子午岭辽东栎种群更新机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原子午岭林区的人工林存在物种组成单一、自然更新差、乡土树种难以自然侵入等生态学问题,影响着该地区植被的正常恢复和物种多样性的维持以及森林生态系统服务功能。如何促进乡土树种向人工林入侵,以改善人工林群落结构,加速其演替进程,是植被恢复工作亟待解决的课题。因此深入研究乡土树种的更新机制,尤其是在人工林下定居过程中的限制因素则显得必要而迫切。辽东栎(Quercus wutaishanica)是暖温带落叶阔叶林地带性植被类型的主要树种,作为子午岭林区的主要乡土树种和气候顶极群落的建群种,其幼苗的补充更新影响着森林群落的结构及物种组成,对该地区的人工林改造意义重大。本研究将群落学调查、野外控制性播种实验和室内栽培实验相结合,通过对幼苗空间分布、生长状况及微生境指标的监测,对辽东栎在不同生境(油松(Pinus tabulaeformis)林、辽东栎林、撂荒地)中的幼苗补充过程展开研究,旨在确定其在不同生境中的补充限制类型,筛选幼苗定居过程中的关键生态因子,进而揭示辽东栎在本地区的更新机理,探讨黄土高原人工林向气候顶极群落演替的可能性,从而为“补充限制理论”提供新的实验证据,为黄土高原人工林的合理化改造提供科学理论依据。
     本文围绕辽东栎种群的更新问题,对不同生境中辽东栎实生幼苗及微生境的空间异质性、幼苗在不同生境及不同生态因子作用下的定居过程、生物量分配、生化它感作用等进行了研究,得到以下结果:
     1)辽东栎幼苗为子午岭林区乔木更新层中的优势物种。通过对子午岭林区植被的全面普查,发现在本地区所有乔木树种中,辽东栎幼苗出现频率较高,在全区各种森林群落中均有分布,但其密度在不同群落中存在较大变异性。
     2)在辽东栎林和人工油松林林下,辽东栎幼苗空间分布格局均呈聚集型,但聚集尺度和相关微生境因子存在较大差异。应用变异函数分析辽东栎林及人工油松林中的辽东栎幼苗空间分布数据,结果显示:在辽东栎林中,幼苗在1-5.94 m范围内存在空间自相关性;人工油松林中,幼苗在1-1.94m范围内存在空间自相关性。应用前向选择法、DCCA排序等方法筛选14个环境因子,结果表明:栎林下,对辽东栎幼苗空间分布贡献较大的为枯落物厚度(LT)、土壤速效钾(K)含量、土壤温度(T);油松林下,对辽东栎幼苗空间分布贡献较大的为土壤湿度(H)、土壤酸碱度(pH)、土壤有机质(O)。
     3)通过对野外播种实验建立的辽东栎幼苗同生群为期三年的监测,编制了动态生命表并进行了生存分析。结果表明:①在三种生境(辽东栎林、人工油松林、灌草丛)中,辽东栎幼苗存活曲线大致呈Deevey-Ⅱ型,幼苗在郁闭的森林生境中存活率显著高于灌草丛群落。②森林生境中,辽东栎幼苗在出苗后第三年春季出现死亡高峰期,幼苗平均生命期望值为23个月。③灌草丛生境中,辽东栎幼苗在出苗后第二年春季出现死亡高峰期,幼苗平均生命期望值为15个月。
     4)在三种典型生境(辽东栎林、人工油松林、灌草丛)中,设置3因素(种子、干扰、遮荫)两水平的播种实验。结果表明:①辽东栎种群的补充更新受到了种子可用性和微生境可用性的双重限制;②郁闭林冠下,枯落物是导致微生境限制的主要因素之,灌木对辽东栎幼苗的补充无显著影响;③灌草丛生境中各种处理方式均不能增加幼苗的补充量,表明辽东栎无法在开阔生境(强光照、干旱)中定居。④根据幼苗生长指标判断,在三种生境中,人工油松林林下是辽东栎幼苗早期生长的最佳场所。
     5)室内栽培实验显示:①在第一生长季中,辽东栎根系的生长分为两个主要阶段,播种后60-90 d内是其快速生长期。②子叶干重随幼苗发育持续下降,出苗90 d后,子叶干重不再下降;③叶干重在出苗后持续增长,而茎干重在出苗90 d后不再增长。④光合作用固定的能量在出苗后第一年8、9月份开始向地下根系转移。⑤枯落物厚度对辽东栎出苗量产生显著影响,3 cm枯落物覆盖厚度为最佳条件;5 cm厚度将对出苗量产生明显抑制作用,在此条件下最终成活幼苗的子叶干重明显下降,可能对后期幼苗定居过程产生不利影响。⑥高浓度(1:10)的油松林林下枯落物浸提液对辽东栎幼苗建成有不利影响,主要表现在对幼苗高度和地上、地下生物量的抑制效应,但对整体出苗量并无显著影响。
     综上所述,辽东栎作为子午岭林区乡土树种中的优势物种,其实生幼苗具备在人工油松林等郁闭森林生境中成功定居的能力,且在油松林下表现出了较好的生长状态。人工油松林生境中,辽东栎种群的更新受到种子和微生境可用性的双重限制,缺乏种源和较厚的枯落层是造成其在此生境中更新困难的主要限制因素。建议在人工油松林改造时,对林下枯落层进行扰动,并保留林中灌木层和下木层保持生境具备一定的遮荫条件,以促进辽东栎种群的实生更新。
The ecosystem function of plantation in Mt. Ziwuling, the Loess Plateau, was impaired because of lower species diversity, native woody species colonization obstacle, and recruitment handicap. How to accelerate the native woody species colonizing towards plantation in order to improve community structure and increase succession, was a very important project in restoration ecology. So, it's necessary to study the recruitment of native woody species, especially the limitation factors in establishmnet. Liaodong oak (Quercus wutaishanica) is the main native woody species and the dominant species of the climatic climax community in Mt. Ziwuling. In this study, three methods, including community investigation, field seeds sowing experiment and lab planting experiment, were used to research the seedling recruitment of Liaodong oak in three typical habites (Pinus tabulaeformis plantation, Liaodong oak forest, and grassland) by supervising the seedling growth and microsite factors. The main aims were to confirm the recruitment limitation type and to select the key ecological limitation factors during seedlings establishment. Moreover, the recruitment mechanism of Liaodong oak population will be unclosed, and the probability of plantation successing to climate climax community was discussed. This study will supply the new proof to recruitment limitation theory, and will be the gist of the plantation restoration in the Loess Plateau.
