近红外光谱分析技术在饲料分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饲料原料的品质是保证饲料产品质量与安全的根本,为了能快速有效地控制原料的品质,本课题采用近红外光谱(NIRS)快速检测的方法,收集了49个纯鱼粉样品,按1%、5%、9%的比例分别向纯鱼粉样品中掺入了尿素、豆粕、麦麸和菜粕,制成12个假鱼粉,市面上售有的4个掺假鱼粉,50个豆粕样本和50个麦麸,分别在950~1650nm范围内进行近红外光谱扫描,采用不同的光谱处理方法分别进行了鱼粉的掺假判别、豆粕尿素酶活性及鱼粉、豆粕、麦麸常规化学成分的近红外光谱定量分析模型的建立,结果如下:
     1、先用主成分回归(PCR)对56个鱼粉样品(44个纯鱼粉及12个自制的掺假鱼粉)进行分析,可以明显地区分纯鱼粉与掺假鱼粉。由此可知,近红外光谱法可作为鉴别鱼粉的一项新技术。再在此基础上,采用PCR结合马氏距离(Mahalanobis)法,用44个纯鱼粉样品创建了近红外光谱模型,验证结果表明,采用标准化(SNV)处理方式建立的模型在9主成分数下对验证集样品进行预测,误辨数为0,验证效果最好。
     2、采用一阶导数(SG1)+附加散射(MSC)+中心化(mean center)预处理方法,用偏最小二乘法(PLS)建成了豆粕尿素酶活性测定的校正模型,其校正决定系数R~2为0.916,定标标准差(SEC)为0.045,外部验证决定系数R~2为0.926,预测标准差SEP=0.035,测量重复变异系数为0.09。结果基本达到了定量分析的要求。
     3、用偏最小二乘(PLS)定标方法,结合中心化、多元散射、导数处理的方法,对豆粕样品化学成分建立了的定标模型,定标集化学分析值与NIRS预测值之间的决定系数R~2和标准差RMSEC分别为:0.9695和0.117(水分),0.9755和0.338(粗蛋白),0.9507和0.271(粗脂肪),0.845和0.076(粗灰分)。0.9384和0.267(粗纤维)。用验证集样本对NIRS定标模型进行了检验,其预测值与化学分析值之间的决定系数R~2和标准差RMSEP分别为:0.9327和0.115(水分)、0.9533和0.313(粗蛋白)、0.9847和0.221(粗脂肪)、0.8541和0.078(粗灰分)、0.9009和0.248(粗纤维)。除粗灰分外,其它成分均达到了定量分析的要求。
     用同样的方法对鱼粉各化学成分建立了定标模型,定标集化学分析值与NIRS定标模型预测值之间的决定系致R~2和交互验证标准差RMSECV分别为:0.9559和0.216(水分),0.9651和0.386(粗蛋白),0.9421和0.288(粗脂肪),0.8899和0.249(钙),0.9553和0.085(磷),0.9235和0.135(盐分)。用验证集样品对NIRS定标模型进行了检验,其预测值与化学分析值之间的决定系数R~2和标准差RMSEP分别为:0.9395和0.314(水分),0.908和0.827(粗蛋白),0.9101和0.613(粗脂肪),0.8353和0.474(钙),0.83和0.294(总磷),0.9238和0.393(盐分)。除钙、磷验证效果稍差之外,其它成分均达到了定量分析的要求。
     用相同的处理方法对麦麸样品各化学成分建立了定标模型,定标集化学分析值与NIRS定标模型预测值之间的决定系数R~2和交互验证标准差RMSECV分别为:0.9701和0.101(水分),0.9572和0.123(粗蛋白),0.9304和0.109(粗脂肪),0.9814和0.129(粗纤维),0.9582和0.105(粗灰分)。用验证集样品对NIRS定标模型进行了检验,其预测值与化学分析值之间的决定系数R~2和标准差RMSEP分别为:0.9477和0.142(水分),0.9517和0.148(粗蛋白),0.8935和0.133(粗脂肪),0.9579和0.161(粗纤维),0.8833和0.114(粗灰分)。各成分定标结果均达到了定量分析的要求。
Materials of feed are the base of the feed, and their qualities ensure the qualityand safety of feed products. In order to control the quality of the materials rapidlyand effectly, the method of near infrared reflectance spectroscopy (NIRS) technologywere appplied in this study. 49 true fish meal samples, 4 adulterated fish meal forsale, 50 soybean meal samples and 50 wheat bran samples were collected and delib-erately adulterated with urea, soybean meal,wheat bran and rapeseed meal respectivelyin 1%, 3%, 5% proportion to make 12 adulterated fish meal samples. The sampleswere scaned at the NIRS region 950-1650 nm respectively.The calibration models todetect whether the fish meal samples were adulterated and to predict the activity ofsoybean meal and conventional chemical compositions in fish meal ,soybean meal andwheat bran were developed using different methods to handle the NIR spectrograms ofthe samples. The results were as follows:
