纳米线阵列电极的制备及其对甲醇电催化氧化特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着各类便携式电子产品的不断涌现,对小型燃料电池的需求随之增加,直接甲醇燃料电池(DMFC)因具有结构简单、污染小、易于小型化、使用方便等优点而受到越来越广泛的关注与重点研究。然而,目前用于催化氧化甲醇的电极材料其催化活性和催化稳定性均不是很高。因此,本论文的主要目的是研制对甲醇具有高催化活性、高稳定性且成本较低的阳极催化剂。目前,多数催化剂均采用负载型纳米催化剂,本研究中则是创新性地将催化剂制成金属纳米线阵列电极的形式,从而大大提高了对甲醇的电催化氧化性能。
     本论文借助阳极氧化铝(AAO)模板,通过交流电沉积的方式制备了金属Pt、Pd、Ni和Pd-Ni纳米线,并通过电化学测试方法对各纳米线阵列电极电催化氧化甲醇的性能进行了对比性研究,从而得出一种高催化性能、稳定性较好的纳米线阵列电极催化剂。论文的主要内容和研究结论如下:
     1.对纳米线阵列的应用和DMFC进行了概述,重点阐述了甲醇阳极氧化的电催化机理,系统介绍了DMFC的各种阳极催化剂,总结了目前研究阳极催化剂所面临的问题,并指出催化剂纳米化是当前研究催化剂的主要思路。
     2.确定了制备AAO模板的具体工艺流程。采用草酸溶液作为电解质,通过二次阳极氧化的方法来制备AAO模板,并通过逐级降电压的方法来减薄阻挡层。本研究工艺具有“利用较短时间能够制备出较大孔径、较薄阻挡层、较厚模板、排列高度有序的多孔氧化铝模板”的优点,与其它获得同样模板的工艺相比,大大缩短了制备时间。
     3.氧化铝膜的生长过程中存在着膜的电化学生成和化学溶解两个过程。多孔氧化铝膜的形成过程分为阻挡层的形成、微孔萌生和多孔层稳定生长三个阶段。从动力学角度来讲,氧化过程是一个溶液中反应粒子多相传质的过程。在前人对膜层结构形成机理的理论模型基础上提出本论文的理论模型一一“电场支持下的体膨胀应力溶解模型”。
     4.确定了制备金属纳米线及其阵列电极的具体工艺流程。本研究中通过交流电沉积的方式向AAO模板纳米孔洞中沉积制备了金属Pt、Pd、Ni和Pd-Ni纳米线,与文献中制备金属纳米线的工艺相比,本研究中的制备方法具有操作简单、方便易行、稳定性好的优点,这样既缩短了实验时间,又节约了成本,同时提高了制备样品的成功率。
     5.通过TEM、SEM、AFM、EDS、XPS和XRD等测试手段对不同处理条件下的AAO模板和金属Pt、Pd、Ni和Pd-Ni纳米线的形貌、结构与成分等进行了表征与分析。主要的研究结论如下:
     (1) AAO模板具有孔径约70~80nm的排列规则有序的纳米孔结构,孔密度为10~9~10~(10)cm~(-2),其膜厚可达47~48μm;模板中的Al:O原子基本符合化学计量比2:3,且在未经磷酸处理时AAO模板均为介于无定形Al_2O_3和晶态γ-Al_2O_3之间的过渡态多晶Al_2O_3,而经磷酸处理后则呈多晶态的AlPO_4。
     (2)纳米线呈实心线,中间无间断,其表面不够光滑呈毛刺状。线径约为65~75nm左右,与模板孔径基本接近;当沉积时间小于30min时,长径比为55~150左右,但若沉积时间延长至60min时,纳米线会超出模板表面横向生长以致彼此连成一片而覆盖模板。
     (3) XPS检测结果表明,Pt、Pd纳米线均为单质态,而Ni纳米线由于自然氧化以及在后处理过程中与碱液接触其表面生成了NiO与Ni(OH)_2,Pd-Ni纳米线中Pd、Ni处于简单的混合状态,而非固溶体;XRD检测结果表明这四种金属纳米线均为多晶态,而选区电子衍射(SAED)测试结果则表明Pd纳米线呈单晶态,这可能是由于Pd纳米线的特殊生长方式以及采用不同测试手段时电子束照射样品方式不同的缘故。
     6.研究了KOH碱性介质中甲醇分别在Pt、Pd、Ni和Pd-Ni平板电极与相应纳米线阵列电极上的循环伏安行为,分析了其在不同电极上的电催化氧化性能,得到如下结论:
     (1)在KOH溶液碱性介质中,Pt、Pd、Ni和Pd-Ni平板电极均表现出一定的催化氧化甲醇的能力,其催化活性顺序为:Ni>Pd-Ni>Pd>Pt;纳米线阵列电极对甲醇的电催化氧化活性很高,比相应的平板电极均提高了约10倍左右,其催化活性顺序仍为:Ni>Pd-Ni>Pd>Pt。
     (2)本研究中制备的金属纳米线阵列电极催化剂具有很高的催化活性,其催化氧化甲醇的氧化峰电流密度是文献中负载型纳米催化剂的5~70倍左右。这主要是由于纳米线阵列电极中金属纳米线拥有更高的电化学活性面积和更好的分散度,能够大大提高甲醇催化氧化活性点数量的缘故。
     7.采用循环伏安法和交流阻抗法对KOH碱性介质中Pt、Pd、Ni和Pd-Ni纳米线阵列电极上不同测试条件对甲醇电催化氧化性能影响的规律以及电极过程动力学进行了分析研究,主要结论如下:
     (1)随着扫描次数的增加,伏安曲线中甲醇的氧化峰电流密度均呈现不同程度的衰减。结果表明:Pt纳米线电极衰减最多,而Pd-Ni纳米线电极衰减最少,分别为30%和0.44%,从而确定了Pd-Ni纳米线阵列电极是一种稳定性很好且成本相对较Pt低的纳米线催化剂。
     (2)甲醇浓度为0.1mol/L时,Pt、Pd、Ni、Pd-Ni这四种纳米线阵列电极催化氧化甲醇的CV曲线中正扫氧化峰电流密度均与v~(1/2)成正比关系,这表明甲醇浓度为0.1mol/L时这四种电极上的催化氧化反应均受扩散步骤控制。若溶液中甲醇浓度增大,则电极上催化氧化甲醇的氧化峰电流密度均随之增大,表明电极表面甲醇被吸附氧化的量相应增加。
     (3)交流阻抗谱测试结果表明,电极电位为0.2V下,当甲醇浓度为0.1mol/L时,阻抗谱为一条直线,Pt、Pd、Ni、Pd-Ni纳米线阵列电极上甲醇的催化氧化反应均受扩散步骤控制;当甲醇浓度逐渐增大或电极电位逐渐增大时,阻抗谱变为半径逐渐减小的半圆弧,电极过程逐渐由扩散控制转变为电化学控制,且甲醇电催化氧化的速率均随之增加。
     由此可以得出,在KOH碱性介质中,Pt、Pd、Ni、Pd-Ni这四种纳米线阵列电极中,催化活性最高的是Ni纳米线电极,而催化稳定性最好的是Pd-Ni纳米线电极,催化活性与稳定性最差的是Pt纳米线电极。
     目前,虽然小型DMFC已产业化,但其催化剂并非纳米线阵列催化剂。经查新,本文研制的Pt、Pd、Ni、Pd-Ni四种金属纳米线阵列电极对甲醇的电催化氧化在国内外文献中均未见报道。
     综上所述,本论文已完成了Pt、Pd、Ni、Pd-Ni这四种金属纳米线阵列电极在KOH碱性介质中催化氧化甲醇的性能研究工作,对今后研究小型DMFC阳极催化剂开辟了新的思路,为制备纳米线阳极催化剂的研究工作提供了一定的技术措施与理论指导,对研究有机小分子的电催化氧化在理论上具有一定的借鉴与指导意义。
Recently, with the appearance of various portable electronic products,small fuel cells are getting more and more needed. Direct Methanol Fuel Cell(DMFC) is gaining extensive attention and research because of its manyadvantages, such as simple structure, little pollution, easy to be miniaturizedand convenient to be used, and so on. However, at present, electrode materialsused in DMFC have lower electro-catalytic oxidation activity for methanol andlower stability. Therefore, the main purpose of this thesis is preparing newelectro-catalysts with higher electro-catalytic oxidation activity, favorablestability and lower cost. Nowadays, most of catalysts are load nano-catalysts.The catalysts in this thesis are innovatively prepared into metal nanowires arrayelectrode so as to effectively enhance electro-catalytic oxidation activity formethanol.
