桃流胶病菌BOTRYOSPHAERIAS SPP.鉴定、分布、遗传多样性及PCR快速检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄座腔菌属(Botryosphaeria)真菌是许多单子叶、双子叶和裸子植物上常见的病原菌、内生菌和腐生菌。能引起许多多年生木本植物产生溃疡、枯萎、坏死和流胶等症状。桃(Prunus persica L.)流胶病过去多认为是逆境和管理粗放等引起的生理性病害,而葡萄座腔菌属真菌在我国作为桃流胶病病原菌并没有进行系统的研究。桃流胶病主要为害枝干,造成主干、主枝等部位树皮产生胶状溢出物,树胶初期无色透明,随时间推移逐渐变成红褐色至深褐色。湖北省是我国重要的桃产区,流胶病发生严重,本研究从湖北省桃流胶病病原学入手,在分生孢子形态学、培养特性、分子系统学和致病性研究的基础上,对桃流胶病菌进行鉴定。同时,设计PCR特异性引物用于病原菌快速检测;对不同桃品种的抗病性进行评价等。主要结果如下:
     1.我国湖北省桃流胶病菌为Fusicoccum aesculi Corda, Diplodia seriata De Not.和Lasiodiplodia theobromae (Pat.) GrifF&Maubl.。Botryosphaeria spp作为桃流胶病菌最早是20世纪70年代在美国Georgia州报道的。到目前为止,我国报道的引起桃流胶病的该属真菌只有Botryosphaeria dothidea (Moug.) Ces.&De Not.。湖北省是我国桃生产的重要产区,流胶病发生普遍。为了解该省桃流胶病的发生情况,在咸宁市、武汉市、孝感市、随州市、远安县(宜昌市)等地调查了14个果园的1914棵桃树,总发病株率99.2%。从武汉市、咸宁市、孝感市、远安县(宜昌市)、随州市、老河口市(襄阳市)、沙洋县(荆门市)、公安县(荆州市)、枣阳市共采集桃流胶病枝条170份,获得116个Botryosphaeria spp分离株。结合菌落培养特性、分生孢子形态学、致病性测定和rDNA内转录间隔区(rDNAITS, ITS1-5.8S-ITS2)、β微管蛋白(p-tubulin)和α延伸因子(EF1-α)的分子系统学将湖北省桃流胶病菌鉴定为:F. aesculi(有性阶段B. dothidea)、D. seriata(有性阶段B. obtusa (Schwein.) Shoemaker)和L. theobromae(有性阶段B. rhodina (Cooke) Arx),其中F. aesculi分离频率最高,分布最广泛;L. theobromae仅在沙洋县发现;D. seriata在公安县有分布。人工菌丝块接种当年生新梢和多年生枝条结果表明,这三种真菌对桃树都有致病力,能产生褐色病斑;L. theobromae致病力最强,且能引起多年生枝条产生大量胶液;D. seriata致病力最弱。
     2.通过分生孢子形态学、致病力测定、分子系统学和微卫星分析证明了我国桃流胶病菌F. aesculi的遗传多样性。形态学研究表明,我国桃流胶病菌F. aesculi主要有两种类型的分生孢子,一种是典型的纺锤形至椭圆形、无色透明的无隔Fusicoccum属分生孢子;另一种是纺锤形的一分隔分生孢子,并不是很常见。致病力试验中,18个F. aesculi分离株接种曙光油桃新梢5d时,病斑长度差异显著,最长达40.1mm(菌株XNHG-241),最短仅5.8mm (XNHG-62)。ITS、β-tubulin和EF1-α3个基因的分子系统学分析进一步证明了F. aesculi是我国最常见的桃流胶病菌,分布范围最广,存在种内分化现象。利用微卫星引物M13, T3B和(CTC)4RC获得了DNA指纹图谱,0-1矩阵在SAS8.1软件中Cluster(聚类)和建树(Tree)分析表明我国桃流胶病菌F. aesculi可以分为7类。第一类包括FH-11, MYA-6, HB-14, XG-52, WX-12, XX-25, SHYJ-1, CDA-20, CD-13, HB-11, YLA-6, WX-10, XX-1, WX11-12, SH-15, XX-23, FY-24, FY17, XX-44, JZ-7, GA-323, TA-44, JM-5, WH-1252等24个菌株;第二类包括CH-11, FYY-1, ZJG-42, FH-10, WX-3, JMA-1112等6个菌株;第三类包括菌株WH-1822;第四类包括菌株TA-1;第五类包括菌株JM-20;第六类包括菌株CSJ-10;第七类包括菌株SH-5。3.设计了桃流胶病F. aesculi的特异性引物。在β-tubulin基因序列区域设计了
     一个正向引物FaF,与非特异性反向引物Bt2b组成引物对,特异性的扩增桃流胶病菌F. aesculi基因组DNA,得到一条大小为322bp条带。参与检测的20个F. aesculi都能扩增出该条带,其它两种桃流胶病菌L. theobromae和D. seriata及桃树和其它植物上的其它属真菌显示为阴性。引物对FaF/Bt2b的灵敏度为浓度1pg/μl的基因组DNA。同时利用裂解法快速提取F. aesculi DNA用于PCR检测。结果表明,建立的桃流胶病菌分子检测方法可用于该病菌的分子检测,快速确定病原菌,及侵染源数量和病害流行的预测。
     4.结合田间调查和室内接种方法评价了不同桃品种对流胶病的抗病性。修订了桃流胶病病害分级标准,重新评价了7个桃园中的4个桃品种的发病严重程度。结果表明,同一果园病情指数比用旧标准调查的更低,如华中农业大学花果山中砂子早生、曙光油桃和早露蟠三个品种用旧标准调查的病情指数分别为84.0、94、82.8,而修定后调查的病情指数分别为52.1、61.7、43.4,更好地反映了田间发病情况;同一果园不同品种发病严重程度不同,感病性强弱结果为:曙光(油桃)>砂子早生(普通桃)>早露蟠(蟠桃)。同时,采用F. aesculi (菌株XNHG-241)室内人工接种了21个桃品种,所有品种均能发病;比较接种5d时病斑长度,发现曙光油桃最感病,早凤王最耐病。其中感病性曙光油桃>砂子早生>早露蟠,与田间调查结果一致。
