on Neural Networks,1990,1 (1):4-27.
    [85]Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control,1996,41 (3):447-451.
    [86]Polycarpou M M, Mears M J. Stable adaptive tracking of uncertain systems using nonlinearly parameterized on-line approximators. International Journal of Control, 1998,70 (3):363-384.
    [87]Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica,2000,36 (2):1835-1846.
    [88]Ge S S, Wang J. Robust adaptive neural control for a class of perturbed strict nonlinear systems. IEEE Transactions on Neural Networks,2002,13 (6):1409-1419.
    [89]Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Transactions on Neural Networks,2004,15 (3):674-692.
    [90]Ge S S, Li G Y, Zhang J et al. Direct adaptive control for a class of MIMO nonlinear systems using neural networks. IEEE Transactions on Automatic Control,2004,49 (11):2001-2006.
    [91]Ho D W C, Li J M, Niu Y G. Adaptive neural control for a class of nonlinear parametric time-delay systems. IEEE Transactions on Neural Networks,2005,16 (3):625-635.
    [92]Ge S S, Zhang J, Lee T H. Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2004,34 (4):1630-1645.
    [93]Ge S S, Wang C. Adaptive NN control of uncertain nonlinear pure-feedback systems. Automatica,2002,38 (4):671-682.
    [94]Wang D, Huang J. Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form. Automatica,2002,38 (8):1365-1372.
    [95]Wang C, Hill D J, Ge S S et al. An ISS-modular approach for adaptive neural control of pure-feedback systems. Automatica,2006,42 (5):723-731.
    [96]Swaroop D, Gerdes J C, Yip P P et al. Dynamic surface control of nonlinear systems. Proceedings of the American Control Conference, Albuquerque, New Mexico, USA, 1997:3028-3034.
    [97]Swaroop D, Hedrick J K, Yip P P et al. Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control,2000,45 (10):1893-1899.
    [98]Wang D, Huang J. Neural network based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Transactions on Neural Networks,2005,16 (1):195-202.
    [99]Li T S, Wang D, Feng G et al. A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetica-Part B:Cybernetics,2010,40 (3):915-927.
    [100]Zhang T P, Ge S S. Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica,2008,44 (7):1895-1903.
    [101]Wang D. Neural network-based adaptive dynamic surface control of uncertain nonlinearpure-feedback systems. International Journal of Robust and Nonlinear Control,2011,21 (5):527-541.
    [102]Zhang T P, Li H C, Wang Q. Indirect adaptive neural network control using dynamic surface control. Proceedings of the 26th Chinese Control Conference. Zhangjiajie, China,2007:756-760.
    [103]Yang Z J, Nagai T, Kanae S, Wada K. Dynamic surface control approach to adaptive robust control of nonlinear systems in semi-strict feedback form. International Journal of Systems Science,2007,38 (9):709-724.
    [104]李红春,张天平.基于动态面控制的MIMO自适应神经网络控制.扬州大学学报,2006,9(4):17-22.
    [105]李铁山,王晓飞,杨新宇.基于DSC后推法的非线性系统的鲁棒自适应NN控制.自动化 学报,2008,34(11):1424-1430.
    [106]李铁山,王晓飞,杨新宇.一类非线性MIMO系统鲁棒自适应神经网络DSC设计.哈尔滨工程大学学报,2009,30(2):121-125.
    [107]Sun G, Wang D, Li T S, Peng Z H, Wang H. Single neural network approximation based adaptive control for a class of nonlinear systems in strict-feedback form. Nonlinear Dynamics,2013,72(1):175-184.
    [108]Sun G, Wang D, Peng Z H. Adaptive control based on single neural network approximation for non-linear pure-feedback systems. IET Control Theory and Applications,2012,6 (15):2387-2396.
    [109]Sun G, Wang D, Peng Z H, Wang H, Lan W Y, Wang M X. Robust adaptive neural control of uncertain pure-feedback nonlinear systems. International Journal of Control,2013, 86 (5):912-922.