     In the thesis, anodic aluminum oxide (AAO) film is used as template toprepare platinum, palladium, nickel and palladium-nickel nanowires byalternating current (AC) electro-deposition. Electro-catalytic oxidationactivities for methanol on the different nanowires array electrodes are comparedby electro-chemical testing. So a new nanowires array electrode catalyst isobtained which has higher electro-catalytic activity and favorable stability. Themain contents and conclusions in the thesis are as follows:
     1. Application of nanowires array and DMFC are reviewed briefly. Theelectro-catalytic mechanism of anodic oxidation for methanol is elaboratedemphatically. Various anodic catalysts in DMFC are introduced systematically.Many problems on researching anodic catalysts are summarized. The thesispoints that nano-catalyst is one of main thoughts in the research of catalysts.
     2. The technological process of preparation for AAO template is obtained.In this thesis, the oxalic acid is used as the electrolyte to prepare highly orderedAAO template by two anodic oxidation steps. The thickness of barrier layerslowly becomes thinner with the decrease of the anodic oxidation voltage stepby step. Compared with other technologies, the technology in this research is so advantageous that AAO template can be obtained in the short time. Moreover,the template has bigger pore diameter, thinner barrier, bigger thickness andhighly ordered pores.
     3. During the growing of alumina film, there are two courses, electro-chemical growth and chemical dissolution. The formation process of porousalumina film can be distinguished as formation of barrier layer, germination ofmicro-pores and stable growth of porous layer. From dynamics, anodicoxidation is a process of multiphase mass transfer of reaction particles in thesolution. On the base of the formation mechanism of AAO film from the formers,the thesis presents new mechanism that is named the model of stress anddissolution with the volume expand on the electronic action.
     4. The technological process of preparing metal nanowires and nanowirearray electrodes is obtained. In the thesis, metal platinum, palladium, nickel andpalladium-nickel are respectively deposited into nano-pores of AAO template byAC electro-deposition. So these four nanowires are successfully prepared.Compared with other technologies, the technique in this research has manyadvantages, such as simple step, convenient action and excellent stability, andso on. It can not only shorten experiment time, but also save cost and increasethe efficiency of preparing sample.
     5. Transmission electron microscopy (TEM), scanning electron microscopy(SEM), atomic force microscope(AFM), energy disperse spectroscopy (EDS),X-Ray photoelectron spectrometer(XPS) and X-Ray diffractomer (XRD) areemployed to investigate the morphology, crystal structure and elementcomposition of AAO template and metal platinum, palladium, nickel andpalladium-nickel nanowires obtained under different conditions. So the mainresults are as follows:
     (1) AAO template has highly ordered porous structure with 70~80nmpore diameter. Its thickness reaches about 47~48μm. Its pores density is about10~9~10~(10) cm~(-2). The atom ratio of aluminum and oxygen basically accords withtheory value 2:3. Crystal structure of the AAO template is intergradationmulti-crystal alumina between amorphism alumina and crystalloidγ-aluminawithout being etched by phosphorus acid. However, it is multi-crystal aluminum phosphate with being etched by phosphorus acid.
     (2) Nanowire is solid lines with no gap. It's not smooth but coarse on thesurface. The diameter of nanowire is about 65~75nm, which is close to poresdiameter of AAO template. When the deposition time is less than 30mins, theratio of length and diameter of nanowire is around 55~150. However, when thedeposition time is prolonged to 60mins, nanowires can surpass the templatesurface so that they connect with each other and cover the template.
     (3) XPS analysis indicates that platinum and palladium nanowires are allmono-atomic. Meanwhile, it shows that there are nickelous oxide and nickeloushydroxide on the surface of nickel nanowire because nickel may be autooxidatedin the atmosphere or react with alkaline solution. It also indicates thatpalladium-nickel is not solid solution but simple mixture with palladium andnickel in Pd-Ni nanowire. XRD analysis indicates that these four nanowires areall multi-crystal structure. However selected area electron diffraction (SAED)analysis indicates that palladium nanowire is monocrystal. It may be the reasonof the peculiar growth of palladium nanowire and different electron beamirradiation in different detection ways.
     6. The electro-catalytic oxidation of methanol on platinum, palladium,nickel and palladium-nickel plane electrodes and those on the nanowires arrayelectrodes are all investigated in the potassium hydroxide alkaline solution.Electro-catalytic oxidation activities of these four electrodes are respectivelyanalyzed. The results are as follows:
     (1) These four plane electrodes all exhibit some electro-catalytic activityfor methanol. The sequence is nickel>palladium-nickel>palladium>platinum.Electro-catalytic activities for methanol on the nanowires array electrodes areall 10 timeshigher than those on the corresponding plane electrodes. But thesequence of electro-catalytic activity is still nickel>palladium-nickel>palladium>platinum.
     (2) The nanowires array electrode catalyst in the research has quite highelectro-catalytic activity for methanol, which is 5~70 times than that of manyformer research. It is mainly because metal nanowires have biggerelectro-chemical active area and better disperse state so that they can greatly increase the quantity of electro-catalytic active points for methanol.
     7. By cyclic voltammetry and alternating current impedance,electro-catalytic oxidation of methanol in potassium hydroxide solution onplatinum, palladium, nickel and palladium-nickel nanowires array electrodes arecompared. The influences of catalytic oxidation activity for methanol in thedifferent testing conditions and the dynamics process on the electrodes arefurther studied. The results are as follows:
     (1) With the increase of scanning rounds, peak current densities ofoxidation on these four nanowires array electrodes all decrease in some extendin cyclic voltammetric curve. The results show that the decrease on platinumnanowires electrode is the most, while the decrease on palladium-nickelnanowires electrode is the least, respectively 30% and 0.44%. Therefore,palladium-nickel nanowires electrode is a new catalyst of favorable stability andlower cost compared with platinum nanowires electrode.