Species in the genus Botryosphaeria are found on a wide range of monocotyledonous, dicotyledonous and gymnospermous plants as cosmopolitan endophytes, pathogens and saprophytes. Although well-known as pathogens causing canker, blight, dieback and gummosis disease in numerous woody perennial hosts, Botryosphaeria spp. have been overlooked as important causal agents of peach(Prunus persica L.) tree gummosis in China. Peach tree gummosis was thought to be associated with physiological disorder caused by pruning, extensive management or stresses. Disease symptoms are always associated with lenticels, wounds, and include gum formation on trunks, scaffold limbs, and braches, and necrotic lesions. The work presented in this thesis was initiated by the identification of Botryosphaeria spp. causing the disease in Hubei Province, which is one of the major peach producing areas in China, by analysis of conidial morphology, cultural characteristics, and nucleotide sequences of three genomic regions of the internal transcribed spacer region (ITS, ITS1-5.8S-ITS2), a partial sequence of β-tubulin gene, and the translation elongation factor1-α gene (EF1-α). And then, identification, pathogenicity and virulence of Botryosphaeria spp. in China, specific primer for PCR detection, and the fungal gummosis susceptibility of peach cultivars were also studied in this paper. The results were summarized as follows:
     1. Botryosphaeria spp. have been identified as causal agents of peach tree gummosis in Georgia, USA since1970s. To date, B. dothidea (Moug.) Ces.&De Not. has been reported as the only species associated with cankers on P. persica in China. Hubei Province is one of the most important peach producing areas in China. Fungal gummosis on trunks and branches has become a growing threat to the peach industry in this province and throughout Southern China. In order to determine the occurrence of gummosis and Botryosphaeria species in Hubei Province, a field survey was conducted of1,914trees in14peach orchards throughout the province. Gummosis was observed in1,899of1,914trees examined. A total of170samples of branches with gummosis were collected from orchards in Wuhan City, Xianning City, Xiaogan City, Yuan'an County (Yichang City), Suizhou City, Laohekou City, Shayang County (Jingmen City), Gong'an County (Jingzhou City), Zaoyang City, covering an area of300km by260km.. A total of116isolates of Botryosphaeria spp. were obtained. Culture characteristics, conidial morphology, pathogenicity, along with phylogenetics analysis of ITS, β-tubulin and EFl-a showed that at least three Botryosphaeria species occur on peach trees in Hubei Province, including B. dothidea (anamorph Fusicoccum aesculi Corda), B. rhodina (Berk.&M. A. Curtis)(anamorph Lasiodiplodia theobromae (Pat.) Griffon&Maubl.) and B. obtusa (Schwein.)(Diplodia seriata De Not.). Fusicoccum aesculi was isolated in all regions, but L. theobromae was found only in Shayang County in Jingmen City, and D. seriata only in Gong'an in Jingzhou City. Via artificial inoculation using mycelia on wounded twigs or branches, these three species were all found to be pathogenic, causing dark lesions and, sometimes, with gum exudation from diseased parts. Isolates of L. theobromae were the most virulent and caused most copious gum, and D. seriata had less gum than the other two species.