     In this paper, the biomass allocation in seedling development, the seedling and microsite spatial heterogeneity, and the recruitment of seedlings in different ecological factors and habitats were researched, and the main results of were summed up as follows.
     1. The seedling of Liaodong oak was the dominant species in the woody seedlings layer in the Ziwuling forest region. The vegetation in Mt. Ziwuling forest region was investgated comprehensively, and it was observed that the Liaodong oak seedlings distributed in all of the forest communities in this region and had higher frequency, but the density was largely variant in different community.
     2. The Liaodong oak seedlings spatial pattern were both the clumped type in conifer plantation and oak forest, but there were significant difference in clumped scale and correlated microsite factors. Semivariogram analysis showed that, in oak forest, the data of seedlings was spatial autocorrelated in 1-5.94 m range, and the data of seedlings was spatial autocorrelated in 1-1.94 m range in the conifer forest. Using forward selection method and DCCA, some main factors were selected. In oak forest, they were litter thickness (LT), soil available kalium (K) and soil temperature (T). In conifer forest, they were soil humidity (H), soil pH (pH) and soil organism (O).
     3. The dynamic life table was builted according to the Liaodong oak seedling growth data in three years. The results showed that:1) The survival curve of the seedlings cohort in three habits tended to be the type Deevey -Ⅱ. The seedlings survival probability in closed forest canopy was higher than it in opened grassland.2) In the forests, the seedlings death climax presented in the spring of the third year after seedling emergence, and the expected life span was 23 monthes.3) In the grassland, the seedlings death climax presented in the spring of the second year after seedling emergence, and the expected life span was 15 monthes.
     4. The relative influence of seed and microsite availability in the seedling emergence and recruitment of Liaodong oak was examined by seed sowing experiments, which were performed in three typical stands (conifer plantation, Liaodong oak forest and grassland). A seed augmentation experiment was performed in an oak forest and a conifer plantation, and a seed introduction experiment was carried out in the grassland. Three main factors were considered:seed addition, disturbance and shrub cover. The seedling number and growth in every plot were recorded continuously over 3 years. GLM multivariate was used to analyze the relationships between seedling emergence-recruitment and the explanatory variables in every stand. The results showed that:1) The recruitment of Liaodong oak was limited by seed and microsite availability in this region.2) In closed forest, litter was one of the factors leading to microsite limitation, and shrub cover did not affect the recruitment of Liaodong oak in the three stands.3) In the grassland, no treatments improved recruitment, indicating that the grassland was not suitable for seedling recruitment because of intense light and soil drought.4) In the conifer forest, more recruited seedlings, and lower herbivory on seedling leaves, as well as thicker stem basal diameters, indicated that the P. tabulaeformis plantation was safer for Liaodong oak seedling establishment.
     5. The results of lab planting experiments showed that:1) There were two stage of Liaodong oak seedlings root developing. The first rapid stage was present in 60 or 90 days after seeds sowing.2) The dry weight of cotyledon was still decreased in whole seedling growth progress, but it was stoped after seedlings emergence 90 days.3) The leaves dry weight continuously increased, but the stem dry weight was stop increasing after seedlings emergence 90 days.4) The energy from photosynthesis was translated to roots in Augest or September, so the damage frome animal or insect would negatively affected the seedling survival.5) The litter thickness was significant affected the oak seedling emergence, and 3 cm litter thickness was the best suit condition. In 5 cm litter thichness, the dry weight of cotyledon, which still keeped in seedlings, was decreased significantly, and it would be disbennifit for the seedling establishment in future.6) The higher concentration conifer litter extracted liquid (1:10) was disadvantage for oak seedling establishment. It constrained the seedling height and the total dry weight, but was not decreased the seedlings emergence.