     (2) When the concentration of methanol is 0.1mol/L, peak current densitiesof oxidation during the positive scanning on these four nanowires electrodes areall proportional to the square of the scanning rate. It shows that oxidationreaction of methanol is controlled by the diffusing step. Moreover, peak currentdensities are all increasing with the concentration of methanol, which shows thatthe quantities of methanol absorbed on the electrodes are also correspondinglyincreasing.
     (3) When the concentration of methanol is 0.1mol/L, alternating currentimpedance appears a straight line under 0.2V. This demonstrates that theelectrode reaction is controlled by the diffusing step. With the increasingconcentration of methanol or the higher potential of electrode gradually,alternating current impedance appears an arc with the decreasing radius. Thisshows that the controlling step of electrode reaction changes from the diffusingstep to the electrochemical step. Simultaneously, the rate of electro-catalyticoxidation of methanol is also correspondingly increasing.
     So, in the potassium hydroxide solution, it can be seen that theelectro-catalytic activity for methanol on nickel nanowires array electrode is thehighest and the stability of palladium-nickel nanowires array electrode is the best. It also concludes that the electro-catalytic activity and the stability ofplatinum nanowires array electrode are the worst in the above four nanowiresarray electrodes.
     At present, although small DMFC has been already industrialized,catalysts in it are not metal nanowires array electrode catalysts. It has been notreported that electro-catalytic oxidation of methanol on platinum, palladium,nickel and palladium-nickel nanowires array electrodes in potassium hydroxidealkaline solution after studying the present lots of Chinese and foreignmaterials.
     Altogether, the thesis has already studied electro-catalytic oxidation ofmethanol on platinum, palladium, nickel and palladium-nickel nanowires arrayelectrodes in potassium hydroxide solution. It creates a new thinking ofresearching anodic catalyst used in small DMFC in the future. It can providesome techniques and theoretical direction for research in the future. It has usefulreference value and guide significance in the theory for researchers to studyelectro-catalytic oxidation of other organic small molecules.
引文
[1] 张力德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2] Murray C B, Shou-heng Sun, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices[J]. IBM. J. RES & DEV, 2001, 45: 47~56.
    [3] Bradley C C, Anderson W R, McClelland J J, et al. Nanofabrication via atom optics. Applied Surface Science, 1999, 141, Issues 3-4, 210~218.
    [4] Campbell D, Farnan G, Walmsley D. Field enhanced fabrication of metallic nanostructures using millisecond plused scanning tunneling microscope. Nanotechnology, 2001, 12: 69~74.
    [5] Wu A T, Koshizuka N. Nanostructures fabricated on the as-prepared surfaces of NdBa_2Cu_3O_y temperatures superconductor using scanning tunnel microscope. Nanotechnology, 2001, 12: 80~83
    [6] Enrique H, Lisa. J B. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 2001, 101: 1897~1930.
    [7] Prinz V Y, Grutzmacher D, Beyer A, et al. A new techique for fabricating three-dimensional micro and nanostructures of various shapes. Nanotechnology, 2001, 12: 399~402.
    [8] Marek M, Ray F E. Thin film regular array structures with 10~100nm repeat distance. Nanotechnology, 2001, 12: 11~13.
    [9] Saner G, Brehm G, et al. Highly ordered monocrystalline silver nanowire arrays[J]. Appl Phys, 2002, 91(5): 3243~3246.
    [10] 黄德欢.纳米技术与应用[M].上海:中国纺织大学出版社.2001.
    [11] 王臻,力虎林.模板合成法制备金的纳米线的研究[J].高等学校化学学报,2002,23(4):721~726.
    [12] Tacconi N R, Rajeshwar K. Template- synthesized nanoscopic gold particles: Optical spectra and effects of particle size and shape. Electrochimica Acta, 2002, 47: 2603~2607.
    [13] Zhang H, Zhang M, et al. Carbon nanotubes and their emission properties. J.Appl Phys, 2000, 879: 4718~4723.
    [14] Moskovits M. Process for manufacture of quantum dot and quantum wire semiconductor. U. S. P: 5202290. 1993.
    [15] 周剑章,董平,蔡成东等.化学修饰阳极氧化铝模板法合成小尺寸聚苯胺纳米线[J].物理化学学报,2004,20(11):1287~1291.
    [16] 王成伟,彭勇等.α-Fe纳米线阵列膜磁各项异性的穆尔斯堡谱研究.物理学报,1999,48(11):2146~2150.
    [17] Bandyopadhyay S, Menon L, et al. Self-assembled networks with neural. Computing attributes. Smart Mater Struct, 2002, 11: 761~765.
    [18] 翁寿松.纳米半导体器件及其应用[J].微电子技术,2003,31(5):1~4.
    [19] Moskovits M, Li J, et al. Controlled synthesis and metal filling of aligned carbon. U. S. P: 6129901, 2000.
    [20] Dickey E C, Varghese O K, et al. Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina film. Sensor, 2002(2): 91~95.
    [21] Holland E R, Li Y, et al. Displays large area gridded field emitter arrays using anodised aluminium. 2000, 21, 99~104.
    [22] 邵庆辉,谢方艳.燃料电池用纳米催化剂的研究[J].电池,2002,32(3):153~155.
    [23] K. Nielsch, R. B. Wehrspohn, J. Barthel, et al. High density hexagonal nickel nanowire array. Journal of Magnetism and Magnetic Materials, 2002, 249: 234~240.
    [24] Moskovits M, Li J, et al. Controlled synthesis and metal filling of aligned carbon US Patent No. 6,129,901(filed Oct.10,2000)
    [25] Moskovits M, Xu J M, et al. Surface functionalization of cadmium sulfide quantum-confined US Patent No. 5,581,091(filed Dec.3, 1996)
    [26] Holland E R, Li Y, et al, Displays, Large area gridded field emitter arrays using anodised aluminium.2000,21,99
    [27] Lu B, Bharathulwar S, et al. Time and orientation dependence of ordering in anodized aluminum for self-organized magnetic arrays .J Appl Phys, 2000, 87 9: 4721
    [28] 陈敬中,刘剑洪.纳米材料科学导论[M].北京:高等教育出版社.
    [29] 赵燕.一维纳米材料的电化学模板法制备与表征[青岛大学硕士学位论文].青岛:青岛大学,2004.
    [30] 郭敏,刁鹏,蔡生民.有序纳米线/棒/管阵列材料的研究进展[J].化学通报,2006,(12):883~891.
    [31] Dickey E C, Varghese O K, et al. Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina film sensor, 2002(2): 91.
    [32] Varghese O K., Gong D, et al. Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth J Mater Res, 2002, 17(5): 1162
    [33] 朱荣凯,黎亚明.多孔电沉积制备纳米线[J].应用科技,2002,29(1):52~54.
    [34] G. Che, B. B. Laskhmi, E. R. Fisher, et al. Nature, 1998, 393: 346~348.
    [35] X. Y. Zhang, L. D. Zhang, W. Chen, et al. Chem. Mater, 2001,13(8):2511~2515.
    [36] Y. T. Peng, G. W. Meng, Q.Fang, et al. Nanotechnology, 2003,14:20~24.
    [37] Zhao J, Gao Q.Y, Yang Y, et al. Template synthesis of nano-structural electrode materials and in electrochemical performance [J]. Electrochemistry, 2000,6(4): 393~398.
    [38] 潘善林,张活力,彭勇.模板合成法制备金纳米线的研究[J].高等学校化学学报,1999,20(10):1622~1624.
