枯草芽孢杆菌的固定及其对微污染水体的净化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国湖泊和水库普遍受到总氮、总磷的污染,富营养化严重,有机物污染面广,许多己达不到Ⅲ类水质标准。极大地降低了水体的生态功能,严重地威胁到人民的身体健康和工业生产,湖泊和水库的治理与修复己经到了不可不为的程度。微生物净水剂以其高效率的特点成为野外水处理的主流方法。微生物固定化可提高生化分解的降解速率,提高污染物的去除效率,而且具有费用较低、挂膜时间短、能耐受冲击、生物不容易脱落、对环境影响较小等优点。国内外专家学者对固定化技术的研究很多,但大多只用于工业生产,用于野外水体环境治理的微生物固定化技术的研究还不够成熟,成功应用的例子极少。
     本文研发出了一种固定化枯草芽孢杆菌技术,通过游离枯草芽孢杆菌剂与固定化枯草芽孢杆菌在封闭微污染水净化性能的比较,考察了固定枯草芽孢杆菌在微污染水修复处理中,适宜的环境与条件及对模拟水物化性质的影响。确定了主要的应用条件及控制参数,为固定化枯草芽孢杆菌技术在于湖泊、水库水体修复的应用提供理论和技术依据。
     研究表明辫式飘带上负载的枯草芽孢杆菌的最大负载量为2.1×10~(12)cfu/m~2,对应的负载条件为pH=6,溶解氧为4mg/L,负载菌液浓度为3.2×10~8 cfu/ml,负载时间为5周。
     最大负载量下的固定化枯草芽孢杆菌净化处理系统,适宜的环境条件比游离枯草芽孢杆菌宽,适宜的pH由5~7扩展为5~8,溶解氧由4~6 mg/L扩展为3~6 mg/L。运行7d后,COD_(Mn)、NH_4~+ -N、NO_2~--N及NO_3~--N去除率分别达到97.4%、96.8%、89.4%、40.8%,达到同样甚至更高的处理效果比游离枯草芽孢杆菌处理需要的时间少2天,微污染水经处理后,达到地表Ⅱ类水水质标准。净化系统对pH低于4或高于9的冲击不可恢复,较低的溶解氧将对系统的除污能力有一定的抑制,但随溶解氧的升高系统容易恢复净化能力。受到环境条件变化冲击时,固定化枯草芽孢杆菌处理系统中COD_(Mn)、NH_4~+ -N、NO_2~--N及NO_3~--N的去除率下降幅度较游离枯草芽孢杆菌处理系统少。不重新添加固定化枯草芽孢杆菌的情况下的批式运行,系统能5次将COD_(Mn)降低到4mg/L以下,净化时间分别为7d、10d、12d、15d、19d。重新添加固定化枯草芽孢杆菌后,水的pH值波动不大,但溶解氧总体下降到3.3mg/L,需要启动曝气设备以提高溶解氧。
Pollution of total nitrogen and total phosphorus is common in lakes and reservoirs in our country, which leads to severe eutrophication and wide organic contamination. Many lakes and reservoirs can not reach the water-quality standard of grade III. Since ecological function of water is extremely declined and health and industrial production are seriously threatened, treatment and remediation of lakes and reservoirs have been in urgent necessity. Microbial purifying agent has become one of the main methods in field water treatment because of its efficiency. Immobilization of microorganisms can improve the degrading rate of biochemical decomposition and removal efficiency of contaminants. And it also has advantages such as low expense, short biofilm formation time, resistance of impaction, uneasy to flake off and so on. To date, there are various researches on immobilization all over the world, but most of them have been applied in industry. Studies on microbial immobilization applying to field water treatment are not so mature, and successful application examples are rare.
     An immobilization technology of Bacillus subtilis was studied. By comparison of purifying performance between free and immobilized Bacillus subtilis in sealed micro-contaminated water, environmental conditions and effect on physical and chemical properties of simulated water were investigated. Main applicable conditions and controlling parameters were identified, providing theoretical and technical foundation to application of immobilized Bacillus subtilis to water remediation in lakes and reservoirs.
     Research showed that the maximum Bacillus subtilis loading amount carried by braided ribbon was 2.1×10~(12) cfu/m~2, with corresponding conditions that pH of 6, dissolved oxygen of 4 mg/L, Bacterial concentration of 3.2×10~8 cfu/ml, and loading time of 5 weeks. For purification system of immobilized Bacillus subtilis under the maximum loading amount, appropriate environmental conditions were broader than free Bacillus subtilis system.
