PEM燃料电池Pt/C电催化剂制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)具有高能量密度、运行温度低和稳定性能
    较好等优点,在航天领域、潜艇、电动车、飞船等领域有广泛的应用前景。目前,
    虽然 PEMFC 的各项技术已经趋于成熟,正处于大规模商业化应用的前夜。为使
    PEMFC 能够早日实现商品化生产,各国科研工作者正在致力于相关材料的研究,
    力图降低 PEMFC 成本,提高相关材料的性能。其中包括高性能 Pt/C 电催化剂的
    研究。
     本实验研究了 Pt/C 电催化剂制备的浸渍还原法,其中主要包括载体碳黑的
    热处理技术。通过优化碳黑热处理的工艺条件,如温度和环境,使碳黑载体的性
    能得到明显改善。采用 TEM、XRD、XPS、CV、MEA 等测试手段对所制备的
    Pt/C 电催化剂性能进行了全面的分析。Pt/C 电催化剂的 TEM 照片显示,采用氮
    气氛中 600℃热处理的碳黑载体制备的 Pt/C 催化剂中 Pt 颗粒的平均粒径为
    3.3nm,降低了约 1nm;分散度也有了一定的提高。碳载体的 XRD 和 XPS 测试
    说明,热处理使碳载体表面组成发生了变化,使其更有利于生成颗粒细小且均匀
    的 Pt/C 电催化剂。
     本实验还研究了胶体法制备 Pt/C 电催化剂的相关工艺。研究工作包括胶体
    的稳定性和不同的还原剂和浓度对 Pt/C 电催化剂性能的影响。采用经优化的胶
    体法制备工艺,所制备的 Pt/C 电催化剂中 Pt 颗粒的平均粒径为 3.05nm,已经接
    近 Johnson Mattey 公司的 Pt/C 电催化剂水平。
     为了提高催化活性和防止催化剂在使用过程中的团聚,本实验还初步探讨了
    在Pt/C电催化剂中引入金属助剂Re。实验采用分步浸渍还原法,在制备过程中首
    先用Fe/H2SO4把KReO4还原成Re的氧化物ReO3, 然后用H2在高温下把ReO3还原
    成Re,最后在Re/C上沉积Pt得到PtRe/C电催化剂。采用循环伏安法表征了PtRe/C
    电催化剂的性能,证明了其较好的电催化活性。
The proton exchange membrane fuel cell (PEMFC) is a highly attractive power
    source for mobile and stationary applications due to its high power density at lower
    temperatures and its compact design. At present, a large amount of work has been
    devoted to reduce the material costs of PEMFCs to achieve their widespread
    application, including the method of preparing a Pt catalyst with a large specific
    surface area to minimize the amount (and cost) of Pt required for a given level of
    activity.
     This paper presents a detailed study of the impregnation-reduction method for
    the preparation of Pt/C catalysts,including the heat-treatment technology for the
    treatment of the carbon black support. The carbon black supports heat-treated in N2
    stream at 600℃ exhibit a positive role of promoting Pt dispersion to a higher degree.
    The particle size and the dispersion degree of Pt supported on carbon are observed by
    TEM. The surface structure and composition of supports and Pt/C electrocatalysts are
    analyzed by XRD and XPS. The results show that the performance of Pt/C
    electrocatalysts is improved a lot. The supported Pt/C electrocatalysts about 3.3nm
    platinum crystallites have been prepared by this method.
     This paper has also studied the colloid method for preparing Pt/C electrocatalysts,
    concluding the colloid stability, both the different reducers and the solution
    concentrations which affect the performance of Pt/C electrocatalysts. The prepared
    Pt/C electrocatalysts has an average platinum crystallite of 3.05nm which is similar to
    that of Johnson Mattey catalyst.
     This paper has studied the preparation method of PtRe/C catalysts. PtRe/C
    catalyst has been successfully prepared by the impregnation-reduction method. The
    process includes two steps. First, the reagent Fe/H2SO4 is used to reduce KReO4 to
    ReO3, and then H2 is used to reduce ReO3 to metal Re. The so obtained Re/C is
    impregnated in H2PtCl6 solution and reduced to PtRe/C by HCHO solution. CV method is
    used to evaluate the electrochemical performance of the prepared PtRe/C.