    [110]Tong S C, Li Y M, Feng G, Li T S. Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2011,41(4):1124-1135.
    [111]Tong S C, Li Y M, Feng G, Li T S. Observer-based adaptive fuzzy backstepping dynamic surface control for a class of non-linear systems with unknown time delays. IET Control Theory and Applications,2011,5 (12):1426-1438.
    [112]SNAME. The society of naval architects and marine engineers. Nomenclature for treating the motion of a submerged body through a fluid. Technical and Research Bulletin, no.1-5,1950.
    [113]金鸿章,姚绪梁.船舶控制原理.哈尔滨:哈尔滨工程大学出版社,2001.
    [114]贾欣乐,杨盐生.船舶运动数学模型——机理建模与辨识建模.大连:大连海事大学出版社,1999.
    [115]贾欣乐,张显库.船舶运动与H鲁棒控制.大连:大连海事大学出版社,2002.
    [116]Ge S S, Lee T, Harris C. Adaptive Neural network control of robotic manipulators. WorldScientific, London, UK,1998.
    [117]李庆扬,王能超.数值分析.武汉:华中科技大学出版社,2004.
    [118]王立新.模糊系统:挑战与机遇并存——十年研究之感悟.自动化学报,2001,27(4):585-590.
    [119]Ge S S, Hang C C, Lee T H, Zhang T. Stable adaptive neural network control. Norwell, MA:Kluwer,2001.
    [120]Esfandiari F, KhalilHK. Observer-based design of uncertain systems:recovering state feedback robustness under matching conditions. Proceedings of Allerton Annual Conference on Communication, Control and Computing, Monticello, USA,1987:97-106.
    [121]Ge S S, Zhang J. Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE Transactions on Neural Networks,2003, 14 (4):900-918.
    [122]Behtash S. Robust output tracking for nonlinear system. Internal Journal Contrl, 1990,51 (6):1381-1407.
    [123]Khalil H K. High-gain observers in nonlinear feedback control. In Nijmeijer H and Fossen T I, editors, New Directions in Nonlinear Observer Design, volume 244 of Lecture Notes in Control and Information Sciences,1999:249-268.
    [124]Skjetne R, Smogeli 0, Fossen T I. Modeling, identification, and adaptive maneuvering of Cybership II:A complete design with experiments. Proceedings of IFAC Conference on Control Applications in Marine System, Ancona, Itly.2004:203-208.
    [125]汪成为,高文,王行仁.灵境(虚拟环境)技术的报告.实现应用.北京:清华大学出版社,1997,13-25.
    [126]James C, Joseph K, Hyeongseok K. Simulation and scenario support for virtual environments. Computer and Graphies,1996,20(2):199-206.
    [127]金一丞,尹勇,任鸿翔,张秀凤,李志华.多本船航海模拟系统的研制.交通运输工程学报,2001,1(3):108-111.
    [128]尹勇,任鸿翔,金一丞,孙腾达.V.Dragon2000分布式航海仿真系统中的图形技术.系统仿真学报,2002,14(5):617-619.
    [129]张显库,尹勇,金一丞.全任务航海模拟器的航迹保持算法.大连海事大学学报,2008,34(4):59-62.
    [130]尹勇.分布式航海仿真系统中视景实时生成算法的研究:(博士学位论文).大连:大连海事大学,2001.
    [131]Guo C, Shi C J, Sun J B, Sun C Q, Peng S S. High fidelity marine engine room simulator DMS-2000. Journal of Dalian Maritime Unviersity,2000,28 (S):28-30.
    [132]郭晨,叶榛,史成军,孙建波.船舶机舱虚拟现实仿真系统.中国造船,2004,45(3):64-69.
    [133]王扬,郭晨,章晓明.现代仿真器技术.北京:国防工业出版社,2012.
    [134]沈智鹏.基于广义模糊CMAC的船舶运动智能控制及其分布式仿真的研究:(博士学位论文).大连:大连海事大学,2005.
