分布式无线数据采集的实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,用于石油地震勘探的地震数据采集系统开始逐步引入无线传感器网络技术。但是目前适合石油地震勘探的无线传感器网络技术尚不成熟,存在着各种各样的问题。作者所在实验室研发的大型全数字地震仪系统也开始加入无线传感器网络,以便满足石油地震勘探中地震数据采集的各种需求。
     本文在调研了无线传感器网络和学习分布式无线数据采集实现过程中所用到的器件资料的基础上,初步实现了分布式无线数据采集系统的原型,并对数据采集站体进行了多项测试和测试结果分析。具体所做工作和测试内容如下所述。
     设计完成了分布式无线数据采集平台主控系统。包括微处理器、可编程时钟合成器、电源模块等的硬件配置,以及对微处理器的驱动配置。通过在该平台中加入数据采集模块和无线通讯模块,并对这两个模块进行了软件配置,初步实现了分布式无线数据采集系统的原型。
     在对分布式无线数据采集站体数据采集模块的整合基础上,实现了对数据采集模块的测试。采集站体的采集模块使用的ADC是ADS1282。完成了对ADC的软件配置、被测信号的数据采集和AD性能测试软件的编写。通过AD测试,这款ADC的通道噪声RMS值为1.59 uV,谐波畸变为?109.1 dB,动态范围为120.8 dB,测试结果表明该ADC的性能满足地震数据采集的需求。
     通过对分布式无线数据采集站体无线通讯模块的整合,实现了站体之间的无线通讯。该模块核心是CC1101。通过编写CC1101的驱动配置及测试代码,实现了站体之间的无线通讯,并进行了无线通讯测试。累计无线通讯测试时间约为2000分钟,无线通讯误码率小于9.5×10~(-10),表明无线通讯稳定可靠。
     在初步完成分布式无线数据采集系统的原型基础上,实现了一种用于分布式无线数据采集单元之间的时钟同步方法。通过无线通信用CPU的计数器记录站体之间发送接收数据包的时刻来实现时钟同步,通过无线通信用CPU的DAC调节压控振荡器来进一步提高时钟同步精度。并在主从机时钟同步和时钟没有同步两种情况下,进行了分布式数据采集和分析对比。在本文时钟同步测试中,时钟同步时主从机信号同步精度达到0.061ms,比时钟未同步时的1.27ms改善了很多。测试结果表明时钟同步对于提高分布式采集数据的同步性具有十分重要的意义。
     总之,本文初步实现了石油地震勘探中的分布式无线数据采集系统原型,为实验室的大型全数字地震仪系统研发项目中加入分布式无线数据采集网络做了一定的准备和铺垫工作。
In recent years, seismic data acquisition system for seismic exploration for petroleum began to gradually introduce wireless sensor network technology. But now wireless sensor network used for the oil seismic exploration is not yet mature, and there are kinds of problems. Large full digital seismograph system which is researched and developed by the laboratory where the writer works has begun to join the wireless sensor network to meet the oil seismic exploration in the seismic data acquisition needs.
     Based on investigation on the wireless sensor networks and the study of the devices used in the realization of the distributed wireless sensor networks, this paper realizes initially the prototype of the distributed wireless data acquisition system, and has a number of tests on the data collection station and analyses the test results. The specific content of the work and testing is described as below.
     Design and complete distributed wireless data acquisition platform for controlling system, Include the hardware configuration of microprocessor, programmable clock synthesizer, power module and the driven configuration of the microprocessor. By adding the platform data acquisition module and the wireless communication module, and the software configuration of the two modules, the initial prototype of the distributed wireless data acquisition system is realized.
     Based on integration of data acquisition module of the distributed wireless data acquisition station, the test on the data acquisition module is realized. The ADC used in the data acquisition module of acquisition station is ADS1282. The software configuration of ADC, data acquisition of the tested signal, and the test software for ADC performance are all completed. Through the AD test, the RMS value of the ADC channel noise is 1.59 uV, harmonic distortion is 109.1 dB, dynamic range is 120.8 dB. The test results show that the performances of the ADC meet the demand for seismic data acquisition.
     Through the integration of wireless communication module of he distributed wireless data acquisition station, the wireless communication is realized between the stations. The core of the module is CC1101. By writing the driver configuration of CC1101 and test codes, the wireless communication is realized between the stations and the test for wireless communication is done. The total time for wireless communication test is about 2000 minutes, and the wireless communication error rate is less than 9.5×10~(-10). This is shown that the wireless communication is stable and reliable.
     Based on the initial completion of the prototype of distributed wireless data acquisition system, a method used for clock synchronization between distributed wireless data acquisition units is realized. Through wireless communication the timers of CPU record the time of sending and receiving data packets between the stations to achieve clock synchronization. Through wireless communication the DAC of CPU adjusts the voltage of VCXO to improve the accuracy of clock synchronization further. In the two cases that the clock of the master and slave is synchronized or not, the distributed data acquisition, analysis and comparison are done. In this test of clock synchronization, the accuracy of clock synchronization of signal in master and salve station when clock is synchronized is 0.061 ms, which is better than 1.27ms when clock is not synchronized. The results show that the clock synchronization is very important for improving the synchronization of distributed data acquisition.