     1. Using the method of PCR to handle the NIR spectrograms of 56 fish mealsamples,we can discriminate true fish meal samples from adulterated fish meal sampleseasily.Therefore, the NIRS technique can be used as a new technique to detect quicklywhether the fish meal samples adulterated or not. Whereafter, the calibration modelwhich was developed with 44 true fish meal samples was established by the meanPCR combine with Mahalanobis distance. The result of validation showed that themodel which developed under the nine pinecipal factors by SNV was the best one,the number of false discrimination was zero.
     2. The universal calibration model for rapid estimation of the activity of soybean-meal was established by using the partial least square regression(PLS) and fist derivat-ive+multivariate scattering correction+mean center.The R~2_(cal) and SECV was 0.916and 0.045.The R~2_(val) and SEP was 0.926 and 0.035.The coefficient of variation(CV) ofrepeatability was 0.09.
     3. The universal calibration models for rapid estimation of conventional chemicalcompositions in soybean meal samples were established by using the partial least squ-are regression (PLS) combine with the methods of mean center, multivariate scatteringcorrection and derivative.The coefficient of determination in calibration (R~2) and RM-SEC of moisture, crude protein, crude fat,crude ash,crude fiber in soybean meal were 0.9695, 0.9755, 0.9507,0.845, 0.9384 and 0.117, 0.338, 0.271, 0.076, 0.267 respectively.And the coefficient of determination in validation and RMSEP of moisture, crudeprotein, crude fat, crude ash,crude fiber in soybean meal were 0.9327, 0.9533, 0.9847,0.8541, 0.9009 and 0.115, 0.313, 0.221, 0.078, 0.248 respectively.Apart from the crudeash, the other calibrations could meet the required for quantitative analysis.
     The universal calibration models for rapid estimation of conventional chemicalcompositions in fish meal samples were established by using the same mean. Thecoefficient of determination in calibration (R~2) and RMSEC of moisture, crude protein,crude fat,calcium,total phosphor and salt in fish meal samples were 0.9559, 0.9651,0.9421,0.845, 0.8899, 0.9553, 0.9235 and 0.216, 0.386, 0.288, 0.249, 0.085, 0.135Respectively. And the coefficient of determination in validation and RMSEP of mois-ture, crude protein, crude fat,calcium,total phosphor and salt in fish meal sampleswere 0.9395, 0.908, 0.9101, 0.8353, 0.83, 0.9238 and0.314, 0.827, 0.613, 0.474,0.294, 0.393 respectively. Apart from the calcium and total phosphor, the other calib-rations could meet the required for quantitative analysis.