     Drawing a conclusion, Liaodong oak had the ability of establishing in conifer forest, and the seedling growthed well in the environment. The Liaodong oak population recruitment will be limited by seed and mirosite availability in conifer plantation. The limited factor for recruitment was seed source and litter layer in community. The lower light intensity in closed forest would not negatively affect the seedling in early development. So, during the P. tabulaeformis plantation alteration, disturbing the litter layer and reserving the shrubs and underwood to keep shady will be benefit for Liaodong oak regeneration by seeds.
引文
[1]吕厚远,刘东生,郭正堂.黄土高原地质、历史时期古植被研究状况[J].科学通报,2003,48(1):2-7.
    [2]刘立品.子午岭木本植物志[M].兰州:兰州大学出版社,1998.
    [3]李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化[J].生态学报,2004,24(2):252-260.
    [4]邹厚远,刘国彬,王晗生.子午岭林区北部近50年植被的变化发展[J].西北植物学报,2002,22(1):1-8.
    [5]陈云明,梁一民,程积民.黄土高原林草植被建设的地带性特征[J].植物生态学报,2002,26(3):339-345.
    [6]李裕元,郑纪勇,邵明安.子午岭天然林与人工林群落特征比较研究[J].西北植物学报,2005,25(1):2447-2456.
    [7]范玮熠,王孝安,郭华.黄土高原子午岭植物群落演替系列分析[J].生态学报,2006,26(3):707-714.
    [8]任海,王俊.试论人工林下乡土树种定居限制问题[J].应用生态学报,2007,18(8):1855-1860.
    [9]任海,彭少麟Restoration Ecology Introduction[M]. Beijing Science Press (in Chinese),2001,26-37.
    [10]费世民Studies on the restoration mechanisms of forest vegetation in mountainous fragile eco-regions in Southwest Sichuan [D]博士论文,Scientia Silvae Sinicae,2004,pp:1-3.
    [11]Miyawaki A. Restoration of living environment based on vegetation ecology: theory and practice [J]. Ecological Research,2004,19:83-90.
    [12]岳明.秦岭及陕北黄土区辽东栎林群落物种多样性特征[J].西北植物学报,1998,18(1):124-131.
    [13]朱志诚.关于秦岭及陕北黄土高原辽东栎林的初步研究[J].植物生态学与地植物学报,1982,6(2):96-104.
    [14]程积民,赵凌平,程杰.子午岭60年辽东栎林种子质量与森林更新.北京林业大学学报,2009,31(2):10-16.
    [15]张吕醉,王孝安,郭华等.辽东栎林林隙特征及其对群落更新的影响[J].生态 学杂志,2008,27(11):1835-1840.
    [16]田丽,王孝安,郭华等.黄土高原马栏林区辽东栎更新特性研究[J].广西植物,2007,27(2):191-196.
    [17]Hubbell S P, Foster R B, O'Brien S T, et al. Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest [J]. Science,1999,283(5401): 554-557.
    [18]Munzbergova Z. Seed, dispersal, micrositc, habitat and recruitment limitation: identification of terms and concepts in studies of limitations [J]. Oecologia,2005, 145:1-8.
    [19]Eriksson O, Ehrlen J. Seed and microsite limitation of recruitment in plant population [J]. Oecologia,1992,91:360-364.
    [20]Turnbull L A, Crawley M J, Rees M. Are plant populations seed-limited? A review of seed sowing experiments [J]. OIKOS,2000,88:225-238.
    [21]Ehrlen J, Eriksson O. Dispersal limitation and patch occupancy in forest herbs [J]. Ecology,2000,81:1667-1674.
    [22]Clark C J, Poulsen J R, Levey D J, et al. Are plant population seed limited? A critique and meta-analysis of seed addition experiments [J]. American Naturalist, 2007,170:128-142.
    [23]Dalling J W, Muller-Landau H C, Wright S J & Hubbell S P. Role of dispersal in the recruitment limitation of Neotropical pioneer species [J]. Journal of Ecology, 2002,90:714-727.
    [24]Denslow J S, Uowolo A L & Hughes R F. Limitations to seedling establishment in a mesic Hawaiian forest [J]. Oecologia,2006,148:118-128.
    [25]Comita L S, Aguilar S, Perez R, Lao S & Hubbell S P. Patterns of woody plant species abundance and diversity in the seedling layer of a tropical forest [J]. Journal of Vegetation Science,2007,18:163-174.
    [26]Norden N, Chave J, Caubere A, et al. Is temporal variation of seedling communities determined by environment of by seed arrival? A test in a neotropical forest [J]. Journal of Ecology,2007,95:507-516.
    [27]Ribbens E, Silander J A & Pacala S W. Seedling recruitment in forests calibrating models to predict patterns of tree seedling dispersion [J]. Ecology, 1994,75,1794-1806.
    [28]Clark J S, Macklin E, Wood L. Stages and spatial scales of recruitment limitation in southern Appalachian forests [J]. Ecology Monograph,1998,68:213-235.
    [29]Clark J S, Sliman M, Kern R, et al. Interpreting recruitment limitation in forests [J]. American Journal of Botany,1999,86(1):1-16.
    [30]Tilman D. Community invisibility, recruitment limitation, and grassland bio-diversity [J]. Ecology,1997,78:81-92.