    [39] 马迪,李淑英.阳极氧化铝样模法制备纳米线阵列的发展概况[J].材料保护,2004,37(2):30~32.
    [40] 苏爱华,李长志,孙公权等.直接甲醇燃料电池中阳极催化剂的研究进展[J].电源技术,1995,19(6):31~35.
    [41] M. Waidhas, W. Drenckhahn, W. Preidel and H. Landes. Direct-fuelled fuel cell. J. Power Sources, 1996, 61: 91~97.
    [42] 李建玲,毛宗强.直接甲醇燃料电池研究现状及主要问题[J],电池,2001,31(1):36~39.
    [43] 刘建国,衣宝廉,魏昭彬.直接甲醇燃料电池的原理、进展和主要技术问题[J],电源技术,2001,25(5):363~366.
    [44] M. P. Hogarth and G. A. Hards, Direct Methanol Fuel Cells Technological Advances and Further Requirements, Platinum Metals Rev. 1996, 40(4): 150~159.
    [45] A. Bewick, K. Kunimatsu, B. S. Pons. Electrochim. Acta., 1980, 25: 465~470.
    [46] E. Herrero, W. Chrzanowski, A.Wieckowski, J.Phys.Chem, 1995, 99: 10423~10426.
    [47] L-W H. Heung, M. J. Weaver, Langmuir., 1990, 6: 323~326.
    [48] J. Clavilier, C. Lamy and J. M. Leger, Electrocatalytic oxidation of methanol on single crystal platinum electrodes. Comparison with polycrystalline platinum. J. Electroanal. Chem. 1981(125):249-254.
    
    [49] C. Lamy, J. M. Leger, J. Clavilier, Structural effects in the electrooxidation of methanolin alkaline medium : Comparison platinum single crystal and polycrystalline electrodes. J.Electroanal. Chem. 1981(135): 321 - 328.
    [50] P. A. Christensen, A. Hamnet and Q L. Troughton, The Role of Morphology in the Methanol Electro-Oxidation Reaction, J. Electroanal. Chem., 1993,362, 207-218.
    
    [51] S. Mukerjee, J. McBreen, Efect of particle size on the electrocatalysis carbon-supported Pt electrocatalysts: an in situ XAS investigation.J. Electroanal. Chem.,1998 (448),163 -170.
    [52] K. Kinoshita, Particle Size Efects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolyte, J. Electrochem. Soc, 1990, 137(3):845-848.
    [53] H. A. Gasteiger, N. Markovic, P. N. Ross, Jr., and E. J. Cairns, Temperature -Dependent Methanol Electro-Oxidation on Well-Characterization Pt-Ru Alloys, J. Electrochem. Soc, 1994, 141(7):1795-1803.
    
    [54] H. A. Gasteiger, N. Markovic, P. N. Ross, Jr., and E. J. Cairns, Methanol Electrooxidation on Well-Characterized Pt-Ru Alloys, J. Phys. Chem., 1993, 97(46):12020-12029.
    
    [55] P.C.Biswas,M.enyo,Electrooxidation of methanol on graphite-supported perovskite-modified Pt electrodes in alkaline solution, J.Electroanal. Chem. 1992, 322,203 - 224.
    
    [56] M.Beltowska-Brzezinska and J.Heitbbaum, On the anodic oxidation of formadehyde on Pt, Au and Pt/Au alloy electrodes in alkaline solution. J.Electroanal.Chem.1985,183,167-181.
    [57] M.Beltowska-Brzezinska, electrochemical oxidation on formaldehyde on gold and sliver. Electrochim.Acta,1985,30,1193-1198.
    [58] A.R.Landgrebeand, K.Klunder, Electrochem.Soc.Meeting, Abstrct, Dallas,1975.
    
    [59] E.ticanelli, J.G.Beery,M.T.Paffett,etal.An electrochemical, Ellipsometric and surface science investigation of the PtRu Bulk alloy surface, J.Electroanal.Chem. 1989,258,61 - 77.
    [60] K.Wang,H.A.gasteiger,N.M.Markovic,etal. On the reation pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces, Electrochim. Acta,1996,41,2587-2593.
    
    [61] Grgur B N, Markovic N M, Ross P N. J.Electrochem. Soc. 1998,102:2494-2499.
    
    [62] 陈国良,陈声培,林珩等.Pt及其修饰电极上甲醇吸附和氧化的CV和EQCM研究[J].电化学,2001,7(4):452-458.
    
    [63] Akiko Aramata, Takuro Kodera, Makihiko Masuda,Electrooxidation of methanol on platinum bonded to the solid polymer electrolyte,Nafion, J.Appl.Electrochem. 1998,18,577-582.
    [64] F.Kadirgam, B.Beden,J.M.Leger, Synergistic effect in the electrocatalytic oxidation of methanol on platinum+palladium alloy electrode, J.Electroanal.Chem. 1981,125,89-103.
    [65] D.F.A.Koch,Ausrilian,Pat.P:46123,1964.
    [66] M. Gotz, H. Wendt, Binary and Ternary Anode Catalyst Formulations Including the Elements W,Sn and Me for PEMFCs Operated on Methanol or Reformate Gas, Electrochim. Acta 1998, 43, 3637-3644.
    [67] Z. Jusys,T.J. Schmidt, L. Dubau, K. Lasch, L. Mrissen, J. Garche and R. J. Behm, Activity of PtRuMeOx (Me=W, Mo or V) Catalysts towards Methanol Oxidation and Their Characterization, J. Power Sources, 2002, 105, 297- 304.
    [68] R. X. Liu, H. Iddir, Q. B. Fan,GY. Hou, A. L. Bo, K. L. Ley, E. S. Smotkin,Y.E. Sung, H.Kim, S. Thomsa and A. Wieckowski, Potential-Dependent Infrared Absorption Spectroscopy ofAdsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu,PtOs, PtRuOs, and Ru Elctrodes, J. Phys. Chem. B, 2000, 104:3518-3531.
    [69] K.Lasch, L.Joridden, et al, Power Sources, 1999,84:22-27.
    [70] A. Lima, C. Coutanceau, et al., Applied Electrochemistry, 2001,31:379-383
    [71] Claude Lamy, Alexandre Lima, Veronique Lerhum, etal. J. Power Source, 2002,105:283-296.
    [72] B. Gurau, R. Viswanathan, R. X.Liu,T.J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A.Sapienza, B. C. Chan,T.E. Mallouk, S. Sarangapani, Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-Oxidation, J. Phys. Chem. B, 1998, 102, Iss. 49, 9997~10003.
    [73] W. C. Choi, J. D. Kim, et al. Catalysis Today, 2002, 74: 235~238.
    [74] 李兰兰,魏子栋,李莉等.DMFC中甲醇氧化催化剂的催化机理[J].电源技术,2004,28(5):324~327.
    [75] D. R. Rolison, L. Hagans, K. E. Swider and J. W Long, Role of Hydrous Ruthenium Oxide in Pt-Ru Direct Methanol Fuel Cell Anode Electrocatalysts: The Importance of Mixed Electron/Proton Conductivity, Langmuir, 1999, 15(3): 774~779.
    [76] J. W. Long, R. M. Stroud, K. E. Swider-Lyons and D. R. Rolison, How to Make Electrocatalysts More Active for Direct Methanol Oxidation-Avoid PtRu Bimetallic Alloys!, J. Phys. Chem. B,2000, 104(42): 9772~9776.
