基于风险理论的受端电网动态无功电压支撑规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受端电网的安全稳定运行一直是国内外学者关注的焦点,世界范围内多起大停电事故表明有必要在受端电网安装动态无功补偿装置,进行动态无功电压支撑。由于并联电容器的出力跟电压的平方成正比,在发生事故时无功出力不但不能增加反而减少,起负作用,因此在电源建设受限制的情况下,开展受端电网动态无功电压支撑的研究,对保证受端电网的安全稳定运行具有重要意义。
     本文首先阐述了受端电网动态无功电压支撑规划研究的背景及重要意义,并指出受端电网存在电压稳定性问题,需要制定必要的措施来保证受端电网的安全。然后比较了静态无功补偿和动态无功补偿的区别,进而综述国内外对动态无功补偿优化建模的研究,包括动态无功补偿设备的作用、安装地点和模型研究等。
     本文引入风险理论来评估受端电网动态无功电压支撑规划,由于风险理论涉及两个基本因素:概率和后果,本文接着介绍了模糊数学的相关知识,分析气候对电力系统元件参数的影响并以影响线路的气候因素形成模糊集,通过聚类分析和相似度指标对模糊集进行处理,建立预测新投产的电力系统元件故障率模型,并对某实际电网新投产的线路的故障概率进行分析计算,解决评估模型中新投产线路的概率无法计算的问题,紧跟着分析受端电网故障后的状态情况和有可能造成的损失,包括状态分离和转移以及两者所产生的期望损失,合适的动态无功补偿方案能够减少故障后电网的损失,同时还分析了正常运行方事下安装动态无功补偿设备后带来的运行收益,基于以上分析建立动态无功电压支撑规划的优化模型,以年期望收益最大化为目标函数,并满足多种约束条件。该模型的计算是通过静态潮流计算和动态仿真分析相结合来求取结果的。
     最后选择某典型的受端电网,求取其新投产线路的故障概率,针对三种典型的故障情景分别进行计算分析,分别得到各自的补偿方案,最后通过故障集计算并综合比较求得适合该受端电网的动态无功补偿方案。算例验证了本模型的有效性和实用性,本文的研究成果对于推动我国受端电网开展动态无功电压支撑规划的研究工作具有重要的理论意义和工程实用价值。
The operation security and stability of receiving end networks is the issue that the foreign and domestic scholars pay attention to. Several large-scale blackout disasters in the world indicate it is necessary to install dynamic reactive power compensators in the receiving end networks for the dynamic reactive power voltage support. The shunt capacitors act negatively during the transient course of voltage collapse and the construction of power plants in the receiving end networks is limited. Therefore, the research on dynamic reactive power voltage support of receiving end networks is so significance for the secure and stable operation.
     Firstly, the background and the significance of dynamic reactive power voltage support of receiving end networks are represented and there is voltage stability problem in receiving end networks, it needs to take some measures for the security. The difference between static reactive compensation and dynamic reactive compensation are compared, and the research status in dynamic reactive compensation field at home and abroad are discussed, including the effect, location and method.
     The risk theory is used here to evaluate the dynamic reactive voltage support plan. The risk theory consists of two basic factors: probability and severity. Therefore the relevant knowledge of fuzzy mathematics is presented, the effect of climate on original reliability of power system is analyzed, and the climate factors that affect reliability are considered as fuzzy elements. The fuzzy clustering and the similarity are proposed to deal with fuzzy elements and the model that used to predict the original reliability parameters of new component in power system is presented, solving the problem that the probability of new line can not calculate. Then the state of receiving end networks after contingency is analyzed. The annual risk loss consist of state separating risk costs and transferring risk costs and it can be reduced by the appropriate dynamic reactive voltage support. The operating profit of the dynamic reactive compensation under the normal operation is also analyzed. Based on previous work, a mathematical model of dynamic reactive power voltage support plan is presented in this paper, which objective is to maximize the yearly average profit of the state without and with additional dynamic voltage support for the power system and satisfying all sorts of constraints.