    [135]Yang Y, Guo C, Shen Z P, Sun J B. Research on a New Type of Ship Main Engine Remote Control Simulation System. Proceedings of the World Congress on Intelligent Control and Automation, Jinan, China,2010:3013-3018.
    [136]沈智鹏,杨杨,郭晨.船舶运动控制硬件在环仿真系统的研究.系统仿真学报.2010,22(12):2838-2841.
    [137]杨杨.新型船舶柴油机主推进遥控仿真系统的研究:(硕士学位论文).大连:大连海事大学,2010.
    [138]Wang L, Yang Y, Guo C. CMAC-PID integrated controller used in marine propulsion plant. Proceedings of 2010 International Conference on Intelligent Control and Information, Dalian, China,2010:367-370.
    [139]孙建波.船舶柴油主推进装置及其控制系统的建模与仿真研究:(博士学位论文).大连海事大学,2007.
    [140]Liu Y,Guo C, Yuan S C. Integrated LPV control for underactuated ship linear track keeping and main diesel engine. Proceedings of the World Congress on Intelligent Control and Automation, Chongqing, China,2008:1840-1845.
    [141]袁世春.船舶运动与主推进线性变参数联合控制的研究:(博士学位论文).大连:大连海事大学,2007.
    [142]Yuan S C, Guo C, Yang Y S. Nonlinear adaptive fuzzy control for ship steering. Proceedings of the Fourth International DCDIS Conference, Ontario, Canada,2005: 37-42.
    [143]Yuan S C, Guo C. Adaptive control for a class of linear systems with matching uncertainties and its application to ship steering. International Journal of Information Technology,2005,11(6):83-90.
    [144]杨杨,郭晨,孙建波.船舶推进系统的BP神经网络广义最小方差控制器.中南大学学报,2010,42(S1):1-7.
    [145]Liu Y, Guo C, Zhou R L. Robust feedback stabilization control of an underactuated surface vessel. World Congress on Computer Science and Information Engineering, Los Angeles, USA,2009(5):46-50.
    [146]Meng W, Guo C, Liu Y. Robust adaptive path following for underactuated surface vessels with uncertain dynamics. Journal of Marine Science and Application,2012, 11(2):244-250.
    [147]刘维.精通MATLAB与VC++混合编程.北京:北京航空航天大学出版社,2005.
    [148]江与海电子海图导航系统使用手册.大连海事大学,2009.
    [149]Kruglinski D J著.潘爱民,王国印译Visual C++技术内幕.第四版.北京:清华大学出版社,2001.
    [150]侯俊杰.深入浅出MFC.武汉:华中科技大学出版社,2001.
    [151]杜尚丰,曹晓钟,徐津.CAN总线测控技术及其应用.北京:电子工业出版社,2007.
    [152]饶云涛,邹继军,郑勇芸.现场总线CAN原理与应用技术.北京:北京航空航天大学出版社,2004.
    [153]北京科瑞兴业科技有限公司.KPCI-8110光隔离非智能CAN总线通讯卡使用说明书.北京:北京科瑞兴业科技有限公司,2007.
    [154]http://www.icansys.org/xitong/xitong_02.asp
    [155]Gary R.Wright, W.Richard Stevenss.TCP/IP详解,卷2:实现.北京:机械工业出版社,2000.
    [156]Kongsberg. AutoChief C20 Instruction Manual MAN B&W MC Engines Fixed Pitch propeller installation,2004.
    [157]Yang Y, Guo C, Sun J B, Yan D W. A novel simulation system for marine main diesel propulsion remote control. Proceedings of 2011 International Conference on Virtual Reality and Visualization, Beijing, China,2011:57-62.
    [158]Kurdila A J, Narcowich F J, Ward J D. Persistency of excitation in identification using radial basis function approximants. SIAM Journal on Control and Optimization, 1995,33 (2):625-642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700