    [77] D. R. Rolison, Catalytic Nanoarchitectures-Importance of Nothing and the Unimportance of Periodicity, Science, 2003, 299, 1698~1700.
    [78] Anderson A B, Grantscharora E, Shiller P. On the lack of activity of substitutional Sn atoms toward the electro-oxidation of Co on Pt anodes, molecular orbital theory [J]. J Electrochem Soc, 1995, 142: 1880~1887.
    [79] M. Watanabe, Y Furuuchi, S. Motoo, Electrocaysis by ad-atoms: Part ⅩⅢ. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells. J. Electroanal. Chem. 1985, (191): 367~375.
    [80] Frelink T, Visscher W, Vanveen J A R. The effect of Sn on Pt/C catalysts for the methanol electrooxidation[J]. Electrochem Acta, 1994, 39: 57~62.
    [81] 王恒,雷汉伟,高翠琴等.Sn/Pt[111]修饰电极对甲醇氧化的电催化[J].武汉大学学报(自然科学版),1999,45(6):777~780.
    [82] A. S. Arico, V. Antonucci, N. Giordano, Methanol oxidation on carbon-supported platinum-tin electrodes in sul(uric acid. J. Power Sources, 1994 (50), 295~309.
    [83] 魏子栋,三木敦尸,大森唯义等.甲醇在Pd-Sn/Pt电极上催化氧化[J].物理化学学报,2002,12(18):1120~1126.
    [84] K. Wang, H. A. Gasteiger, N. M. Markovic, and P. N. Ross, Jr., On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochim. Acta,1996(41): 2587~2593.
    [85] W. Napporn, H. Laborde, J. M. Leger, etal. J. Electroanal.Chem.1996,404: 153~156
    [86] Lee S.J, Mukerjee S, Ticianelli E.A, et al. J.Electrochimica Acta, 1999,44:3283~3290.
    [87] Yu Morimoto, Ernest B Yeager. J.Electroanal. Chem, 1998,441:77~83.
    [88] K. Lasch, G Hayn, L. Jorissen, J. Garche and O. Besenhardt, Mixed conducting catalyst support materials for the direct methanol fuel cell. J. Power Sources, 2002,105:305-310.
    [89] Gotz M, Wendt H. Electrochimica Acta [J], 1998,43(24):3637~3643.
    [90] Deryn Chu, Rongzhong Jiang. Solid State Ionics. 2002, 148: 591~599.
    [91] T. E. Shubina and M. T. M. Koper, Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces. Electrochem. Acts, 2002 (47), 3621-3628.
    [92] Claude Lamy, Alexandre Lima, Veronique Lerhum, etal. J. Power Source, 2002,105:283~296.
    [93] Bogdan G, Rameshkrishnan V. J Phys Chem B [J], 1998, 102: 9997~10004.
    [94] Gotz M, Wendt H. Electrochimica Acta [J], 1998,43(24):3637~3643.
    [95] Lima A, Coutanceau C, Leger J, etal. J Appl Electrochem[J], 2001,31:379~385.
    [96] 陈胜洲,董新法,钟文健等.PtRuMo/C催化剂的制备及其对甲醇的电催化氧化作用[J].应用化学,2004,21(6):633~636.
    [97] R. X. Liu, H. Iddir, Q. B. Fan, G Y Hou, A. L. Bo, K. L. Ley, E. S. Smotkin, Y E. Sung, H. Kim, S. Thomas and A. Wieckowski, Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single phase Pt, PtRu, P10s, PtRu0s, and Ru electrodes. J. Phys. Chem. B, 2000 (104), 3518-3531.
    [98] E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin and T. E. Mallouk, Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998 (280) 1735-1737.
    [99] A. S. Arico, Poltarzewski Z, Kim H et al. Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells. J. Power Sources, 1995 (55) 159-166.
    [100] A. S. Arico, Kim H, Shulka A.K, etal. Electrochim. Acta, 1994, 39: 691~699.
    [101] 魏杰,杨红,杨玉光等.磷钼酸修饰铂电极的电化学行为及对甲醇氧化的电催化作用[J].无机化学学报,2003,19(9):945~949.
    [102] 陈国良,陈声培,林珩等.Pt及其修饰电极上甲醇吸附和氧化的CV和EQCM研究[J].电化学,2001,7(4):452~458.
    [103] Hamnett A, Kennedy B.J, Weeks S.A. J Electronanl Chem, 1998,240: 349~356.
    [104] Pelkang Shen, Kunyao Chen Alfred C.C. Tseung J.Chem.soc,Faraday Trans. 1994, 90(20): 3089~3096.
    [105] 黄俊杰,杨辉,唐亚文等.Pt羰基簇合物途径制备的Pt/C催化剂对甲醇的电催化氧化[J].南京师大学报(自然科学版),2003,26(3):40~46.
    [106] Elise Marucchi Soos, David Terence Buckldy, Richard James Bellows. U.S.Patent: 5922488.
    [107] A.S. Arico, Poltarzewski Z, Kim H et al., Investigation of A Carbon-Supported Quaternary Pt-Ru-Sn-W Catalyst for Direct Methanol Fuel Cells, J. Power Sources, 1995, 55, 159~166.
    [108] Ken-ichi Machida, Michio Enyo. J.Electrochem. Soc. 1988, 135: 1955~1961.
    [109] Shen P K, Chen K Y, Tseung A C C. J Electrochem. Soc, 1995,142:L85~L90.
    [110] 文纲要,张颖,杨正龙等,甲醉阳极电催化氧化剂的研究.电化学,1997,(4):73~77.
    [111] M. Gdtz and H. Wendt, Binary and ternary anode catalyst formulations including the elements.W. Sn and Mo for PEMFCs operated., methanol or refOrmate gas. Electrochim.Acts, 1998 (43),3637~3644.
    [112] 刘长鹏,杨辉,邢巍等.直接甲醇燃料电池中碳载Pt-TiO_2阳极复合催化剂的研究[J].南京师大学报(自然科学版),2001,24(2):55~57.
    [113] Longoni G, Chini P. Synthesis and chemical characterization of platinum carbonyl dianions [Pt_3(CO)_6]_n~(2-)(n=~10, 6, 5, 4, 3, 2, 1) a new series of inorganic oligomer [J]. J Am Chem Soc, 1976, 11: 7225~7231.
    [114] Cui W Q, Qian T W. Catalyst Handbook [M]. Beijing: Chemical Industry Press, 1982.
    [115] 唐亚文,杨辉,魏少华等.固相反应制备Pt/C催化剂[J].精细化工,2003,20(12):718~723.
    [116] 马国仙,唐亚文,杨辉等.固相反应法制备的Pt/C催化剂对乙醇氧化的电催化活性研究[J].南京师大学报(自然科学版),2002,25(3):118~119.
    [117] 刘长鹏,杨辉,邢巍等.碳载Pt-TiO_2复合催化剂对甲醇氧化的电催化性能[J].高等学校化学学报,2002,23(7):1367~1370.
    [118] 姚忠华,杨辉,唐亚文等.碳载Pt-TiO_2阳极催化剂对甲醇氧化的电催化活性和稳定性[J].南京师大学报(自然科学版),2002,25(3):120~121.