    [31]Zobel M, Otsus M, Liira J, Moora M & Mols T. Is small-scale species richness limited by seed availability or microsite availability [J]? Ecology,2000,81(12): 3274-3282.
    [32]Seabloom E W, Borer E T, Boucher V L, et al. Competition, seed limitation, disturbance, and reestablishment of California native annual forbs [J]. Ecological Application,2003,13:575-592.
    [33]Jabot F, Etienne R S & Chave J. Reconciling neutral community models and environmental filtering:theory and an empirical test [J]. Oikos,2008,117: 1308-1320.
    [34]Timothy-Paine C E, Harms K E. Quantifying the effects of seed arrival and environmental conditions on tropical seedling community structure [J]. Oecologia, 2009,160:139-150.
    [35]Gomez-Aparicio L, Zamora R, Castro J et al. Facilitation of tree saplings by nurse plants:micro-habitat amelioration or protection against herbivores [J]? Journal of Vegetation Science,2008,19:161-172.
    [36]Mendoza I, Gomez-Aparicio L, Zamora R, Matias L. Recruitment limitation of forest communities in a degraded Mediterranean landscape [J]. Journal of Vegetation Science,2009,20(2):367-376.
    [37]Iacona G D, Kirkman L K & Bruna E M. Effects of resource availability on seedling recruitment in a fire-maintained savanna [J]. Oecologia,2010,163(1): 171-180.
    [38]Ren H, Yang L, Liu N. Nurse plant theory and its application in ecological restoration in lower-subtropics of China [J]. Progress in Natural Science,2008, 18(2):137-142.
    [39]Wang J, Ren H, Yang L, Duan W J. Establishment and early growth of introduced indigenous tree species in typical plantations and shrubland in South China [J]. Forest Ecology and Management,2009,258:1293-1300.
    [40]Wang J, Zou C, Ren H, Duan W J. Absence of tree seeds impedes shrubland succession in southern China [J]. Journal of Tropical Forest Science,2009,21(3): 210-217.
    [41]Kobe R K, Vriesendorp C F. Size of sampling unit strongly influnces detection of seedling limitation in a wet tropical forest [J]. Ecology letters,2009,12:220-228.
    [42]Muller-Landau H C, Wright S J, Calderon O, Hubbell S P & Foster R B.2002. Assessing recruitment limitation:concepts, methods and case studies from a tropical forest [M]. In:Levey DJ, Silva WR & Galetti M (eds.) Seed dispersal and frugivory:ecology, evolution and conservation. pp:35-54. CAB International, Wallingford, GB.
    [43]Crawley M, Long C R. Alternate bearing, predator satiation and seedling recruitment in Quercus robur L [J]. Journal of Ecology,1995,83:683-696.
    [44]Acacio V, Holmgren M, Jansen P A et al. Multiple Recruitment limitation causes arrested succession in Mediterranean cork oak systems [J]. Ecosystems,2007,10: 1220-1230.
    [45]Gomez J M. Importance of acorn burial and microhabitat on Quercus ilex early recruitment:non-additive effects on multiple demographic processes [J]. Plant Ecology,2004,172:287-297
    [46]Uriarte M, Bruna E M, Rubim P, et al. Effects of forest fragmentation on the seedling recruitment of tropical herb:assessing seed vs. safe-site limitation [J]. Ecology,2010,1317-1328.
    [47]Chambers J C, MacMahon J A. A day in the life of a seed:movements and fates of seeds and their implications for natural and managed systems [J]. Ann. Rev. Ecol. Syst,1994,25:263-292.
    [48]Nathan R, Muller L, et al. Spatial patterns of seed dispersal their determinants and consequences for recruitment [J]. Trends of Ecology and Evolution,2000, 15:278-285.
    [49]肖治术,张知彬,王玉山.以种子为繁殖体的植物更新模型研究[J].生态学杂志,2003,22(4):70-75.
    [50]Vander S B. Seed fate pathways of antelope bitterbrush:dispersal by seed caching yellow pine chipmunks [J]. Ecology,1994,75:1911-1926.
    [51]Bohning G K, Gaese B H, Rabemanantsoa S B. Importance of primary and secondary seed dispersal in the Malagasy tree Commiphora guillaumini [J]. Ecology,1999,80:821-832.
    [52]Clark, J S. Seed dispersal near and far:patterns across temperate and tropical forests [J]. Ecology,1999, 80(5):1475-1497.
    [53]Tilman D. Competition and biodiversity in spatially structured habitats [J]. Ecology, 1994,75(1):2-16.
    [54]Tilman D. Niche tradeoffs, neutrality, and community structure:A stochastic theory of resource competition, invasion, and community assembly [J]. PNAS, 2004,101(30):10854-10861.
    [55]Hubell S P. The unified neutral theory of biodiversity and biogeography [M]. Princeton University Press,2001.
    [56]Roughgarden J, Iwasa Y, Baxter C. Demographic theory for an open marine population with space-limited recruitment [J]. Ecology,1985,66:54-67.
    [57]Grubb P J. The maintenance of species-richness in plant communities:the importance of the regeneration niche [J]. Biol Rev,1977,52:107-145.
    [58]Fagerstrom T. Lotteries in communities of sessile organisms [J]. Trends of Ecology and Evolution,1988,3:303-306.