     For instances, pH range extended from 5-7 to 5-8, dissolved oxygen value expanded from 4-6 mg/L to 3-6 mg/L. After operation of 7d, the removal rates of COD_(Mn), NH_4~+ -N, NO_2~--N and NO_3~--N reached 97.4%, 96.8%, 89.4%, 40.8%, respectively. There was 2d less needed in treatment using immobilization system to achieve the same or better performance of free system. After disposal of micro-contaminated water by immobilization system, water could reach the water-quality standard of Grade II. It was beyond retrieve when the pH was blew 4 or above 9 for purification system. Lower dissolved oxygen would inhibit the decontamination capacity to some extent, but with growth of dissolved oxygen, it is easy to recover. When environmental conditions changed, less decrease of removal rate of COD_(Mn), NH_4~+ -N, NO_2~--N and NO_3~--N could be observed in immobilized system. Batch operation without re-addition of immobilized Bacillus subtilis, COD_(Mn) decreased to below 4 mg/L 5 times, as the purifying time was 7 d, 10 d, 12 d, 15 d, 19 d. After re-addition of immobilized Bacillus subtilis, there was not significant fluctuation of pH, but the dissolved oxygen reduced to 3.3 mg/L, which result in start of aeration equipment.
引文
[1]张姗姗.枯草芽抱杆菌的固定化及其净水效果的研究[D].武汉:华中农业大学,2008.
    [2]Kozasa M.Toyocerin(Bacillus toyoi)as growth promoter for animal feeding[J].Microbiol.Mlirment. Nutr.,1986,4:121-135.
    [3]刘如林,刁虎欣,梁凤来.光合细菌及其应用[M].北京:中国农业科技出版社,1991:155-167.
    [4]Krooneman J,Van der akker S,Gomes T M P,et al.Degradation of 3-chlorobenzoate under low-oxygen conditions in pure and mixed cultures of the anoxygenic photoheterotroph Rhodopseudomonas palustris DCP3 and an aerobic Alcaligenes species[J].Appl.Environ.Microbiol.,1999, 65(1):131-137.
    [5]Montgomery L,Vogel T M. Dechlorination of 2,3,5,6-tetrachlorobiphenyl by a phototrophic enrichment culture[J].FEMS Microbiol.Lett.,1992,73(3):247-250.
    [6]Van der Woude B J.Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria [J].FEMS Microbiol Lett.,1994,119(1-2):199-207.
    [7]Harwood C S,Gibson J.Ananerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris[J].Appl.Environ.Microbiol.,1988,54(3):712-717.
    [8]Kamal VS,Wyndham R C.Anerobic phototrophic metabolism of 3-chlorobenzoate by Rhodoseudomonas palustris[J].Appl.Environ.Microbiol.,1990,56(12):3871-3873.
    [9]伊玉华,南春华.光合细菌在对虾养殖上的应用[J].大连水产学院学报,1990,5(1):66-69.
    [10]于伟君.光合细菌在对虾养殖中应用的初步试验[J].水产科学,1991,10(l):16-18.
    [11]李秀珠.一种紫色非硫光合细菌对硫化物的抑制及其在对虾养殖中的应用[J].福建水产, 1997,(1):9-13.
    [12]崔竞进,丁美丽,孔文林,等.光合细菌在对虾育苗生产中的应用[J].青岛海洋大学学报, 1997,27(2):191-194.
    [13]刘双江.采用光合细菌控制水体中亚硝酸盐的研究[J].环境科学,1996,16(6):21-23.
    [14]薛恒平,薛彦青.水产养殖同微生态与微生物生态之间关系初探[J].饲料工业,1997,18(2):23-26.
    [15]宫兴文,蔡完其,马江耀.玉垒菌(S30)和光合细菌(PSB)对温室养鳖池水质改良作用的研究[J].中国水产科学,2000,7(2):116-118.
    [16]李卓佳,张庆,陈康德.有益微生物改善养殖生态研究I:复合微生物分解底泥及对鱼类的促生长效应[J].湛江海洋大学学报,1998,18(1):5-8.
    [17]富丽静,王雷.复合微生物在高密度主养鲫池塘的应用[J].水产科学,2002,1,21:22-25.
    [18]刘福军,胡文英.光合细菌在盐碱地池塘改良水质的研究[J].淡水渔业, 1999,29(10):13-16.
    [19]饶汉东,韩永锋,羡永.柠檬酸有机废水的生化处理研究[J].环境科学,1993,14(3):,7-12.
    [20]李槿年.正确使用及保存活菌制剂[J].中国饲料,1997,(6):7-9.
    [21]Wang G H,Dai S K,Chen M J,et al.Two diketopiperazine cyclo(pro-phe) isomers from marine bacteriaBacillus subtilis sp.13-2[J].Chemistry of Natural Compounds,2010,46(4),583-585.
    [22]谢栋,彭憬,王津红,等.枯草芽抱杆菌抗菌蛋白X98的纯化与性质[J].微生物学报,1998,38(1):13-19.
    [23]席鹏彬.猪体内微生物对纤维利用的研究进展[J].饲料广角,1998,(2):10-15.
    [24]刘颖,丁桂珍,胡传红,等.枯草芽孢杆菌对养殖水体水质影响研究[J].淡水渔业,2004,34 (5):12-14.
    [25]Moriarty D J.Control ofluminous Vibrio species in penacid aquaculture ponds[J].Aquaculture,1998, 164:351-358.
    [26]Thimmalapura N D.Fatimah M Y.Mohamed S.Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products[J].Aquaculture,2002,206:245-256.