    [119] 刘长鹏,杨辉,邢巍等.铂、钌共修饰的氧化钛电极对甲醇的电催化氧化[J].应用化学,2001,18(7):517~520.
    [120] 方度,杨维驿.全氟离子交换膜的制法、性质和应用[M].化学工业出版社,1993.
    [121] M. Goetz, H. Wendt. J. Applied Electrochemistry. 2001, 31: 811~817.
    [122] Chi-Ming Che, Wai-Tong Tang, Wai-On Lee, etal. J. Chem. Soc. Dalton Trans. 1992, 1551~1556.
    [123] Chi-Keung LI, Wai-Tong Tang, Chi-Ming Che, etal. J. Chem. Soc. Dalton Trans. 1991, 1909~1914.
    [124] 沈家庭,李将渊.阳极电催化剂在直接甲醇燃料电池中的应用[J].平顶山师专学报,2003,18(5):49~53.
    [125] 陈敬中,刘剑洪.纳米材料科学导论[M].第1版.北京:高等教育出版社,2006.
    [126] 姚彦丽,张岱,复兴华等.碳纳米管负载金属Pt催化剂的制备和机理研究[J].无机化学学报,2004,20(5):531~535.
    [127] 唐亚文,包建春,周益明等.碳纳米管负载铂催化剂的制备及其对甲醇的电催化氧化研究[J].无机化学学报,2003,19(8):905~908.
    [128] 陈卫祥,韩贵,LEE,Jim-Yang等.Pt/CNT纳米催化剂的微波快速合成及其对甲醇电化学氧化的电催化性能[J].高等学校化学学报,2003,24(12): 2285~2287.
    [129] 陈卫祥,LEE,Jim-Yang,刘昭林.微波合成碳负载纳米铂催化剂及其对甲醇氧化的电催化性能[J].化学学报,2004,62(1):42~46.
    [130] G. L. Che, B. B. Lakshmi, C. R. Martin and E. R. Fisher, Metal-nanoclusterfilled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production. Langmuir, 1999, 15: 750-758.
    [131] 赵峰鸣,马淳安.Pt/纳米管空气电极氧还原反应的电催化性能[J].电化学,2004(10):384~390.
    [132] MacGillavry D, Rideal E. K. Recl Trav. Chim. Pays-Bas, 1937, 56: 1013~1017.
    [133] 孔景临,薛宽宏,何春建等.镍纳米线电极的电化学氧化还原行为及其乙醇的电化学氧化催化作用[J].应用化学,2001,18(6):462~465.
    [134] 孔景临,薛宽宏,邵颖等.镍纳米线电极对乙醇的电催化氧化动力学参数的测定[J].物理化学学报.2002,18(3):268~271.
    [135] 刘虹雯,候士敏,张耿民等.电化学沉积金纳米线结构及其电学特性[J].物理化学学报,2002,18(4):359~363.
    [136] 邓妹皓,龚竹青,陈文汨.电沉积纳米晶体电催化电极的制备及性能[J].中南工业大学学报,2002,33(6):571~575.
    [137] Huot J Y, Trudeau M L, Schulz R. Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis. J. Electrochem. Soc. 1991, 138(5): 1316~1321.
    [138] Yamashita H, Yamamura T, Yashimoto K. The relation between catalytic ability for hydrogen evolution reaction and characteristics of nickel-tin alloys. J. Electrochem. Soc. 1993, 140(8): 2238~2243.
    [139] Yahikozawa K, Fujii Y, Matsuda Y, etal. Electrocatalytic properties of ultrafine platinum particles for oxidation of methanol and formic acid in aqueous solutions. Electrochim. Acta, 1991, 36(5/6): 973~978.
    [140] 王凤武,魏亦军,褚道葆.纳米TiO_2-Pt修饰电极的制备及电催化活性[J].应用化学,2004,21(4):378~382.
    [141] 董宗木,苏桂琴,褚道葆等.铂微粒修饰纳米二氧化钛电极对甲醇催化氧化的研究[J].安徽师范大学学报,2003,26(4):364~366.
    [142] 褚道保.电合成法制备纳米材料及纳米材料电极上的电催化合成[J].精 细化工,2000,17(增刊):10~12.
    [143] 李小芳,张亚利,孙典亭等.甲醇、甲醛和甲酸在碳载纳米Pt电极上的催化氧化[J].青岛大学学报,2004,19(1):47~54.
    [144] 陈卫,孙世刚,司迪等.团聚铂纳米粒子电极在甲醇氧化中的电催化特性[J].物理化学学报,2003,19(5):441~444.
    [145] 周海晖,焦树强,陈金华等.Pt微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化[J].物理化学学报,2004,20(1):9~14.
    [146] Jong-Ho Choi, Kyung-Won Park, Hye-Kyung Lee, etal. Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell. Electrochimica Acta, 2003, 48: 2781~2789.
    [147] 张焰峰,李忠,杨书延等.微波胶体法制备PEMFC纳米Pt/C电催化剂[J].化学研究与应用,2004,16(4):527~529.
    [148] 陈国良,孙世刚,陈声培等.乙醇在碳载Pt纳米薄膜电极上吸附氧化过程的研究-Ⅰ.碱性介质中循环伏安和原位FTIR反射光谱[J].电化学,2000,6(4):406~411.
    [149] An-Ping Li, Frank Miiller, Albert Birner, et al. Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina[J]. Advanced Materials, 1999,11(6): 483~487.
    [150] 孙冬梅.纳米阵列电极的样模法制备及应用研究[南京师范大学硕士学位论文].南京:南京师范大学,2000.
    [151] A. P. Li, F. Muller, U. Gosele. Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina [J]. Electrochemical and Solid-state Letters, 2000, 3(3): 131~134.
    [152] 覃东欢,彭勇,王成伟等.Co-Ni合金纳米线有序阵列的制备与磁性研究[J].物理学报,2001,50(1):144~148.
    [153] 姚素薇,孔亚西,迟广俊.多层纳米线的研究进展[J].化工进展,2004,23(2):136~139.
    [154] 辛勤.固体催化剂研究方法[M].北京:科学出版社,2004.
    [155] 周玉,武高辉.材料分析测试技术——材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社.1998.
    [156] Yang S G, Zhu H, Ni G. A study of cobalt nanowire arrays. J. Appl. Phys. 2000, 33: 2388~2390.
    [157] 任刚,许如清,韩立等.利用扫描电镜和原子力显微镜测量纳米微孔阳极氧化铝膜[J].实验技术,2003,32(1),36~41.
    [158] Aleksander D, Vitally P P. Electrochemistry of Aluminum. Morden Aspect of Electrochemistry. Plenum Press, New York, 1989, 20, 403~407.
    [159] 王艳芝.铝及其合金阳极氧化技术研究的进展[J].材料保护,2001,34(9):22~23.
    [160] Komelius Nielsch, Jinsub Choi, Kathrin Schwim. Self-ordering regimes of porous alumina: the 10% porosity rule. Nano Letters, 2002, 0(0): A~D.
    [161] 吴玉程,马杰,解挺,等.氧化铝纳米有序阵列模板的制备工艺及应用[J].中国有色金属学报,2005,15(5):680~687.
    [162] Itaya kingo, Sugawara Shizuo, Arai Kunio,et al. Properties of porous anodic aluminum oxide films as membranes[J]. J.Chem.Eng, 1984,17(5): 514~520.