    [59]Hubbel S P, Foster R B. Biology, chance, and history, and the structure of tropical rain forest tree communities [M]. In:Diamond J, Case TJ (eds) Community ecology. Harper & Row, NewYork,1986, pp 314-329.
    [60]Eriksson O. Seedling dynamics and life histories in clonal plants [J]. Oikos,1989, 55:231-238.
    [61]Eriksson O. Evolution of seed dispersal and recruitment in clonal plants [J]. Oikos, 1992,63:439-448.
    [62]Greig-Smith J, Sagar G R. Biological causes of local rarity in Carlina 6ulgaris.-In: Synge, H. (ed.), The biological aspects of rare plant conservation [M] John Wiley, Chichester,1981, pp.389-400.
    [63]Crawley M J. The population dynamics of plants [J]. Phil TransR Soc Lond B, 1990,330:125-140.
    [64]Harper J L. Population biology of plants [M]. Academic Press, London,1977.
    [65]Pacala S W, Rees M. Models suggesting field experiments to test two hypotheses explaining successional diversity [J]. American Naturlist,1998,152:729-737.
    [66]Ehrlen J. Demography of the perennial herb Lathyrus vernus. Ⅱ. Herbivory and population dynamics [J]. Journal of Ecology,1995,83:297-308.
    [67]Maron J L, Simms E L. Effect of seed predation on seed bank size and seedling recruitment of bush lupine(Lupinus arboreus) [J]. Oecologia,1997,111:76-83.
    [68]Cornell H V, Lawton J H. Species interactions, local and regional processes, and limits to the richness of ecological communities:a theoretical perspective [J]. Journal of Animal Ecoloy,1992,61:1-12.
    [69]Harper J L, Williams J T, Sagar G R. The behaviour of seeds in the soil. I:The heterogeneity of soil surfaces and its role in determining the establishment of plants from seed [J]. Journal of Ecology,1965,53:273-286.
    [70]Stolzky L H, Barley K P. Mechanical resistance encountered by roots entering compact soil [J]. Soil Science,1968,105:297-301.
    [71]Evans R A, Young J A. Microsite requirements for establishment of annual rangeland weeds [J]. Weed Science,1972,20:350-356.
    [72]Pareja M R, Staniforth D W. Seed-Soil microsite characteristics in relation to weed seed germination [J]. Weed Science,1985,33:190-195.
    [73]Reuss S A, Buhler D D, Gunsolus J L. Effects of soil depth and aggregate size on weed seed distribution and viability in a silt loam soil [J]. Application of Soil Ecology,2001,16:209-217.
    [74]Molofsky J, Lanza J, Crone E E. Plant litter feedback and population dynamics in an annual plant, Cardamine pensylvanica [J]. Oecologia,2000,124:522-528.
    [75]Teasdale J R, Mohler C L. The quantitative relationship between weed emergence and the physical properties of mulches [J]. Weed Science,2000,48:385-392.
    [76]Harmer R. Natural regeneration of broadleaved trees in Britain.Ⅲ. Germination and establishment[J]. Forestry,1995,68:1-9.
    [80]Facelli J M. Multiple indirect effects of plant litter affect the establishment of woody seedlings in old fields [J]. Ecology,1994,75:1727-1735.
    [90]Li Q K, Ma K P. Factors affecting establishment of Quercus liaotungensis Koidz. under mature mixed oak forest over story and in shrubland [J]. Forest Ecology and Management,2003,176:133-146.
    [91]Gealy D R, Squier S A. Soil environment and temperature affect germination and seedling growth of mayweed chamomile (Anthemis cotula) [J].Weed Tech,1994,8: 668-672.
    [92]Harper J L, Obeid J. Influence of seed size and depth of sowing on the establishment and growt h of varieties of fiber and oil seed flax [J]. Crop Science, 1967,7:527-532.
    [93]Turnbull L A, Rees M, Crawley M J. Seed mass and the competition/colonization trade-off:a sowing experiment [J]. Journal of Ecology,1999,87:899-912.
    [94]Eriksson O. Seed dispersal and colonization ability of plants-assessment and implications for conservation [J]. Folia Geobotanica,2000,35:115-123.
    [95]Coomes D A, Grubb P J. Colonization, tolerance, competition and seed-size variation within functional groups [J].Trends in Ecology and Evolution,2003,18 (6):283-291.
    [96]Moles A T, Westoby M. Seedling survival and seed size:a synthesis of the literature [J]. Journal of Ecology,2004,92:372-383.
    [97]Grubb P J, Metcalfe D J. Adaptation and inertia in the Australian tropical lowland rain-forest flora:contradictory trends in intergeneric and intrageneric comparisons of seed size in relation to light demand [J]. Functional Ecology,10(4):512-520.
    [98]Grubb P J, Coomes D A. Seed mass and nutrient content in nutrient-starved tropical rainforest in Venezuela [J]. Seed Science Research,1997,7:269-280.