     2. The genetic diversity of F. aesculi isolated from different regions in China was studied based on conidial morphology, pathogenicity. phylogenetics and microsatellites analysis. The results showed that:in culture, isolates of F. aesculi had two types of conidia, namely fusiform, ellipsoid or ovoid, hyaline, aseptate conidia typical of the genus Fusicoccum, and fusiform, one septate conidia that are not typically observed. Five days after inoculation, vascular discoloration developed on peach twigs inoculated with each of the isolates of F. aesculi. There was significant difference in length of vascular discoloration among the18isolates ranging from5.8mm to40.1mm. Phylogenetic analysis combining three gene sequences of ITS, P-tubulin and EF1-α revealed the three Botryosphaeria species distributed in China, and differentiation existed in the isolates of F. aesculi. In the meantime, DNA fingerprinting produced by microsatellite primer M13, T3B, or (CTC)4RC were applied to analyze the difference among the isolates of F. aesculi. Seven groups were divided by Single Linkage in Cluster progress and Tree progress in SAS8.1software. Type one comprised of24isolates; type two comprised of6isolates. The other five types comprised of isolate WH-1822, TA-1, JM-20, CSJ-10and SH-5, respectively. The four aspects of conidial morphology, pathogenicity, phylogeny and microsatellite analysis confirmed the genetic diversity among isolates of F. aesculi in China.
     3. Fusicoccum aesculi is the most common pathogen of Botryosphaeria spp. associated with peach tree gummosis in China. In this study, a polymerase chain reaction (PCR)-based assay was developed for the specific detection of the fungal pathogen F. aesculi from peach trees. Variation among β-tubulin gene sequences of Botryosphaeria spp. was exploited to design primer pairs. Forward primer FaF, when used with the nonspecific reverse primer Bt2b, amplified a322bp DNA fragment for all20tested isolates of F. aseculi collected from peach trees. Specificity was also confirmed using those of closely related fungi including L. theobromae and D. seriata, and the other three fungal species isolated from peach or other hosts. The PCR assay using this pair of primers was sensitive enough to detect1pg/μl of genomic DNA of F. aesculi. A rapid DNA extraction procedure was applied to detect and identify F. aesculi from peach. These results indicate that this new primer is potentially useful for studies in areas or hosts in which the pathogen may be present, and prediction of inoculum production and disease development.
     4. Surveys in the field and experiments in doors were conducted to evaluate the peach cultivar susceptibility. A new grading standard for disease incidence was developed to score the severity of peach trees in the field. Seven peach orchards were surveyed, revealing that less severity of the same orchards compared with previous results, which was more effective and reliable for evaluation. Peach tree fungal gummosis, incited by Botryosphaeria spp., significantly depresses growth and yield on susceptible peach cultivars, on which little is known about the relative susceptibility in China. As F. aesculi is the most common species in peach trees,21cultivars were tested for susceptibility via artificial inoculation with F. aesculi isolate XNHG-241, which was identified as strong virulence in previous studies. Peach twigs inoculated with F. aesculi were placed in the plastic boxes in25℃for5days. Disease severity was evaluated by the length of vascular discoloration. Significant variation in disease susceptibility was detected across cultivars. Of the21cultivars tested, none of them was immune, and 'Shuguang' was the most susceptible and 'Zaofengwang' the least. The results of indoor tests were consistent with those in the field.