     The universal calibration models for rapid estimation of conventional chemicalcompositions in wheat bran samples were established by using the same mean. Thecoefficient of determination in calibration (R~2) and RMSEC of moisture,crude protein,crude fat, crude fiber, crude ash in wheat bran samples were 0.9701, 0.9572, 0.9304,0.9814, 0.9582 and 0.101, 0.123, 0.109, 0.129, 0.105 respectively. And the coefficientof determination in validation and RMSEP of moisture, crude protein, crude fat, crudefibre, crude ash in wheat bran samples were 0.9477, 0.9517, 0.8935, 0.9579, 0.8833and 0.142, 0.148, 0.133, 0.161, 0.114 respectively.All of the calibrations could meetthe required for quantitative analysis.
引文
[1] 赵雅欣 王红英.近红外光谱分析技术在饲料工业中的应用进展[J].饲料工业·2005(21):37-41
    [2] 董守龙 任芋 黄友之.近红外光谱分析技术的发展和应用[J].化工生产与技术:2004(6):44-46
    [3] 严衍禄.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005:
    [4] 曹干.现代近红外光谱分析技术在农业研究中的应用[J].广东农业科学:2004:26-31
    [5] 孙宏伟.近红外光谱分析仪器的应用与发展[J].仪器评价:2002(5):26-30
    [6] 王文真,蒋自强,林夕.近红外光谱分析及其在我国的应用[J].国外科学仪器,1989,3
    [7] 北京农业大学FT近红外DRSA研究组[J].北京农业大学学报,1991,16:1-4
    [8] 陆婉珍 袁洪福 徐方通等.现代近红外光谱分析技术[M].北京:中国石化出版社.
    [9] 徐广通,陆婉珍,袁洪福等.CCD近红外光谱仪在柴油生产控制分析中的应用[J].石油炼制与化工,1999,30(9):57
    [10] 蒲登鑫,王文茂,李军会等.近红外在线质量监控技术在中药葛要素生产中的应用[J].现代仪器,2003(5):27
    [11] 高荣强 范世福.现代近红外光谱分析技术的原理及应用[J].分析仪器.2002(3):9-12
    [12] 严衍禄主编.现代仪器分析[M].北京:北京农业大学出版社,1995
    [13] 冯新泸 史永刚.近红外光谱及其在石油产品分析中的应用[M].中国石化出版社
    [14] 徐坤,刘鹏起,张玉娜等.近红外光谱分析技术及应用莱阳农学院学报[J].2001,18(3):237—240.
    [15] 刘艳青.近红外光谱分析的技术与应用[J].制造业自动化:2002(2):61-62
    [16] 杨曙明,张瑜.应用近红外光谱分析技术快速分析饲料质量[J].分析测试学报:1999,18(1):83-87
    [17] 张玲.PLS定标法在近红外光谱人分析仪中的应用研究[J].光学精密工程:2000,8(3):238-241
    [18] 夏柏杨 任芊.近红外光谱分析技术的一些数据处理方法的讨论[J].光谱实验室.2005(5):629-634
    [19] 李勇,魏益民,王锋.影响近红外光谱分析结果准确性的因素[J].核农学报,2005,19(3):236~240
    [20] 赵枝新,金岭梅.粉碎粒度对近红外分析仪测定饲料样品干物质和粗蛋白含量的影响[J].中国饲料,2002(3):35~37
    [21] 褚小立 袁洪福 陆婉珍.基础数据准确性对近红外光谱分析结果的影响[J].光谱学与光谱分析.2005(6):886—889
    [22] 褚小立,袁洪福,王艳斌,陆婉珍.近红外稳健分析校正模型的建立(工)——样品温度的 影响[J].光谱学与光谱分析.2004(6):666—671
    [23] 赵丽丽,赵龙莲,李军会,张录达,严衍禄.傅里叶变换近红外光谱仪扫描条件对数学模型预测精度的影响[J].光谱学与光谱分析,2004,24(1):41—44