    [99]Watt A S. Pattern and process in the plant community [J]. Journal of Ecology,1947, 35:1-22
    [100]邬建国.景观生态学-格局,过程,尺度与等级[M].北京:高等教育出版社,2000
    [101]邬建国,李百炼,伍业钢.缀块性和缀块动态:1.概念与机制[J].生态学杂志,1992,11(4):41-45
    [102]Teens J A. Ecological heterogeneity:an ontogeny of concepts and approaches [M]. In:Symposia of The British Ecology Society, The ecological consequences of environmental heterogeneity(eds Hutchings MJ, John EA, Steward AJA,2000, pp.9-32.Oxford:Blackwell Science
    [103]Sparrow A D. A heterogeneity of heterogeneities [J]. Trends in Ecology and Evolution,1999,14:422-423.
    [104]Vivian-Smith G. Microtopographic heterogeneity and floristic diversity in experi-mental wetland communities [J]. Journal of Ecology,1997,85:71-81.
    [105]Veblen T T, Kitzberger T, Lara A. Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland [J]. Journal of Vegetation Science,1992,3(4):507-520.
    [106]Gray A N, Spies T A. Microsite controls on tree seedling establishmeng in confier forest canopy gaps [J]. Ecology,1997,78(8):2458-2473.
    [107]Molofsky J, Augspurger C K. The Effect of Leaf Litter on Early Seedling Establishment in a Tropical Forest [J]. Ecology,1992,73:68-77.
    [108]Kostel-Hughes F, Young T P, Carreiro M M. Forest leaf litter quantity and seedling occurrence along an urban-rural gradient [J]. Urban Ecosystems,1998, 2(4):263-278.
    [109]Denslow J S. The effect of understory palms and cyclanths on the growth and survival of Inga seedlings [J]. Biotropica,1991,23(3):225-234.
    [110]Grubb P J. The maintenance of species-richness in plant communities:the importance of the regeneration niche [J]. Biol Rev,1977,52:107-145.
    [111]Pinto S M, MacDougall A S. Dispersal limitation and environmental structure interact to restrict the occupation of optimal habitat [J]. The american naturalist, 2010,175(6):675-686.
    [112]Chave J. Neutral theory and community ecology [J]. Ecology Letters,2004,7: 241-253.
    [113]McDonald R I, Peet R K, Urban D L. Spatial pattern of Quercus regeneration limitation and Acer rubrum invasion in a Piedmont forest [J]. Journal of Vegetation Science,2003,4(3):441-450.
    [114]Lookingbill T R, Zavala M A. Spatial pattern of Quercus ilex and Quercus pubescens recruitment in Pinus halepensis dominated woodlands [J]. Journal of Vegetation Science,2000,11(4):607-612.
    [115]Frost I, Rydin H. Spatial pattern and size distribution of the animal-dispersed tree Quercus robur in two spruce-dominated forests [J]. Ecoscience,2000,7(1): 38-44.
    [116]王巍,刘灿然,马克平,于顺利.东灵山两个落叶阔叶林中辽东栎种群结构和动态[J].植物学报,1999,41(4):425-432.
    [117]张金屯,孟东平.,芦芽山油松-辽东栎林优势树种空间分布格局研究[J].西北植物学报,2006,26(8):1682-1685.
    [118]祖元刚,赵则海,丛沛桐,张文辉,陈伯林.北京东灵山地区辽东栎林种群空间分布分形分析[J].植物研究,2000,20(1):112-119.
    [119]王国严,罗建,徐阿生.西藏色季拉山川滇高山栎种群的空间格局与调节[J].应用与环境生物学报,2010,16(2):148-153.
    [120]张文辉,卢志军,李景侠,刘国彬.秦岭北坡栓皮栋种群动态的研究[J].应用生态学报,2003,14(9):1427-1432.
    [121]谢春平.乌冈栎生物学研究[D].南京林业大学,博士论文,2010.
    [122]尤海舟,刘兴良,缪宁等.川滇高山栎种群不同海拔空间格局的尺度效应及个体间空间关联[J].生态学报,2010,30(15):4004-4011.
    [123]杨君珑,王辉,王彬,孙栋元.子午岭油松林灌木层主要树分布格局和种间关联性[J].西北植物学报,2007,27(4):791-796.
    [124]伊力塔,韩海荣,程小琴等.灵空山林区辽东栎种群空间分布格局[J].生态学报,2008,28(7):3254-3261.
    [125]陈迪马.天山云杉天然更新微生境及其幼苗格局与动态分析[D].新疆农业大学,硕士论文,2006.
    [126]王政权,王庆成.森林土壤物理性质的空间异质性研究[J].生态学报,2000,20(5):945-950.
    [127]周国法,徐汝梅.生物地理统计学[M].北京:科学出版社,1998.
    [128]Webster R. Quantitative spatial analysis of soil in the field[J]. Advance in Soil Science,1985,3:1-70.
    [129]张朝生,章中,何建邦.长江水系沉积物重金属含量空间分布特征研究:空间自相关与分形方法[J].地理学报,1998,53(1):87-96.
    [130]王劲峰.空间分析[M].北京:科学出版社,2006.
    [131]李哈滨,王政权,王庆成.空间异质性定量研究理论与方法.应用生态学报,1998.9:651-657.
    [132]常罡,邰发道.季节变化对锐齿栎(Quercus aliena)种子扩散的影响[J].生态学杂志,2011,30(1):189-192.
    [133]Keitt T H. Spectral representation of neutral landscapes[J]. Landscape Ecology, 2000,15:479-493.