    [163] D. Almawlawl, N.Coombs, M.Moskovits. Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size [J]. J.Appl.Phys, 1991,70(8): 4421~4425.
    [164] 张志强.硫酸阳极氧化条件和材质对铝材光泽度的影响[J].材料保护,1999,32(9):18~19.
    [165] J. Choi, K. Nielsch, M.Reiche, etal. Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp [J]. J.vac.Sci.Technol. 2003, B21(2): 763~766.
    [166] L.Menon, M.Zheng, H.Zeng, et al. Size dependence of the magnetic properties of electrochemically self-assembled Fe quantum dots. Journal of Electronic Material. 2000, 29(5): 510~514.
    [167] 黄伯贤,井红旗.多孔阳极氧化铝膜的生长规律[J].河北师范大学学报(自然科学版),2006,30(3):301~304.
    [168] Shimizu K, Kobayashi K, Thompson G E, et al. Development of porous anodic films on aluminum[J]. Philos. Mag., 1992, 66A: 643~647.
    [169] Sachiko Ono, Makiko Saito, Miyuki Ishiguro, et al. Controlling factor of self-ordering of anodic porous alumina [J]. J. Electrochem.soci. 2004,151 (8): B473~B478.
    [170] 马迪,李淑英.影响多孔阳极氧化铝膜结构特性因素的研究[J].电镀与精饰,2006,28(1):10~13.
    [171] Robin C F, Willian R R, Alexander P D. Porous Films and Method of Forming them. U. S. P: 4687551,1987.
    [172] 杨培霞,安茂忠.预处理工艺对制备多孔阳极氧化铝膜的影响[J].材料工程,2005,(9):26~29.
    [173] Pingye Deng, Xinde Bai, Xiaowen Chen, etal. Anodic oxidization of aluminum at high current densities and mechanism of film formation [J]. J.electrochem.soci., 2004,151(5): B284~B289.
    [174] 李淑英,宋琛.多孔阳极氧化铝膜的最佳制备工艺研究[J].表面技术,2006,35(3):31~35.
    [175] Ping Ye Deng, Xin De Bai, Xiao Wen Chen, et al. Anodic oxidization of aluminum at high current densities and mechanism of film formation. Journal of the electrochemical society, 2004, 51(5): B284-B289.
    [176] 王银海,牟季美,蔡维理,等.纳米Cu/Al3O2组装体模板合成与光吸收[J].物理学报,2001,50(9):1751~1755.
    [177] Dmitri A. B, Marcos J. B, Matthew J. B, et al. Fabrication of anisotropic super hydrophobic/hydrophilic nanoporous membranes by plasma polymerization of C_4F_8 on anodic aluminum oxide. J.electrochem.soci. 2004, 151(8): B484~B489.
    [178] K. Nielsch, F. Muller, G. Liu, et al. Magnetic nanowire arrays obtained by electro-deposition in ordered alumina templates [J]. Adv.Mater. 2000, 12, 582~585.
    [179] O. Jessensky, F. Muller, U. Gosele, et al. Self-organized formation of hexagonal pore arrays in anodic alumina [J]. Applied physics letters. 1998, 72(10): 1173~1175.
    [180] A. P. Li, F. Muller, A. Birner, et al. Ploycrystalline nanopore arrays with hexagonal ordering on aluminum [J]. J.vac.Sci.Technol.A, 1999,17(4): 1428~1431.
    [181] 许彦旗,蔡维理,王银海等.镍有序纳米孔洞阵列厚膜的制备和表证[J].物理化学学报,2001,17(11):991~994.
    [182] 鲍英,杨金凯,王积森,等.纳米线的电沉积模板法合成[J].山东机械,2003,(3):46~48.
    [183] A. P. Li, F. Muller, A. Birner, et al. Hexagonal pore arrays with a 50~420nm interpore distance firmed by self-organization in anodic alumina [J]. 1998, 84(11): 6023~6026.
    [184] 董艳峰,李清山.多孔铝纳米阵列模板的形成及其机理分析[J].曲阜师范大学学报,2002,28(3):54~56.
    [185] 孙秀玉,徐发强,李宗木,等.阳极氧化铝模板的结构和性能表征及形成机理[J].中国科学技术大学学报,2006,36(4):432~435.
    [186] 杨培霞.离子液体中以PAA为模板电沉积钴纳米线阵列的研究[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [187] Sachiko O, Makiko S, Miyuki I, et al. Controlling Factor of Self-Ordering of Anodic Porous Alumina. Journal of Electrochemical Society. 2004, 151(8): B473~B478.
    [188] 赵坚.模板法合成纳米结构锂离子电池电极材料的研究[J].厦门:厦门大学,2001.
    [189] Jessenkey O, Muller F, Gosele U. Self-organized formation of Hexagonal pore arrays in anodic alumina. Applied Physics Letters, 1998, 72(10): 1173~1175.
    [190] I. Vrublevisky, V. Parkoun, J. Schreckenbach, etal. Effect of the current density on the volume expansion of the depOsited thin films of aluminum during porous oxide formation [J]. Applied surface science, 2003, 220, 51~59.
    [191] Xu Y, Thompson G. E, Wood G. C. Trans. Inst. Met. Finish, 1985, 63: 98~102.
    [192] Sasaki Y. J. Phys. chem, 1968, 13, 177~180.
    [193] Makushok Y E, Parkhuit V P, et al. J Phys D: Appl Phys, 1994, 27: 661~665.
    [194] Parkhutik V P, Shershulsky V I. J Phys D: Appl Phys, 1992, 25: 1258~1262.
    [195] Macdonald D D. J Electrochem Soc, 1993, 145: 2295~2299.
    [196] 胡永明,顾豪爽,郑凯泓,等.多孔阳极氧化铝六方纳米孔阵列的自组装生长研究[J].湖北大学学报(自然科学版),2005,27(1):33~36.
    [197] Jin Luo, Yongbing Lou, Mathew M. Maye, et al. An EQCN assessment of electrocatalytic oxidation of methanol at nanostructured Au-Pt alloy nanoparticles [J]. Electrochemistry Communications, 2001, 3: 172~176.
    [198] M. Avramov-Ivic, V. Jovanovic, G. Vlajnic, et al. The electrocatalytic properties of the oxides of noble metals in the electro-oxidation of some organic molecules. Journal of Electroanalytical chemistry, 1997, 423: 119~124.
    [199] Xin Zhang, Feng Zhang, Kwong-Yu Chan, et al. Preparation of Pt-Ru-Co trimetallic nanoparticles and their electrocatalytic properties[J]. Catalysis Communications 2004, 5: 749~753.
    [200] Jong-Ho Choi, Kyung-Won Park, Hye-Kyung Lee, et al. Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell[J]. Electrochimica Acta 2003,48: 2781~2789.
    [201] Jin Luo, Mathew M. Maye, Yongbing Lou, et al. Catalytic activation of core-shell assembled gold nanoparticles as catalyst for methanol electro-oxidation [J]. Catalysis Today 2002, 77: 127~138.
    [202] C. Lamyl, S. Rousseau, E. M. Belgsir, et al. Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts[J]. Electrochimica Acta 2004, 49: 3901~3908.