    [24] 张吉鹞,王建华,李龙瑞,邹庆华.浅析粗饲料品质的检测技术[J].饲料世界,2004(1):31-34
    [25] 杜荣等.近红外光谱分析技术在粗饲料质量检测上的应用—饲料用裸大麦部分·见,中国农业科学院畜牧研究所编.近红外光谱分析技术.北京:中国农业科技出版社·1993:196-203
    [26] 张吉鸱.NIRS与饲荠试验法在粗饲料营荠价值评定上昀应用[J].山东饲料,2003(2):1-3
    [27] 丁丽敏,计成,戎易.近红外(LAIRS)和粗蛋白预测氨基酸含量的精度比较研究[J]·饲料工业.2002.23(4):15-18
    [28] 樊霞,韩鲁佳,皇才进,黄光群.基于近红外光谱技术的牛粪成分含量测定方法[J].农业机械学报.2006,37(3):76-79
    [29] Norris, K. H., Barnes, R. F., Moore, J. E., Shenk, J,S., Predicting forage quality by infrared reflectance spectroscopy. J. Anim. Sci. 1976,43: 889~897
    [30] Schaalje, G. B., MUndel, H. H., Use of residual maximum likelihood to evaluate accuracy of two NIRS calibration procedures, relative to Kjeldahl, for determining nitrogen concentration of soybeans. Can. J. Plan t Sci. 1991, 71: 385-392
    [31] Fontaine. J HSrr,J., Schirm er, B., Near—infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fishmeal, meat meal products and poultry meal. J. Agric. Food Chem. 2001,49 r1): 57—66
    [32] 孟兆芳,张玺,陈峥.近红外光谱分析技术在豆粕豆质分析中的应用.天津农业科学.2002(12):30-32
    [33] 杨海峰,吕小文等,近红外光谱分析技术在豆粕质量监控中的应用研究[J].中国饲料,2006,27(19):31-34
    [34] 牛智有,韩鲁佳,苏晓鸥,杨振海.鱼粉中肉骨粉含量的近红外反射光谱分析[J].农业机械学报.2006,37(8):126-130
    [35] 白琪林,陈绍江,严衍禄,朱雨杰,戴景瑞.近红外漫反射光谱法测定青贮玉米品质性状的研究[J].中国农业科学2006,39(7):1346-1351
    [36] 刘小敏,杨林,陈璇,刘婕.NIR1501型近红外分析仪在鱼粉质检中的应用[J].粮食与饲料工业.1996(9):23-27
    [37] Atanassova S, Ichev A. Application of near-infrared reflectance spectroscopy for predicting chemical composition of compound pig and poultry feeds[J]. Bulgarian Journal of Agricultural Science. 1997,3(2), 171-180
    [38] 牛智有,韩鲁佳,苏晓鸥,杨振海.鱼粉品质的近红外反射光谱快速检测方法.农业机械学报.2005,36(5)
    [39] 杨曙明,张瑜.应用近红外光谱分析技术快速分析饲料质量[J].分析测试学报.1999.18(1):83-87
    [40] Dolores C, Ana Garrido-Varo, J E Guerrero et al. Near-infrared reflectance spectroscopy (LAIRS) for the mandatory labeling of compound feedingstuf: chemical composition and open-declaration[J].Animal Feed Science and Technology, 2004. (116):333-349