引文
1.陈锡文,管敏强.微卫星标记技术及其应用.实验动物与比较医学,2005,25:182-185.
    2.陈祥照.桃流胶病的病因观察.中国果树,1982,2:43-45.
    3.陈祥照.桃树流胶病的研究Ⅰ.病原特性及其发病规律.植物病理学报,1985,15: 53-57.
    4.陈彦,王璠,蔡东,李国怀,程家森.桃流胶病研究进展.湖北农业科学,2011,50:649-651.
    5.方中达.植病研究方法.第三版.北京:中国农业出版社,1998,124.
    6.郭成宝,张正光,王源超,郑小波.非洲菊疫霉根腐病的快速分子诊断.植物病理学报,2006,36:97-101.
    7.华国荣,吴江,程建徽.不同桃树品种流胶病抗性调查及评价.中国南方果树,2006,35:68.
    8.黄春燕,刘开启.苹果轮纹病及相关病害病原菌的RAPD分析.植物病理学报,2001,31:164-169.
    9.冷伟锋,李保华,国立耘,董娟华,王彩霞,李桂舫,董向丽.苹果轮纹病菌诱导产孢方法.植物病理学报,2009,39:536-539.
    10.李广旭,杨华,高圣华,张治东,金城.轮纹病菌侵染对不同抗性苹果品种膜透性及防御酶的影响.植物保护学报,2006,33:127-130.
    11.李红叶,曹若彬.梅树流胶病病原菌鉴定.植物病理学报,1988,20:234.
    12.李红叶,曹若彬,方华生,申屠广仁.梅树流胶病病原生物学及防治研究.浙江农业大学学报,1990,16:281-284.
    13.刘琪,何朝辉,黄丹敏,侯瑞曦,张琰惠.李树流胶病病原特性及发病规律研究.植物保护,2003,29:39-42.
    14.罗江会,漆巨容,张镜,眭顺照,代正林,谢永红.重庆地区桃流胶病原菌研究.西南农业大学学报(自然科学版),2005,27:50-54.
    15.罗江会.桃流胶病的发生及其病原菌研究.[硕士学位论文].重庆:西南大学,2006.
    16.马瑞娟,俞明亮,杜平,宋宏峰.桃流胶病研究进展.果树学报,2002,19:262-264.
    17.王媛.杨树与溃疡病菌(Botryosphaeria dothidea)互作中的细胞生物学、活性氧代谢及细胞过敏性反应.[博士学位论文].北京:中国林业科学研究院,2007.
    18.吴印青,吴研然,陈龙瑛.桃树疣皮病病原菌的研究.上海农业学报,1985,1:63-68.
    19.阎振立,张全军,张顺妮,周增强,过国南,王志强.苹果品种对轮纹病抗性的鉴定.果树学报,2005,22:654-657.
    20.俞明亮,马瑞娟,沈志军,蔡志翔.中国桃种质资源研究进展.江苏农业学报,2010,26:1418-1423.
    21.张宝棣,周伯扬,董群娟.广州地区桃树流胶病病原菌的研究.华南农业大学学报,1994,15:37-42.
    22.张勇,李晓军,曲健禄,李林光,杨建明.扁桃流胶病病原菌及其生物学特性研究.中国果树,2008,1:41-44.
    23.赵嘉平.树木溃疡病菌—葡萄座腔菌属及相关真菌系统分类研究.[博士学位论文].北京:中国林业科学研究院,2007.
    24.郑雪芳,林抗美,黄素芳,肖荣凤,刘波.不同药剂防治桃树流胶病桃叶氧化酶活性与防效之相关分析.中国农学通报,2006,22:425-427.
    25.周增强,侯珲,王丽,朱发亮.枝干苹果轮纹病人工接种方法与品种抗性评价.果树学报,2010,27:952-955.
    26. Abiko K, Kitajima H. Blister canker, a new disease of peach tree. Ann. Phytopath. Soc. Japan.1970,36:260-265.
    27. Alves A, Correia A, Luque J, Phillips AJL. Botryosphaeria corticola sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph Diplodia mutila. Mycologia,2004,96:598-613.