引文
参考文献
    [1] 陈延禧,聚合物电解质燃料电池的研究进展,电源技术.1996,20(1):21-27
    [2] 衣宝廉,燃料电池-原理·技术·应用,北京:化学工业出版社,2003
    [3] 李晓婷,质子交换膜燃料电池电催化剂的研究:硕士学位论文,天津:天津
     大学,2000
    [4] 朱科,质子交换膜燃料电池电催化剂和膜电极的研究,硕士学位论文,天津:
     天津大学,2002
    [5] Appleby A J., Goulkes F R., Fuel Cell Hand book, Van Nostrand Reinhold, New
     Yonk, 1989: 12-284
    [6] Paola Costamagna, Supramaniam Srinivasan, Quantum jumps in the PEMFC
     science and technology from the 1960s to the year 2000 Part I. Fundamental
     scientific aspects, Journal of Power Sources 2001, 102: 242-252
    [7] Feng Zheng, Phase stability and processing of Sr and Mg doped lanthanum
     gallate, a dissertation submitted for the degree of Ph.D, University of
     Washington: Materials
    [8] 中国电工技术学会“电工高新技术丛书第一分册”【M】.北京:机械工业出
     版社,2000
    [9] C. Bernaya, M. Marchanda, M. Cassir, Prospects of different fuel cell
     technologies for vehicle applications, Journal of Power Sources, 2002, 108 :
     139-152
    [10] Angela Psoma, Gunter Sattler, Fuel cell systems for submarines: from the first
     idea to serial production, Journal of Power Sources, 2002, 106: 381–383
    [11] S. Giddey a,F.T. Ciacchi, S.P.S. Badwal, A versatile polymer electrolyte
     membrane fuel cell(3 kW) facility, Solid State Ionics, 2002, 152-153: 363- 371
    [12] S.-Y. Ahn, S.-J. Shin, H.Y. H, Performance and lifetime analysis of the kW-class
     PEMFC stack, Journal of Power Sources, 2002, 106: 295-303
    [13] Jon M. Moore, J. Barry Lakeman, Gary O. Mepsted, Development of a PEM fuel
     cell powered portable field generator for the dismounted soldier, Journal of
     Power Sources, 2002, 106: 16-20
    [14] C.K. Dyer, Fuel cells for portable applications, Journal of Power Sources , 2002,
     106: 31-34
     55
    
    
    参考文献
    [15] Kazim M, Economical and environment assessments of proton exchange
     membrane fuel cell in public undertakings, Int J Energy Convers Mgmt, 2000, 42:
     763-772
    [16] Viral Mehta, Joyce Smith Cooper, Review and analysis of PEM fuel cell design
     and manufacturing, Journal of Power Sources, 2003, 114: 32-53
    [17] Oliver J Murphy,Alan Cisar, Eric Clarke, Low-cost light weight high power
     density PEM fuel cell stack, Electrochimica Acta, 1998, 43: 3829-3840
    [18] D. Schmal, C.E. Kluiters, I.P. Barendregt, Testing of a De Nora polymer
     electrolyte fuel cell stack of 1 kW for naval applications, J. Power Sources, 1996,
     61: 255-257
    [19] X. Cheng, B. Yi, M. Han, Investigation of platinum utilization and morphology
     in catalyst layer of polymer electrolyte fuel cells, J. Power Sources, 1999, 79:
     75-81
    [20] X. Wang, I.-M. Hsing, P.L. Yue, Electrochemical characterization of binary
     carbon supported electrode in polymer electrolyte fuel cells, J. Power Sources,
     2001, 96: 282-287
    [21] Whitney G. Colella, Market prospects, design features, and performance of a fuel
     cell-powered scooter, Journal of Power Sources, 2000, 86: 255-260
    [22] M.J. Escudero, E. Hontan?o′n, S. Schwartz, Development and performance
     characterization of new electrocatalysts for PEMFC, Journal of Power Sources
     2002, 106: 206-214
    [23] Chunshan Song, Fuel processing for low-temperature and high-temperature fuel
     cells Challenges, and opportunities for sustainable development in the 21st