    [41] Xiccato G, Trocino A, Boever J.Prediction of chemical composition, nutritive value and ingredient composition of European compound feeds for rabbits by near infrared reflectance spectroscopy(NIBS)[J]. Animal Feed Science and Technology. 2003,104:153-168
    [42] 刘晓敏,杨林,陈璇.NIR1501型近红外分析仪检测饲料的研究[J].中国饲料,1996(16):35-36
    [43] Birth G S,H H Ramet Jr.Near infrared reflectance for analysis of cotton seed for gossypol[J].Cereal Chem. 1982.59(6):516-519
    [44] Biston R,et al.Fast analysis of rapeseed glucosinolates by near infrared reflectance spectroscopy [J].JAOCS. 1988.65(10):1599-1600
    [45] 孙金峰,刘大庆等.近红外光谱技术检测豆粕尿素酶活性的初步研究[J].中国油脂,2002(3):76-77
    [46] 杨海峰,吕小文等,近红外光谱分析技术在豆粕质量监控中的应用研究[J].中国饲料,2006,27(19):31-34
    [47] 关秀琴,崔淑文,王永真,马东霞.应用近红外光谱法测定饲料中的植酸磷含量.仪器仪表与分析监测.1991.(2):35-37
    [48] 赵宏.近红外光谱分析技术在饲料植酸磷监测技术上的应用---饲料用小麦麸、米糠、玉米和菜籽饼.见:中国农业科学院畜牧研究所编.近红外光谱分析技术.北京:中国农业科技出版社.1993,236-241
    [49] 丁小霞,李培武,李光明等.傅里叶变换近红外光谱技术测定完整油菜籽中芥酸和硫甙含量[J].中国油料作物学报.2004,26(3):76-79
    [50] 李延莉,孙超才,钱小芳等.油菜籽品质测定方法(近红外反射光谱法与传统化学方法)的比较[J].上海农业学报2003,19(1):11~14
    [51] 吴建国,石春海,樊龙江.油菜籽芥酸和硫甙含量近红外反射光谱测定技术的优化设置[J].中国粮油学报.2004,17(2):59-62
    [52] 刘志华.近红外光谱法快速测定豆粕中混入的玉米粉含量.分析试验室.1996,15(5):84-88
    [53] Murray.L, Aucot L.S., Pike I.H. Use of discriminant analysis on visible and near infrared reflectance spectra to detect adulteration of fishmeal with meat and bone meal[J]ournal of Near Infrared Spectroscopy. 2001.9(4):297-311
    [54] 王中华.鱼粉的品质鉴定[J].江西畜牧兽医杂志.2006(3):25
    [55] 卡佳仁.饲料显微镜检与质量控制手册[M].美国大豆协会,美国饲料谷物协会出版(1900)
    [56] 牛智有.鱼粉、精料补充料及其中肉骨粉含量的近红外漫反射光谱分析.中国农业大学.博士论文:20050501
    [57] 刘强,孟庆翔,白琪林等.利用近缸外光谱法快速测定青贮玉米饲料中NDF与ADF含量.中国畜牧杂志.2005,41(11):39-41
    [58] 董秀玲,钱世凯,杨维旭.现场收购“冻玉米”中各组分含量的近红外光谱(NIR)分析.粮食与饲料工业.2004(11):43-45
    [59] Perten Instruments.Diode Array 7200 Operation Manual.January 12 2005
    [60] 赵杰文,陈全胜等.近红外光谱分析技术在茶叶鉴别中的应用研究[J].光谱与光谱分析(2006,9):1601-1604
    [61] 愈汝勤.化学计量学导论[M].长沙:湖南教育出版社,1991
    [62] 许禄.化学计量学方法[M].北京:科学出版社,1995
    [63] 岳俊奇,袁洪福等.分析化学[J].1998,26(5):603
    [64] 徐广通,袁洪福等.分析化学[J].1999,27(1):29-33
    [65] 倪永年主编.化学计量学在分析化学中的应用[M].北京:科学出版社,2004
    [66] 褚小立,袁淇福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展.2004.16(4):528-542.