    28. Alves A, Crous P W, Correia A, Phillips AJL. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers,2008,28:1-13.
    29. Arauz LF, Sutton TB. Effect of interrupted wetness period on spore germination and apple infection by Botryosphaeria obtusa. Phytopathology,1990,80:1218-1220.
    30. Armengol J, Vicent A, Leon M, Berbegal M, Abad-Campos P, Garcia-Jimenez J. Analysis of population structure of Rosellinia necatrix on Cyperus esculentus by mycelial compatibility and inter-simple sequence repeats (ISSR). Plant Pathol,2010, 59:179-185.
    31. Aroca A, Raposo R, Lunello P. A biomarker for the identification of four Phaeoacremonium species using the β-tubulin gene as the target sequence. Appl Microbiol Biotechnol,2008,80:1131-1140.
    32. Barr ME. Preliminary studies on the Dothideales in temperate North America. Contr Univ Michigan Herb,1972,9:523-638.
    33. Beckman TG, Pusey PL, Bertrand PF. Impact of fungal gummosis on peach trees. HortScience,2003,38:1141-1143.
    34. Beckman TG, Reilly CC. Relative susceptibility of peach cultivars to fungal gummosis (Botryosphaeria dothidea). J Amer Pomol Soc,2005,59:111-116.
    35. Bester W, Crous PW, Fourie PH. Evaluation of fungicides as potential grapevine pruning wound protectants against Botryosphaeria species. Austral Plant Pathol, 2007,36:73-77.
    36. Biggs AR, Britton KO. Presymptom histopathology of peach trees inoculated with Botryosphaeria obtusa and B. dothidea. Phytopathology,1988,78:1109-1118.
    37. Britton KO, Hendrix FF. Infection of peach buds by Botryosphaeria obtusa. Plant Dis, 1989,73:65-68.
    38. Britton KO, Hendrix FF. Population dynamics of Botryosphaeria spp. in peach gummosis canker. Plant Dis,1986,70:134-136.
    39. Britton KO, Hendrix FF. Three species of Botryosphaeria cause peach tree gummosis in Georgia. Plant Dis,1982,66:1120-1121.
    40. Brown EA, Britton KO. Botryosphaeria diseases of apple and peach in the Southeastern United States. Plant Dis,1986,70:480-484.
    41. Brown EA, Hendrix FF. Pathogenicity and histopathology of Botryosphaeria dothidea on apple stem. Phytopathology,1981,71:375-378.
    42. Brown-Rytlewski DE. McManus PS. Virulence of Botryosphaeria dothidea and Botryosphaeria obtusa on apple and management of stem cankers with fungicides. Plant Dis,2000,84:1031-1037.
    43. Burgess T, Wingfield MJ, Wingfield BD. Development and characterization of microsatellite loci for the tropical tree pathogen Botryosphaeria rhodina. Mol Ecol Notes,2003.3:91-94.
    44. Burpee LL, Green DE, Stephens SL. Interactive effects of plant growth regulators and fungicides on epidemics of dollar spot in creeping bentgrass. Plant Dis,1996, 80:1245-1250.
    45. Butin H. Morphological adaptation and spore pleomorphism in the form-complex Dichomera-Camarosporium and Fusicoccum-Dothiorella. Sydowia,1993, 45:162-166.
    46. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia,1999,91:553-556.
    47. Castillo-Pando M, Somers A, Green CD, Priest M, Sriskathades M. Fungi associated with a dieback of Semillon grapevines in the Hunter Valley of New South Wales. Australas Plant Path,2001,30:59-63.
    48. Choi YW, Hyde KD, Ho WH. Single spore isolation of fungi. Fungal Divers,1999, 3:29-38.
    49. Cline WO, Milholland RD. Root dip treatments for controlling blueberry stem blight caused by Botryosphaeria dothidea in container-grown nursery plants. Plant Dis, 1992,76:136-138.
    50. Copes WE, Hendrix FF. Effect of temperature on sporulation of Botryosphaeria dothidea, B. obtusa, and B. rhodina. Plant Dis,2004,88:292-296.
    51. Creswell TC, Milholland RD. Spore release and infection periods of Botryosphaeria dothidea on blueberry in North Carolina. Plant Dis,1988,72:342-346.