    [27]Maeda M,Liao I C.Microbial processes in aquaculture environment and their importance for increasing crustacean production[J].JARO,1994,28(4):283-288.
    [28]仇丽.枯草芽抱杆菌在养殖中的应用[J].渔业现代化,2002,4:26.
    [29]张庆,李卓佳,陈康德.复合微生物对养殖水体生态因子的影响[J].上海水产大学学报,1999,8(1):43-47.
    [30]陈静,徐海燕,谷巍.枯草芽孢杆菌B7的分离和净化水质的初步研究[J].河北渔业,2008,(11) :10-11.
    [31]王彦波,周绪霞,徐锌荣.微生物制剂养鱼对水质影响的研究[J].饲料研究,2004, (4):6-8.
    [32]庞金钊.投加优势菌净化城市湖泊水[M].中国给水排水,2003,19(6):51-52.
    [33]盛彦清,陈繁忠,秦向春.城市污染水体生物修复研究[J].地球化学,2005,34(6): 643-648.
    [34]孟范平,李桂芳,李科林.系统评价EM菌液在生活污水处理中的应用效果[J].城市环境与城市生态,1999,12(5):4-8.
    [35]孙德文,詹勇,许梓荣.微生态制剂在水产养殖中的应用[J].淡水渔业,2002,32(3):54-57.
    [36]任海波.养殖废水固定化微生物脱氮技术研究进展[J].海洋科学,2004,28(4):66-69.
    [37]刘雨,赵庆良,郑兴.生物膜法污水处理技术[M].北京:中国建筑工业出版社, 2000.
    [38]梁燕珍,孙国萍,岑英华,等.生物技术在微污染景观水处理中的应用[J].环境科学与技术,2005,28(2):88-89.
    [39]王凌云.景观水体富营养化过程的微宇宙模拟及其修复研究[D].哈尔滨:哈尔滨工业大学,2006.
    [40]郑耀通.固定化光合细菌净化养鱼水质试验[J].中国水产科学,1999,6(4):55-58.
    [41]Hisashi N,Tasako H,Kenji T,et al.Treatment of aquarium water by denitrifying Photosynthetic bacteria using immobilized polyvinyl alcohol beads[J].Joumal of Bioscience and bioengineering,1999,87(2): 189-193.
    [42]Shan H,Obbard T P. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria[J].Appl.Microbial Biotechnol.,2001,(57):791-798.
    [43]Balderston W L,Sieburth J McN. Nitrate removal inclosed-system aquaculture by columnar denitrification[J].Applied and Environmental Microbiology,1976,32(6):808-818.
    [44]吴伟,余晓丽.固定化微生物对养殖水体中NH4+-N和NO2--N转化作用[J].应用与环境生物学报,2001,7(2):158-160.
    [45]辫带式水处理填料[DB/OL]. http://www.yishenghb.com/Show.asp?id=235, 2006–01–05.
    [46]奔向绿色的明天——布吉河综合整治专题报道[J].改革与战略, 2006,(11).
    [47]孟睿,何连生,胡翔,等.生态修复技术处理水产养殖废水[J].中国水产,2008(10):46-47.
    [48]陈桂葵,陈桂珠.人工污水释放对白骨壤模拟湿地系统土壤理化性质的影响[J].海洋环境科学,2005,24(2):26-28.
    [49]刘芳.枯草芽孢杆菌B411的绿色荧光蛋白标记及其水体净化作用的研究[D].武汉:华中农业大学, 2005:39-40.
    [50]Chen S D,Chen C Y,Wang Y F.Treating High-strength Nitrate Wastewater by Three Biological Processes [J].Wat.Sci.Tech.,1999,39(10-11):132-141.
    [51]Martienssen M,Schops R.Population Dynamics of Denitrifying Bacteria in a Model Biocommunity[J].Wat.Res.,1999,33 (3):114-119.
    [52]何红,沈兆昌,邱思鑫,等.内生拮抗枯草芽孢杆菌BS-2菌株的发酵条件[J].中国生物防治,2004,20(1): 38-41.
    [53]汤保贵,徐中文,张金燕,等.枯草芽孢杆菌的培养条件及对水质的净化作用[J].淡水渔业,2007,37(3):46-48.
    [54]余林娟,杨宗韬,王业勤.固定化芽抱杆菌对鱼虾池亚硝酸盐的控制[J].渔业现代化,2004,(2):9-11.
    [55]吴菌见,朱延美,王栋.固定化技术在废水治理中的应用及降解动力学研究进展[J].辽宁化工,2003,31(l):20-25.
    [56]吴淑武.淡水污染现状及其对策[J].琼州大学学报.2002,(4):83.
    [57]吴伟.应用复合微生物制剂控制养殖水体水质因子的初探[J].湛江海洋大学学报,1997,5(l):16-20.
    [58]姚晓丽,梁运祥.一株反硝化细菌在景观水净化处理中的应用[J].环境科学与技术,2006,29(11):62-64.
    [59]Chen Z M, Li Q,Liu H M,et al.Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs[J].Applied Microbiology and Biotechnology,2010,85(5):1353-1360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700