    [67] 严衍禄,赵龙莲,李军会等.现代近红外光谱分析的信息处理技术[J].光谱学与光谱分析.2000(12):777-780
    [68] 张军,郑咏梅,王芳荣等.谷物近红外光谱分析中常用数据处理方法讨论.吉林大学学报(信息科学版).2003,21(1):4-9
    [69] 袁洪福,陆婉珍.石油炼制与化工[J],1998,29(9):47
    [70] 陆婉珍,袁洪福等.现代近红外光谱分析技术[M].北京.中国石化出版社.2000:150-151
    [71] 陆婉珍,袁洪福等.现代近红外光谱分析技术[M].北京.中国石化出版社.2000:156-159
    [72] 王中华.不同原料和加工方式对鱼粉质量的影响[J].江西饲料.2006(5):1-2
    [73] 柯以侃,董慧茹.分析化学手册(光谱分析)[M].化学工业出版社.2000
    [74] 张萍,闫继红,朱志华等.近红外光谱技术在食品品质鉴别中的应用研究.现代科学仪器.2006(1):60-62
    [75] 赵国墚,徐静.利用近红外光谱技术进行羊毛、羊绒鉴别[J].毛纺科技(2006,1):42-44
    [76] 赵杰文,陈全胜等.近红外光谱分析技术在茶叶鉴别中的应用研究[J].光谱与光谱分析(2006,9):1601-1604
    [77] 陈建欣.大豆粕中尿素酶活性及测定方法的探讨[J].吉林粮食高等专科学校学报.2005.20(4):1-4
    [78] 杨胜.饲料分析及饲料质量检测技术[M].北京:农业大学出版社,1994.
    [79] 刘德芳.配合饲料学[M].北京:农业大学出版社,1992.
    [80] 刘玉兰.大豆制油过程中尿素酶活性与蛋白质变性关系的研究[J].郑州粮食学院学报.1992(4):39-43
    [81] 农业部全国饲料工作办公室等编.中国饲料工业标准汇编(上册)[M].北京:中国标准出版社,2006.
    [82] 方彦.利用近红外光谱法测定玉米品质的研究.硕士论文,2004
    [83] 农业部全国饲料工作办公室等编.中国饲料工业标准汇编(下册)[M].北京:中国标准出版
    [84] 梁逸曾,俞汝勤.化学计量学[M].北京.高等教育出版社.2003
    [85] 杨维旭,邓红波等.现场收购冻玉米中各成分含量的近红外光谱(NIR)分析[J].淀粉与淀粉糖.2003(3):38-43
    [86] 谢荣国.如何正确评价大豆饼粕质量[J].宁夏农林科技.2003(3):58
    [87] 张璐等.近红外光谱法测定豆粕中常规化学成分的研究[J].检验检疫科学.2003.13(1):25-27
    [88] 章礼刚.我国进口鱼粉市场丞待规范[J].中国饲料.2007(7):8-9
    [89] 王丹红等.用近红外反射光谱法分析鱼粉成分的新方法研究[J].引进与咨询.2002(2):20-21
    [90] 苏彩珠,梁震,黄宇鹏等.进口鱼粉蛋白质含量快速检测.检验检疫科学.2005(2):9-12
    [91] 王修启.高方等.麦麸类饲料高效利用研究进展[J].河南农业科学.2002(4):39-40
    [92] 郭祯祥,李利民,温纪平.小麦麸皮的开发与利用[J].粮食与饲料工业.2003(6):43-45
    [93] 李昌文,欧阳韶晖.小麦麸皮的综合利用[J].粮油加工与食品机械.2003(7):55-56
    [94] 蒋垣津.浅谈小麦麸皮的营养成份[J].天津粮油科技.1996(1):6-8
    [95] 程炳钦等.小麦麸开发利用的研究[J].粮食与饲料工业.1998(7):34-36
    [96] 冯平等.近红外光谱分析技术在麦数的饲料营养价值评定上的应用中国畜牧杂志.1986,(2):10-14
    [97] Law D P. Determination moisyure content in wheat by NIR difuse reflectance spectrophotometer[J] y. Cereal chew. 1977,54(4):874-881
    [98] Williams P C & K H Norris. Nearoinfrted Technology in the Agriculture and Food Industries. American Association of Cereal Chemists. 1987:330
    [99] Hartwig P, P H Charles. Near Reflectance Measurement of moisyure, protein and oil content of ground crambe seed. JAOCS,1990(67):7
    [100] 丁丽敏.近红外光谱技术预测饲料中氨基酸和真可消化氨基酸含量的研究·中国农业大学博士学位论文,1997年
    [101] 王丽杰,郭建英,徐可欣.近红外光谱分析中建模样品优选方法的研究[J].红外技术:2005(27,1):75-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700