     Finally one typical receiving end networks is selected for the optimization calculation through the model. It is showed that the proposed models are practical and effective. The results in this paper have important theoretical meaning and potential value of practical application to the dynamic reactive voltage support plan of receiving end networks.
引文
[1]武寒,祝瑞金.华东大受端电网电压稳定性研究之我见[J].华东电力,2006,34(8):1-5.
    [2]谢栋.上海电网在大受端运行情况下电压稳定性分析[D].上海:上海交通大学, 2010.
    [3]廖民传,蔡广林,张勇军.交直流混合系统受端电网暂态电压稳定分析[J].电力系统保护与控制,2009,37(10):1-4,18.
    [4]王梅义.大电网事故分析与技术应用[M].北京中国电力出版社,2008.
    [5]洪潮,饶宏.南方电网直流多落点系统实时仿真研究[J].中国电机工程学报,2005,25(25):29-35.
    [6]胡学浩.美加联合电网大面积停电事故的反思和启发[J].电网技术,2003,27(9):2-6.
    [7]刘永奇,谢开.从调度角度分析8.14美加大停电[J].电网技术,2004,28(8):11-15,45.
    [8] Elkraft System. Power Falure in Eastern Dennlark and Southern Sweden on 23 September2003—Final Report on the Course of Events[OL]. http://www.elkraft一system.dk.
    [9]陈亦平,洪军.巴西“11.10”大停电原因分析及对我国南方电网的启示[J].电网技术,2010,34(5):77-82.
    [10]郭剑波,姚国,徐征雄等.我国未来大区电网互联可能出现或应该注意的若干技术问题[J].电网技术,1998,22(6):63-67.
    [11]夏向阳,张一斌,蔡灏.电力受端系统的稳定问题及其对策分析[J].继电器,2005,33(17):74-78,84.
    [12]徐政.联于弱交流系统的直流输电特性研究之二—控制方式与电压稳定性[J].电网技术,1997,21(3):1-4.
    [13]昆德.电力系统稳定与控制[M].北京:中国电力出版社,2001.
    [14]汪娟娟,张尧,夏成军等.交直流电力系统暂态电压稳定性综述[J].电网技术,2008,32(12):30-34.
    [15]王正风,薛禹胜,杨卫东.受端负荷模型对交直流系统稳定性的影响[J].电力系统自动化,2006,9(18):13-16.
    [16]张勇军,陈超,廖民传.配电网节能改造优化建模研究[J].电力系统保护与控制, 2010,38(15):60-64.
    [17] Yong-jun Zhang, Zhen Ren. Optimal reactive power dispatch considering costs of adjusting the control devices[J]. IEEE Trans. On Power System, 2005,20(3):1349-1356.
    [18]任晓娟,邓佑满,周立国,等.高中压配电网的无功优化算法[J].电力系统自动化,2007,7(26):45-49.
    [19]程莹,刘明波.含离散控制变量的大规模电力系统无功优化[J].中国电机工程学报,2002,22(5):54-60.
    [20]李亚男,张粒子,杨以函.考虑电压约束裕度的无功优化及其内点解法[J].中国电机工程学报,2001,21(9):1-4.
    [21]李邦峰,张勇军,李勇等.受端系统动态无功补偿优化建模方法综述[J].电网技术, 2007,31(15):21-25,38.
    [22]杨增辉,曹路,祝瑞金等.大受端电网电网稳定性研究[J].华东电力,2009,37(10):66-70.
    [23] V.S. Kolluri, S. Mandal, S. Datta et al. Application of static var compensator in energy system to address voltage stability issues-planning and design considerations[C]. IEEE/PES Transmission and Distribution Conference and Exhibition, 2005/2006:1407-1411.
    [24]高芳,王伟,俞旭峰等. STATCOM在上海电网中的应用仿真[J].电力系统自动化,2003,27(12):71-74.