     century, Catalysis Today, 2002, 77: 17-49
    [24] 查全性,电极过程动力学导论,北京:科学出版社,2002:129-140
    [25] 林维明,燃料电池系统,北京:化学工业出版社,1996:165
    [26] Z.Q. Ma, P. Cheng, T.S. Zhao, A palladium-alloy deposited Nafion membrane
     for direct methanol fuel cells, Journal of Membrane Science, 2003, 215: 327-336
    [27] Jun Maruyama, Ikuo Abe, Application of conventional activated carbon loaded
     with dispersed Pt to PEFC catalyst layer, Electrochimica Acta, 2003, 48:
     1443-1450
    [28] Minoru Umeda, Mitsuhiro Kokubo, Mohamed Mohamedi,
     Porous-microelectrode study on Pt/C catalysts for methanol electrooxidation,
     Electrochimica Acta, 2003,48: 1367-1374
     56
    
    
    参考文献
    [29] T. Yoshitakea, Y. Shimakawa, S. Kuroshima, Preparation of fine platinum
     catalyst supported on single-wall carbon nanohorns for fuel cell application,
     Physica B, 2002, 323: 124-126
    [30] Zhigang Qi, Arthur Kaufman, Low Pt loading high performance cathodes for
     PEM fuel cells, Journal of Power Sources, 2003, 113: 37-43
    [31] Ermete Antolini, Formation of carbon-supported PtM alloys for low temperature
     fuel cells: a review, Materials Chemistry and Physics, 2003, 78: 563-573
    [32] K.A. Starz, E. Auer, Th. Lehmann, Characteristics of platinum-based
     electrocatalysts for mobile PEMFC Applications, Journal of Power Sources,
     1999, 84: 167-172
    [33] Mahlon S. Wilson, Judith A. Valerio, Shimshon Gottesfeld, Low platinum
     loading electrodes for polymer electrolyte fuel cells fabricated using
     thermoplastic ionomers, Electrochimica Acta, 1995, 40(3): 355-363
    [34] Myoung-ki Min, Jihoon Cho, Kyuwoong Cho, Particle size and alloying effects
     of Pt-based alloy catalysts for fuel cell applications, Electrochimica Acta, 2000,
     45: 4211-4217
    [35] Shukla A K, Ravikumar M K, Arico A S et al, Methanol electrooxidation on
     carbon-supported Pt-WO3-x electrodes in sulphuric acid electrolyte, J. Appl.
     Electrochem, 1995, 25: 528-532
    [36] N. Alonso-Vante, I.V. Malakhov, S.G. Nikitenko, The structure analysis of the
     active centers of Ru-containing electrocatalysts for the oxygen reduction. An in
     situ EXAFS study, Electrochimica Acta, 2002, 47: 3807-3814
    [37] Ermete Antolini, Raimundo R. Passos, Edson A, Electrocatalysis of oxygen
     reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte
     fuel cells, Electrochimica Acta, 2002, 48: 263-270
    [38] D.R. McIntyre, G.T. Burstein, A. Vossen, Effect of carbon monoxide on the
     electrooxidation of hydrogen by tungsten carbide, Journal of Power Sources,
     2002, 107: 67-73
    [39] Tamizhmani G, Dodelet JP, Guay et al, Electrocatalytic activity of
     Nafion-impregnated pyrolyzed cobalt phthalocyanine, J. Electrochem. Soc.,
     1994, 141(1): 41-45
    [40] 吕鸣祥,申群英,一种新型高效氧还原电催化剂,电源技术,1987,60(5):
     48
    [41] Y. Kiros, O. Lindstrom, T. Kaimakis, Cobalt and cobalt-based macrocycle blacks
     as oxygen-reduction catalysts in alkaline fuel cells, 1993-Elsevier Sequoia
     57
    
    
    参考文献
    [42] E. Claude, T. Addou, J. M. Latour, A new method for electrochemical screening
     based on the rotating ring disc electrode and its application to oxygen reduction
     catalysts, Journal of applied electrochemistry, 1998, 28: 57-64