     In summary, the prototype of distributed wireless data acquisition system for oil seismic exploration is initially realized in this paper. And all of these have done a certain amount of preparation work for adding a distributed wireless data acquisition network to large full digital seismograph system development project of the laboratory.
引文
陈国瑞,1991,遥测数字地震仪和三维地震勘探[J],江汉石油学院情报,(3):15~19
    陈雄,杜以书,唐国信.2005.无线传感器网络的研究现状及发展趋势.系统仿真技术.1(2):67~73
    杜松旺,2007,无线传感器网络结构与路由算法研究[D],硕士学位论文,重庆:重庆大学
    国栋,徐玉峰,2010,无线传感器网络的时钟同步和校准技术[J],测控与通信,43(6):15~18,24
    贾子熙,吴成东,张云洲,等. 2007.基于无线传感器网络的大型建筑灾难救援系统[J].沈阳建筑大学学报, 23(2): 337~340
    解扬,鲁家乐,李传文,2007,无线传感器网络在智能建筑中的应用[J].建筑电气,26(12):25~28
    李钊,韦玮,2006,无线传感器网络及关键技术综述[J].空间电子技术,3(11):23~28, 38
    刘航,廖桂平,杨帆,2008,无线传感器网络在农业生产中的应用[J],农业网络信息,(11):16~17,21
    刘金娟,2009,无线传感器网络协议及操作系统研究[D],硕士学位论文,淮南:安徽理工大学
    罗福龙,2007,地震数据采集系统综述和展望[J],中国石油勘探,12(2): 42~46
    牛孝国,朱桂芝,夏宁等,2009,基于无线传感器网络的农业现场数据采集研究进展[J],中国农学通报,25(24):515-519
    潘中印,黄健,张忠娅等,2006,地震仪器数据采集同步技术[J],物探装备, 16(3):165~167
    任家富,李怀良,陶永莉,2008,地震数据采集无线同步技术研究[J],中国测试技术, 34(6):1~3
    石军锋,钟先信,陈帅,等,2005,无线传感器网络结构及特点分析[J],重庆大学学报,28(2):16~19
    陶知非,2001,新世纪物探装备技术综述[J],物探装备,11(2):77~83
    王兵,2008,高分辨率地震勘探仪器设计研究[D],博士学位论文,合肥:中国科学技术大学
    王刚,王艳芬,张晓光等,2006,关于离散傅里叶变换频率分辨率的讨论[J],电气电子教学学报,28(6):18~20
    谢明璞,2009,大规模陆上地震仪器结构设计的关键技术[D],博士学位论文,合肥:中国科学技术大学
    徐志强,李乃虎,粟桂凤等,2005,一种分布式无线数据采集系统的研制[J],电子技术, 32(2):26~29
    于超,李士宁,张琪,等.2007.基于PXA207的无线传感器网络汇聚节点设计与实现.计算机应用研究,24(9):257~259
    于海斌,曾鹏,王忠峰等,2004,分布式无线传感器网络通信协议研究[J],通信学报, 25(10):102~110
    郁专,2009,石油勘探中的惯性传感器研究[D],博士学位论文,合肥:中国科学技术大学
    赵英,张莹莹,2006,基于连续时间戳通信模型的时钟同步[J],微计算机信息,22(22):238~240
    周琦,2010,无线传感器网络在工业控制领域的发展和应用[J],石油化工自动化,46(3):51~54
    朱铉,2002,数字地震仪的发展历史及展望[J],地球物理学进展,17 (2):301~304
    Akyildiz I F,Su W,Sankarasubranmaniam Y,Cayirc E. 2002.A survey on sensor networks[J].IEEE Communication Magazine,2002,40:102~114
    Burrell J, Brooke T, Beckwith R. 2004. Vineyard computing sensor networks in agricultural Production[J]. Pervasive Computing, IEEE,3(1):38~45
    Gregory J P, William J K. 2000. Wireless integrated network sensors[J]. Communications of the ACM,43(5):51~58
    Hsieh T T. 2004. Using sensor networks for highway and traffic applications[J]. Potentials,IEEE,23(2):13~16
    Kendal R. Harris, Anatoly Moldavansky, Sivaram Balasubramaniar. The Application of IEEE 1588 to a Distributed Motion Control System[J]. Rockwell Automation. Proceedings of the Workshop on IEEE1588. September 24,2003
    Pottie G J. Wireless sensor networks[J]. Information Theory Workshop. June 1998:139~140
    Wang,N., Zhang, N., and Wang, M. 2006.Wireless sensors in agriculture and food industry-recent development and future perspectives[J]. Computers andElectronics in Agriculture,50,1~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700