    52. Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves A, Burgess T, Barber P, Groenewald JZ. Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol,2006,55:235-253.
    53. Damm U, Crous PW, Fourie PH. Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia,2007,99:664-680.
    54. de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM. Agrobacterium tumefaciens mediated transformation of filamentous fungi. Nat Biotechnol,1998,16: 839-842.
    55. de Wet J, Slippers B, Preisig O, Wingfield BD, Wingfield MJ. Phylogeny of the Botryosphaeriaceae reveals patterns of host association. Mol Phylo Evol,2008, 46:116-126.
    56. Denman S, Crous PW, Groenewald JZ, Slippers B, Wingfield BD, Wingfield MJ. Circumscription of Botryosphaeria species associated with Proteaceae based on morphology and DNA sequence data. Mycologia,2003,95:294-307.
    57. Denman S, Crous PW, Taylor JE, Kang JC, Pasco L, Wingfield MJ. An overview of the taxomomic history of Botryosphaeria and re-evaluation of its anamorphs based on morphology and ITS rDNA phylogeny. Stud Mycol,2000,45:129-140.
    58. Detweiler AR, Vargas JM, Danneberger TK. Resistance of Sclerotinia homoeocarpa to iprodione and benomyl. Plant Dis,1983,67:627-630.
    59. Dominguez S, Aparicio F, Sanchez-Navarro JA, Cano A, Garcia-Brunton J. Pallas V. Studies on the incidence of ilarviruses and apple chlorotic leaf spot virus (ACLSV) in apricot trees in the Murcia region (Spain) using serological and molecular hybridisation methods. Acta Horticulturae,1998,472:203-210.
    60. Dupont J, Magnin S, Cesari C, Gatica M. ITS and β-tubulin markers help delineate Phaeoacrmonium species, and the occurrence of P. parasiticum in grapevine disease in Argentina. Mycol Res,2002,106:1143-1150.
    61. El-Goorani MA, El-Meleigi MA. Dieback of grapevine by Botryodiplodia theobromae Pat. in Egypt. Phytopathol Mediterr,1972,11:210-211.
    62. English H, Davis JR, DeVay JE. Relationship of Botryosphaeria dothidea and Hendersonula toruloides to a canker disease of almond. Phytopathology,1974, 65:115-122.
    63. Espinoza JG, Briceno EX, Chavez ER, Urbez-Torres JR, Latorre BA. Neofusicoccum spp. associated with stem canker and dieback of blueberry in Chile. Plant Dis,2009, 93:1187-1194.
    64. Faggian R, Bulman SR, Lawrie AC, Porter IJ. Specific polymerase chain reaction primers for the detection of Plasmodiophora brassicae in soil and water. Phytopathology,1999,89:392-397.
    65. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol, 1995,61:1323-1330.
    66. Hamelin RC, Bourassa M, Rail J, Dusabenyagasani M, Jacobi V, Laflamme G. PCR detection of Gremmeniella abietina, the causal agent of Scleroderris canker of pine. Mycol Res,2000,104:527-532.
    67. Holtz BA. Plant protection for pistachio. HortTechnology,2002,12:626-632.
    68. Huser A, Takahara H, Schmalenbach W, O'Connell RJ. Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Mol Plant-Microbe Interact,2009,22:143-156.
    69. Jacobs KA, Berg LC. Inhibition of fungal pathogens of woody plants by the plant growth regulator paclobutrazol. Pest Manag Sci,2000,56:407-412.
    70. Jacobs KA, Rehner SA. Comparison of cultural and morphological characters and ITS sequences in anamorphs of Botryosphaeria and related taxa. Mycologia,1998, 90:601-610.
    71. Jeffers SN. Seasonal incidence of fungi in symptomless cranberry leaves and fruit treated with fungicides during bloom. Phytopathology,1991,81:636-644.
    72. Kim DH, Uhm JY. Effect of application timing of ergosterol biosynthesis-inhibiting fungicides on the suppression of disease and latent infection of apple white rot caused by Botryosphaeria dothidea. J Gen Plant Pathol,2002,68:237-245.
    73. Kohn FC Jr, Hendrix FF. Temperature, free moisture, and inoculum concentration effects on the incidence and development of white rot of apple. Phytopathology,1982, 72:313-316.