    [25]李峰,徐敏. STATCOM在江西电网中的应用仿真研究[J].继电器, 2006,34(3):51-54.
    [26]林孔兴,李菊跟,李向荣等. STATCOM应用于2010年华中电网的初步研究[J]. 2000,24(23):10-13.
    [27] Dixon J, Moran L, Rodriguez E et al. Reactive power compensation technologies: state-of-the-art reviews[C].Proceedings of the IEEE, 2005,93(12): 2144-2164.
    [28]刘文华,姜齐荣,梁旭等.±20MVar STATCOM总体设计[J].电力系统自动化, 2000,24(23)14-18.
    [29] Mori S, Matsuno K, Hasgawa T, et al. Development of a Large Static VAR Generator Using Self-Commutated Inverters for Improving Power System Stability. IEEE Trans on PWRS, 1993,8(1):371-377.
    [30] Schauder C, Gernhardt M, Stacey E, et al. Development of a±100 MVar Static Condenser for Voltage Control of Transmission Systems . IEEE Trans on PWRD, 1995,10(3):1486-1496.
    [31] Mansour Y, Xu W, Alvarado F, et al. SVC placement using critical modes of voltage instability[J]. IEEE Trans on Power Systems, 1994, 9(2):757-763.
    [32]张靖,程时杰,文劲宇等.通过选择SVC安装地点提高静态电压稳定性的新方法[J].中国电机工程学报, 2007,27(34):7-11.
    [33] Song Sung Hwan, Lim Jung Uk, Moon SEung II. Installation and operation of FACTS devices for enhancing steady-state security[J]. Electric Power Systems Research, 2004, 70(1):7-15.
    [34]李生虎,周晶. SVC位置和容量的灵敏度和概率分析[J].2010,22(4):24-29.
    [35] Ishak S, Abidin A F, Rahman T K A. Static Var compensator planning using artificial immune system for loss minimization and voltage improvement[C]. Proceedings of National Power&Energy Conference 2004,pp41-45,Kuala Lumpur, Malaysia.
    [36] Roberto M, Federico M, Rafael Z et al. Optimal Network Placement of SVC Devices[J]. IEEE Transactions on Power System.2007,22(4):1851-1860.
    [37] Saravanan M, Mary Raja Slochanal S, Venkatesh P, et al. Application of particle swam optimization technique for optimal location of FACTS devices considering cost of installation and system loadability[J]. Electric Power Systems Research 77(2007):276-283.
    [38] Yousefi G R, Seifi H, Sepasian M S, et al. A new reactive power planning procedure for Iranian Power Grid[J]. Electric Power Systems Research 72(2004): 225-234.
    [39]钱峰,汤广福,贺之渊.基于智能帕雷托解的FACTS装置多目标优化配置[J].中国电机工程学报,2010,30(22):57-63.
    [40] Chang C S, Huang J S,. Optimal multiobjective SVC planning for voltage stability enhancement[J].IEE Proc.Gener. Transm. Distrib., 1998,145(2):203-209.
    [41] Yorino N, El-Araby E E, Sasaki H, et al. A new formulation for FACTS allocation for security enhancement against voltage collapse[J]. IEEE Trans on Power Systems,2003,18(1):3-9.
    [42]张勇军,李勇,蔡广林等.广东受端电网动态电压支撑优化建模[J].电力系统自动化, 2007,31(24):29-33.
    [43]赵宇,杨军,马小兵.可靠性数据分析教程[M].北京:北京航空航天大学出版社,2009.6.
    [44]王守礼,李家.电力气候[M].北京:气象出版社,1994.
    [45]袁周,黄志坚.电力生产事故的人因分析及预防[M].北京中国电力出版社,2004.
    [46]陈永近,任震,黄雯莹.考虑天气变化的可靠性评估模型与分析[J].电力系统自动化,2004,28(21):17-21.
    [47] Fu Weihui, Mccalley J.D, Vittal V. Risk assessment for transformer loading. IEEE Transactions on Power Systems, 2001,16(3):346-353.