    [134]王政权.地统计学在生态学中的应用[M].北京:科学出版社,1999.
    [135]张树杰,李登武,温仲明,等.黄土高原地区辽东栎群落区系研究[J].水土保持学报,2005,12(1):22-25.
    [136]Tilman D. Plant Strategies and Dynamics and Structure of Plant Communities [M]. Princeton:Princeton University Press,1988.
    [137]Silvertown J W. Introduction to Plant Population Ecology[M]. London:Longman, 1987.
    [138]Grime J P, Hillier S H. The contribution of seedling regeneration to the structure and dynamics of plant communities, ecosystems and larger units of the landscape. //Fenner M ed. Seeds:the Ecology of Regeneration in Plant Communities[M]. Wallingford:CABI Publishing,2000:361-374.
    [139]Clark J S, Ladeau S, Ibanez I. Fecundity of trees and the colonization competition hypothesis [J]. Ecological Monographs,2004,74(3):393-414.
    [140]王巍,李庆康,马克平.东灵山地区辽东栎幼苗的建立和空间分布[J].植物生态学报,2000,24(5):595-600.
    [141]高贤明,杜晓军,王中磊.北京东灵山区两种生境条件下辽东栎幼苗补充与建立的比较[J].植物生态学报,2003,27(3):404-411.
    [142]王中磊,高贤明.锐齿槲栎林的天然史新:坚果,幼苗库和径级结构[J].生态学报,2005,25(5):986-993.
    [143]陈智平,王辉,袁宏波.子午岭辽东栎林土壤种子库及种子命运研究[J].甘肃农业大学学报,2005,40(1):7-12.
    [144]冯士雍.生存分析[J].数学的实践与认识,1982,3:72-80.
    [145]韩海荣,贺顺钦,张学培,等.辽东栎苗木早期生长与光的关系[J].北京林业大学学报,2000,22(04):97-100.
    [146]Gomez-Aparicio L, Zamora R, Gomez J M, Hodar J A, Castro J, Baraza E. Applying plant facilitation to forest restoration:a meat-analysis of the use of shrubs as nurse plants[J]. Ecological Applications,2004,14:1128-1138.
    [147]Rey P J, Alcantara J M, Valera F, Sanchez-Lafuente A M, Garrido J L, Ramirez J M, Manzaneda A J. Seedling establishment in Olea europaea:seed size and microhabitat affect growth and survival [J]. Ecoscience,2004,11:310-320.
    [148]Callaway R M, D'Antonio C M. Shrub facilitation of coast live oak establishment in central California [J]. Madrono,1991,38:158-169.
    [149]Maron J L, Gardner S N. Consumer pressure, seed versus safe-site limitation and plant population dynamics [J]. Oecologia,2000,124:260-269.
    [150]Edwards G R, Crawley M J. Rodent seed predation and seedling recruitment in mesic grassland [J]. Oecologia,1999,118:288-296.
    [151]Tanouchi H, Sato T, Takeshita K. Comparative studies on acorn and seedling dynamics of four Quercus species in an evergreen broad-leaved forest [J]. Journal of Plant Research,1994,107:153-159.
    [152]张知彬.埋藏和环境因子对辽东栎种子更新的影响[J].生态学报,2001,21(3):375-384.
    [153]张大勇.植物生活史进化与繁殖生态学[M].北京:科学出版社,2004.
    [154]Sultan S E. Phenotypic plasticity for plant development, function and life history [J]. Trends in Plant Science,20005:537-542.
    [155]Rhoades D F. Evolution of plant chemical defense against herbivores. in G. A. Rosenthal & D. H. Janzen, editors. Herbivores:their interaction with secondary plant metabolites [M]. Academic Press, New York,1979. Pages 3-54.
    [156]Bazzaz F A, Chiariello N R, Coley P D, et al. Allocating resources to reproduce-tion and defense [J]. Bioscience,1987,37:58-67.
    [157]Goldman, D A, Willson M F. Sex allocation in functionally hermaphroditic plants: a review and critique [J]. Botanical Review,1986.52:157-194.
    [158]Bazzaz F A, Ackerly D D, Reekie E G. Reproductive allocation in plants. Pages 1-30 in M. Fenner, editor. Seeds:The ecology of regeneration in plant communities. CABI Publishing, New York.2000.
    [159]Goodman D. Optimal life histories, optimal notation, and the value of reproduce-tive value [J]. American Naturalist,1982,119:803-823.
    [160]Charlesworth D, Charlesworth B. The effect of investment in attractive structures on allocation to male and female functions in plants [J]. Evolution,1987, 41:948-968.
    [161]McKone M J. Sex allocation and outcrossing rate-a test of theoretical predictions using bromegrasses (bromus) [J]. Evolution,1987,41:591-598.
    [162]Reekie E G, Bazzaz F A. Reproductive effort in plants:1. Carbon allocation to reproduction [J]. American Naturalist,1987,129:876-896.
    [163]Reekie E G, Bazzaz F A. Reproductive effort in plants:2. Does carbon reflect the allocation of other resources [J]. American Naturalist,1987,129:897-906.
    [164]Reekie E G, Bazzaz F A. Reproductive effort in plants:3. Effect of reproduction on vegetative activity [J]. American Naturalist,1987,129:907-919.