    [43] El Mouahid, A. Rakotondrainibe, P. Crouigneau, A UV-visible study of the
     electropolymerization of CoTAPP at vitreous carbon and investigation of its
     catalytic activity towards the electroreduction of dioxygen, Journal of
     Electroanalytical Chemistry, 1998, 455: 209-222
    [44] James P. Collman, Leng Leng Chng, David A. Tyvoll, Electrocatalytic reduction
     of dioxygen to water by iridium porphyrins adsorbed on edge plane graphite
     electrodes, Inorg. Chem., 1995, 34: 1311-1324
    [45] 王曾辉,高普生,碳素材料,上海:华东化工学院出版社,1991
    [46] A.B. 史泰尔斯等,催化剂载体与负载型催化剂,李大东,钟孝湘译,北京:
     中国化石出版社
    [47] 吉林大学化学系,催化作用基础,北京:科学出版社,1980
    [48] R.B. 安德生,P.T. 道森编,催化研究中的实验方法,长春应化所催化研究
     室译,北京:科学出版社,1983
    [49] Guerrero-Ruiz, P. Badenes, I. Rodr??guez-Ramos, Study of some factors
     affecting the Ru and Pt dispersions over high surface area graphite-supported
     catalysts, Applied Catalysis A: General, 1998, 173: 313-321
    [50] F. Coloma, A. Sepulveda-Escribano, F. Rodriguez-Reinoso, Heat-treated carbon
     blacks as supports for platinum catalysts, Journal of Catalysis 1995, 154:
     299-305
    [51] Yi Cheng Liu, Xin Ping Qiu , Yu Qing Huang, Methanol electro-oxidation on
     mesocarbon microbead supported Pt catalysts, Carbon, 2002, 40: 2375-2380
    [52] Roman-Maartinez, M.C. et al., Metal-support interaction in Pt/C catalysts,
     influence of the support surface chemistry and the metal precursor, Carbon, 1995,
     33(1): 3-13
    [53] 黄成德,田建华,史晶石,碳的热处理对PEMFC氧电极性能的影响,2001,
     18(6):444-446
    [54] E. Auer, A. Freund, J. Pietsch,Carbons as supports for industrial precious metal
     catalysts,Applied Catalysis A: General, 1998, 173: 259-271
    [55] S.R. de Miguel, J.I. Vilella, E.L. Jablonski, Preparation of Pt catalysts supported
     on activated carbon felts (ACF), Applied Catalysis A: General, 2002, 232:
     237-246
     58
    
    
    参考文献
    [56] Sepu?lveda-Escribano, F. Coloma, F. Rodr??guez-Reinoso, Platinum catalysts
     supported on carbon blacks with different surface chemical properties, Applied
     Catalysis A: General, 1998, 173: 247-257
    [57] A.E. Aksoylu, J.L. Faria, M.F.R. Pereira, Highly dispersed activated carbon
     supported platinum catalysts prepared by OMCVD: a comparison with wet
     impregnated catalysts, Applied Catalysis A: General, 2003, 243: 357-365
    [58] E. Antolini, Formation, microstructural characteristics and stability of carbon
     supported platinum catalysts for low temperature fuel cells, Journal of materials
     science, 2003, 38: 2995-3005
    [59] J.L. Figueiredo , M.F.R. Pereira, M.M.A. Freitas, Modification of the surface
     chemistry of activated carbons, Carbon, 1999, 37: 1379-1389
    [60] G.C. Torres, E.L. Jablonski, G.T. Baronetti, Effect of the carbon pre-treatment
     on the properties and performance for nitrobenzene hydrogenation of Pt/C
     catalysts, Applied Catalysis A: General, 1997, 161: 213-226
    [61] Gamez, D. Richard, P. Gallezot, Oxygen reduction on well-defined platinum
     nanoparticles inside recast ionomers, Electrochem. Acta., 1996, 41(16):
     2595-2600
    [62] J. Pollmann, R. Franke, J. Hormes, An X-ray photoelectron spectroscopy
     investigation of a novel Pd-Pt colloid catalyst, Journal of Electron Spectroscopy