    [48]任震,吴敏栋,黄雯莹.电力系统可靠性原始参数的滚动预测和残差修正[J].电力自动化设备, 2006, 26(7): 10-12.
    [49] Brown, R.E.; Ochoa, J.R. Distribution system reliability: Default data and model validation. IEEE Transactions on Power Systems, vol.13,no 2 May 1998.
    [50]陈举华,赵建国,郭毅之.电力系统可靠性研究的灰关联和模糊贴近度分析方法[J].中国电机工程学报, 2002, 22(1):59-63.
    [51]孙荣富,程林,孙元章.基于恶劣气候条件的停运率建模及电网充裕度评估[J].电力系统自动化,2009,33(13):7-12,88.
    [52]张勇军,袁德富,汪穗峰.基于模糊差异度的电力系统可靠性原始参数选取[J].电力自动化设备, 2009,29(2):43-46.
    [53]杨纶标,模糊数学原理及应用(第4版)[M].广州华南理工大学出版社, 2006,7.
    [54]范金城,梅长林.数据分析[M].北京科学出版社, 2002.
    [55]邓聚龙.灰理论基础[M].武汉华中科技大学出版社. 2002,2.
    [56]吕大刚,王力,张鹏等.模糊多属性决策的相似接近度解法[J].控制与决策,2004,19(11):1282-1285.
    [57]王守礼,李家垣.电力气候[M].北京:气候出版社, 1994.
    [58]百度百科[OL]. http://baike.baidu.com/view/156901.htm.
    [59]李文沅.电力系统风险评估模型、方法和应用[M].北京科学出版社, 2006.
    [60] Ernst D, Ruiz-Vege D, Pavella M, et al. A unified approach to transient stability contingency filtering, ranking and assessment [J]. IEEE Transactions on Power Systems, 2001, 16(3): 435-443.
    [61]许涛,贺仁睦,王鹏,等.基于统计学习理论的电力系统暂态稳定评估[J].中国电机工程学报,2003,23(11):51-55.
    [62]赵霞,周家启,胡小正,等.暂态稳定性分析中的确定性方法和概率性方法[J].电力系统自动化,2006,30(6):100-103 .
    [63] Billinton R, Kuruganty P R S.Probabilistic assessment of transient stability in a practical multi-machine system[J] . IEEE Trans. on PAS, 1981, PAS-100(7):3634-3641.
    [64]丁明,李生虎,吴红斌.电力系统概率充分性和概率稳定性的综台评估[J].中国电机工程学报,2003,23(3) :20-25.
    [65] Ming Ni, Mc Calley J D, Vittal V.Online risk-based security assessment[J].IEEE Trans.on Power Systems, 2003, 18(1) :258-265.
    [66] Wan Hua, Mc Calley J D, Vittal V.Risk based voltage security assessment[J].IEEETrans.on Power Systems,2000,15(4) :1247-1254.
    [67] Mc Calley J D, Vittal V, Abi-Samra N . An overview of risk based security assessment[C].IEEE Power Engineering Society 1999 Summer Meeting,Alberta,Canada,1999.
    [68]张勇军,李勇,陈旭.基于状态分离和转移费用评估的受端动态无功规划[J].华南理工大学学报(自然科学版),2009,37(2) :113-117,126.
    [69] Yong-jun Zhang, Chao Chen, Yong Li, Guo-bing Wu. Dynamic voltage support planning for receiving end power systems based on evaluation of state separating and transferring risks[J]. Electric Power Systems Research, 2010,80(12):1520-1527.
    [70] McCalley. J D. VITTAL.V WAN.H Voltage Risk Assessment[C].IEEE Power Engineering Society Summer Meeting, 1999.
    [71]李勇,多馈入交直流输电受端系统动态电压支撑优化建模[D].华南理工大学硕士学位论文.2008年5月.
    [72]周莉梅,范明天.城市电网用户停电损失估算及评估方法研究[J].中国电力,2006,39(7):70-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700