    [203] Fenglei Li, Bailin Zhang, Erkang wang, et al. In situ scanning tunneling microscopy studies of nanometer size palladium particles on highly oriented pyrolytic graphite [J]. Journal of electroanalytical chemistry. 1997, 422, 27~33.
    [204] Rice C, Tong Y. Cyclic voltammetry and 195 Pt nuclear magnetic resmance charactcterization of graphitesupported commercial fuel cell grade platinum electrocatalysts[J]. Electrochimica Acta, 1998, 43: 2825~2830.
    [205] Zhiliang J. Resonance scattering spetoscopy of gold nanoparticle [J] Science in China (B), 2001, 44(2)175~181.
    [206] Guoqiang L. Insitu FTIR spectroscopic studies of adsorption of CO, SCN-, and Poly(o-phenylene diamine) on electrodes of nanometer thin films of Pt, Pd and Rh: abnormal infraed effects(AIRES)[J]. Langmuir, 2000, 16: 778~786.
    [207] 许彦旗,蔡维理,王银海等.镍有序纳米孔洞阵列厚膜的制备和表征[J].物理化学学报,2001,17(11):991~994.
    [208] 孔令斌,李梦轲,陆梅.模板法制备枝状Pt纳米线[J].高等化学学报, 2003,24(3):513~515.
    [209] 宋请涛,潘谷平,戴志晖.有序Ni纳米线阵列的样模制备法及其磁单畴特性[J].南京师大学报(自然科学版).2000,23(3):66~69.
    [210] 蔡积庆.钯电镀工艺[J] 腐蚀与防护.2001,22(5):221~222.
    [211] 蔡积庆.电镀钯工艺[J] 电镀与环保.1998,18(2):12~14.
    [212] 李凤凌 姚士冰周绍民 钯-镍合金电镀的研究进展[J] 电镀与环保1997,17(5):5~7.
    [213] 李凤凌,杨防祖,李振良等.钯-镍合金电沉积层的XRD研究[J].材料保护,1999,32(3):4~5.
    [214] 倪似愚,郑国渠,曹华珍等.多孔阳极氧化铝为模板电沉积制备纳米线的研究进展[J]科技通报,2003,19(6):466~469.
    [215] Forred P, Schlottig F, Siegenthaler H, et al. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique [J]. Journal of Electrochemistry, 2000, 30: 533~541.
    [216] 王银海,牟季美,蔡维理,等.交流电在模板中沉积金属机理探讨[J].物理化学学报,2001,17(2):116~118.
    [217] 徐金霞.Co-氧化铝纳米阵列的结构与磁性研究[J].电镀与精饰,2003,25(3):4~7.
    [218] Shoso S, Okino O, Sayama Y, et al. Ordered two-dimentional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum [J]. Jpn J Appl Phys Part Ⅰ, 1997, 36: 7791~7795.
    [219] 梁汉濮.一维纳米材料的电化学模板法制备与表征[硕士学位论文].青岛:青岛大学,2004
    [220] 朱永法.纳米材料的表征与测试技术[M].北京:化学工业出版社.2006.
    [221] Lin W. F, Wang J T, Savinell R F. On-line FTIR spectroscopic investigations of methanol oxidation in a direct methanol fuel cell [J]. J. Electrochem. Soc. 1997, 144:1917-1923.
    [222] Fan Q, Pu C, Smotkin E S. In stiu Fourier transform infrared-diffuse reflection spectroscopy of direct methanol fuel cell anodes and cathodes [J]. J.Electrochem. Soc., 1996,143: 3053-3059.
    [223] T. Schultz, S. Zhou and K. Sundmaeher. Current Status of and Recent Developments in the Direct Methanol Fuel Cell. Chem. Eng. & Tech. 2001 (24):1223~1233.
    [224] A. Hamnet, Mechanism and Electrocatalysis in the Direct Methanol Fuel Cell, Catal. Today, 1997, 38, 445~457.
    [225] 黄令,许书楷,汤胶宁.Ni-Mo-PTFE复合电极的制备及其对甲醇电氧化的催化性能[J].应用化学,1997,14(4):21~23.
    [226] 黄令,许书楷.碱性介质中高择优取向(220)镍电极上丙醇的电氧化[J].高等学校化学学报,1997,18(6):932~937.
    [227] 佘沛亮.钯铁、钯铂合金电沉积及沉积层结构与性能研究[博士学位论文].厦门:厦门大学,1999.
    [228] 周伟舫.电化学测量[M].上海:上海科学技术出版社,1985.
    [229] Li, N.H.; Sun, S.G.; Chen, S.P.J. Electroanal. Chem.,1997, 430:57
    [230] Li, N.H.; Sun, S.G.J. Electroanal. Chem.,1997, 436:65
    [231] Li, N.H.; Sun, S.G.J. Electroanal. Chem.,1998, 448:5
    [232] Sun S G, Yang D F, Tian Z W. In Situ FTIR Studies on the Adsorption and Oxidation of n-propanol and iso-propanol at a Pt Electrode in Sulphuric Acid Medium[J].J. Electroanal. Chem.,1990,289:177~181.
    [233] Zhou W, Wang J Y, Sheng H T, et al. Study on anodic oxidation of methanol by use of an in situ FTIR transmission differential spectroscopy method[J]. Acta Chimica Sinica, 2000,58(11):1447~1451.
    [234] P.C.Biswas,M.enyo,Electrooxidation of methanol on graphite-supported perovskite-modified Pt electrodes in alkaline solution, J.Electroanal. Chem. 1992, 322,203~224.
    [235] M.Beltowska-Brzezinska and J.Heitbbaum, On the anodic oxidation of formadehyde on Pt, Au and Pt/Au alloy electrodes in alkaline solution. J. Elect roanal. Chem. 1985,183,167~181.
    [236] Zhibin He, Jinhua Chen, Dengyou Liu, et al. Electrodeposition of Pt-Runanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Science & direct, 2004,13:1764-1770.
    [237] Xin Zhang, Feng Zhang, Kwong-Yu Chan et al. Preparation of Pt-Ru-Cotrimetallic nanoparticles and their electrocatalytic properties. Science & direct,2004,5:749-753.
    [238] Zhibin He, Jinhua Chen, Dengyou Liu, et al. Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electro-oxidation. Science & direct, 2004,85:396-401.
    [239] 白玉霞,吴建军,邱新平,等.反胶束法制备直接甲醇燃料电池Pt-Sn/C催化剂及其表征[J].化学学报,2006,64(6):527~531.
    [240] 王振波,尹鸽平,史鹏飞.制备过程中缓冲溶液对Pt-Ru/C电催化剂性能的影响[J].催化学报,2005,26(10):923~928.
    [241] 黄开辉,万惠霖.催化原理[M].北京:科学出版社,1983.
    [242] 陈延龙,陈新滋.金属有机化学与催化[M].北京:化学工业出版社,1997.
    [243] R.P.H.Gasser.金属的化学吸附与催化作用导论[M].北京:北京大学出版社,1991.
    [244] Beden B,Hahn F, Leger J M,et al. Electromodulated infrared spectroscopy of methanol electrooxidation on electrodispersed platinum electrodes: Enhancement of reactive intermediates[J]. J Electroanal Chem. 1991, 301(1-2):219~138.
    [245] 查全性.电极过程动力学[M].第3版.北京:科学出版社,2002.
    [246] 贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700