     and Related Phenomena, 1998, 94: 219-227
    [63] Helmut Bonnemann, Wermer Brijoux, Tainer Brinkmann, et al., Preparation,
     characterization and application of fine metal particles and metal colloids using
     hydrotriorganoborates, J. Molecular catalysis, 1994, 86:129-177
    [64] D. Zeng, M.J. Hampden-Smith, Synthesis and characterization of nanophase
     group 6 metal(M) and metal carbide(M2C) powders by chemical reduction
     methods, J. Chem. Mater., 1993, 5: 681-689
    [65] J. Fourmier, G. Foubert, J.Y. Tilquin, High-performance, low Pt cotents for the
     electroreduction of oxygen in polymer-electrolyte fuel cells, J. Electrochem. Soc.,
     1997, 144(1): 145-154
    [66] Makoto Uchida, Yuko Fukuokam Yasushi Sugawara, Effects of microstructure
     of carbon support in the catalyst layer on the pergormance of polymer-electrolyte
     fuel cells, J. Electrochem. Soc., 1996, 143(7): 2245-2252
    [67] R. Ramkumar, S. Dheemadayalan, R. Pattabiraman, Development of porous
     carbon electrodes for direct methanol fuel cells, J. Power sources, 1997, 144(1):
     90-95
     59
    
    
    参考文献
    [68] Masahiro Watanabe, Makoto Rchida , Satoshi Motoo, Preparation of highly
     dispersed Pt+Ru alloy clusters and the activity for the electrooxidation of
     methanol, J. Electroanal. Chem., 1987, 229: 395-406
    [69] 沈培康,田植群,谢方艳,低温燃料电池纳米催化剂的制备方法,专利号:
     CN1395335A ,2003.2
    [70] M.J. Escudero, E. Hontan?o′n, S. Schwartz, Development and performance
     characterisation of new electrocatalysts for PEMFC, Journal of Power Sources,
     2002, 106: 206-214
    [71] Takako Toda, Hiroshi Igarashi, Masahiro Watanabe. Role of electronic property
     of Pt and Pt alloys on electrocatalytic reduction of oxygen. J Electrochem Soc,
     1998, 145: 4185
    [72] L. Xiong, A.M. Kannan, A. Manthiram, Pt-M (M=Fe, Co, Ni and Cu)
     electrocatalysts synthesized by an aqueous route for proton exchange membrane
     fuel cells, Electrochemistry Communications, 2002, 4: 898-903
    [73] Myoung-ki Min, Jihoon Cho, Kyuwoong Cho, et al. Particle size and alloying
     effects of Pt-based alloy catalysts for fuel cell applications. Electrochimica Acta,
     2000, 45: 4211
    [74] I J. Bregoll, The influence of platinum crystallite size on the electrochemical
     reduction of oxygen in phosphoric acid,J. Electrochemica Acta, 1978, 23(6):
     489-492.
    [75] G. Tamizhmani, J. P. Dodeler, D. Guay, Crystallite sizes effects of
     carbon-supported platinum on oxygen reduction in liquid acids, J. Elcctrochem,
     1996, 143(1): 18-23
    [76] S. Srinivasan, O. A. Velev, A. Parthasarathy, D. J. Manko, J. Power Sources,
     1991, 36: 299
    [77] Joelma Perez, Auro Auro A. Tanaka, Ernesto R. Gonzalez, Application of the
     flooded-agglomerate model to study oxygen reduction thin porous coating
     rotating disk electrode, J. Electrochem. Soc., 1994, 141 (2): 431-437
    [78] K. Kinoshita, Carbon: Electrochemical and physicochemical properties. New
     York: Wiley Chichester, 1983, 35
    [79] Zagal J H. Metallophthalocyanines as catalysts in electrochemical reactions, J.
     Coord. Chem. Rev., 1992, 119: 89-136
    [80] 曹忠良,王珍云,无机化学反应方程式手册,湖南:湖南科学技术出版社,
     1982:321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700