    [165]Willson M F, Traveset A. The ecology of seed dispersal [M]. Pages 85-110 in M. Fenner, editor. Seeds:The ecology of regeneration in plant communities. CABI Publishing, New York.2000.
    [166]Reekie E G. Resource allocation, trade-offs, and reproductive effort in plants. Pages 173-193 in T. Vuorisalo and P. Mutikainen, editors. Life history evolution in plants [M]. Kluwer Academic Publishers, London,1999.
    [167]Bonfil C. The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth in Quercus rugosa and Q. laurina(Fagaceae) [J]. American Journal of Botany,1998,85(1):79-87.
    [168]Garcia-Cebrian F, Esteso-Martinez J, Gil-Pelegrin E. Influence of cotyledon removal on early seedling growth in Quercus robur L [J]. Ann. For. Sci.,2003, 60:69-73.
    [169]曹建新,张光飞,张磊,李秀华,苏文华.滇青冈幼苗的光合和生长对不同生长光强的适应[J].广西植物,2008,28(1):126-129.
    [170]Bloom A J, Chapin F S, Mooney H A. Resource limitation in plants:an economic analogy [J]. Annual Review of Ecology and Systematics,1985,16:363-392.
    [171]Grace J B. Toward models of resource allocation by plants [M]. Pages 279-291 in F. A. Bazzaz and J. B. Grace, editors. Plant resource allocation. Academic Press, San Diego.1997.
    [172]Harringtoa M G. Phytotoxic potential of Gambel oak on ponderosa pine germination and initial growth [D]. Reserch pager:Rocky Mountain and Rangge Experment Station, USDA Forest Service,1987, No. RM-277.
    [173]Lodhi M A K. The influence and comparison of individual froest trees on soil properties and possible inhibition of nitrification due to intact vegetation [J]. Amer. J. Bot.,1977,64(3):280-261.
    [174]贾黎明,翟明普,尹伟伦.油松、辽东栎混交林中生化它感作用的研究[J].林业科,1995,31(6):491-498.
    [175]贾黎明,翟明普,冯长红.化感作用物对油松幼苗生长及光合作用的影响[J].北京林业大学学报,2003,25(4):6-10.
    [176]方碧真,余世孝,王永繁等.尾叶桉(Eucalyptus urophylla)对8种乡土树种的化感作用[J].中山大学学报(自然科学版),2010,49(5):113-117.
    [177]张燕军.油松枯落物浸提液对板栗和栓皮栎苗木的化感作[D].北京:北京林业大学,2009.
    [178]孙书存,陈灵芝.东灵山地区辽东栎叶的生长及其光合作用[J]生态学报,2000,20(2):212-217.
    [179]王贺新,李根柱,于冬梅,等.枯枝落叶层对森林天然更新的障碍[J].生态学杂志,2008,27(1):83-88.
    [180]Du Xiaojun, Guo Qinfeng, Gao Xianming, Ma Keping. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest [J]. Forest Ecology and Management,2007,238: 212-219.
    [181]Barrett L I. Influence of forest litter on the germination and early survival of chestnut oak, Quercus montana Willd [J]. Ecology,1931,12:476-484.
    [182]Facelli J M, Pickett S T A. Plant litter:its dynamics and effects on plant community structure [J]. The Botanical review,1991,57(1):1-32.
    [183]Tripathi R S, Khan ML. Effects of seed weight and microsite characteristics on germination and seedling fitness in two species of Quercus in a subtropical wet hill forest [J]. Oikos,1990,57(3):289-296.
    [184]Broncano M J, Riba M, Retana J. Seed germination and seedling performance of two Mediterranean tree species, holm oak(Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.):a multifactor experimental approach [J]. Plant Ecology, 1998,138(1):17-26.
    [185]Fenner M. Seeds Ecology [M]. Wallingford:CABI Publishing,2004:361-374.
    [186]叶能干,季强彪,廖海民,苟光前.种子植物幼苗形态学[M].贵阳:贵州科技出版社,2002.
    [187]Frost I, Rydin H. Effects of competition, grazing and cotyledon nutrient supply on growth of Quercus robur seedling [J]. Oikos,1997,79(1):53-58.
    [188]孙书存,陈灵芝.动物搬运与地表覆盖物对辽东栎种子命运的影响[J].生态学报,2001,21(1):80-85.
    [189]Garcia D, Houle G. Fine-scale spatial patterns of recruitment in red oak(Quercus rubrd):What matters most, abiotic or biotic factors [J]. Ecoscience,2005,12(2): 223-235.
    [190]Garcial D, Banuelos M J, Houle G. Differential effects of acorn burial and litter cover on Quercus rubra recruitment at the limit of its range in eastern North America [J]. Canadian Journal of Botany,2002,80:1115-1120.
    [191]Penuelas J, Llusia J. Influence of intra- and inter-specific interference on terpene emission by Pinus halepensis and Quercus ilex seedlings [J]. Biologia plantarum, 1998,41(1):139-143.
    [192]雷日平,陈辉,刘建军.掉落物和土壤浸提液对油松种子萌发与幼苗生长的影响[J].中南林学院学报,2001,21(1):82-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700