    74. Kruger BM, Manion PD. Antifungal compounds in aspen:effect of water stress. Can J Bot,1994,72:454-460.
    75. Latorre BA, Toledo MV. Occurrence and relative susceptibility of apple cultivars to Botryosphaeria canker in Chile. Plant Dis,1984,68:36-39.
    76. Lazzizera C, Frisullo S, Alves A, Lopes J, Phillips AJL. Phylogeny and morphology of Diplodia species on olives in southern Italy and description of Diplodia olivarum sp. nov. Fungal Divers,2008,31:63-71.
    77. Lecome P, Peros JP, Blancard D, Bastien N, Delye C. PCR assays that identify the grapevine dieback fungus Eutypa lata. Appl Environ Microbiol,2000,66:4475-4480.
    78. Luque J, Martos S, Phillips AJL. Botryosphaeria viticola sp. nov. on grapevines:a new species with a Dothiorella anamorph. Mycologia,2005,97:1111-1121.
    79. Ma Z, Boehm EWA, Luo Y, Michailides TJ. Population structure of Botryosphaeria dothidea from pistachio and other hosts in California. Phytopathology,2001a, 91:665-672.
    80. Ma Z, Michailides TJ. A PCR-based technique for identification from pistachio and various other hosts in California. Plant Dis,2002,86:515-520
    81. Ma Z, Morgan DP, Felts D, Michailides TJ. Sensitivity of Botryosphaeria dothidea from California pistachio to tebuconazole. Crop Prot,2002,21:829-835.
    82. Ma Z, Young L, Michailides TJ. Resistance of Botryosphaeria dothidea from pistachio to iprodione. Plant Dis,2001b,85:183-188.
    83. McPartland JM, Schoeneweiss DF. Hyphal morphology of Botryosphaeria dothidea in vessels of unstressed and drought stressed stems of Betula alba. Phytopathology, 1984,74:358-362.
    84. Meyer W, Lieckfeldt E, Kuhls K, Freedman EZ, Vilgalys R. Hybridization probes for conventional DNA fingerprinting can be used as single primers in the PCR to distinguish strains of Cryptococcus neoformans. J Clin Microbiol,1993, 31:2274-2280.
    85. Michailides TJ, Morgan DP. Effects of temperature and wetness duration on infection of piatachio by Botryosphaeria dothidea and management of disease by reducing duration of irrigation. Phytopathology.1992,82:1399-1406.
    86. Michailides TJ. Pathogenicity, distribution, sources of inoculum, and infection courts of Botryosphaeria dothidea on pistachio. Phytopathology.1991,81:566-573.
    87. Mila AL, Driever GF, Morgan DP, Michailides TJ. Effects of latent infection, temperature, precipitation, and irrigation on panicle and shoot blight of pistachio in California. Phytopathology,2005,95:929-932.
    88. Milhooland RD. Histopathology and pathogenicity of Botryosphaeria dothidea on blueberry stems. Phytopathology,1972,62:654-660.
    89. Morgan DP, Driever GF, Felts D, Krueger WH, Michailides TJ. Evaluation of two disease warning systems for Botryosphaeria panicle and shoot blight of California pistachio and efficient control based on early-season sprays. Plant Dis,2009, 93:1175-1181.
    90. Ntahimpera N, Driever GF, Felts D, Morgan DP, Michailides TJ. Dynamics and pattern of latent infection caused by Botryosphaeria dothidea on pistachio buds. Plant Dis,2002,86:282-287.
    91. Old KM, Gibbs R, Craig I, Myers BJ, Yuan ZQ. Effect of drought and defoliation on the susceptibility of eucalypts to cankers by Endothia gyrosa and Botryosphaeria ribis. Aust J Bot,1990,38:571-581.
    92. Osiewacz HD, Hamann A, Werner A. Genome analysis of filamentous fungi: identification of a highly conserved simple repetitive sequence in different strains of Podospora anserine. Microbiol Res,1996,151:1-8.
    93. Pavlic D, Slippers B, Coutinho TA, Wingfield M.T. Botryosphaeria spp. from native Syzygium cordatum and introduced Eucalyptus trees in South Afica. South African J of Sci,2007,103:Ⅵ-Ⅶ (abst).
    94. Pavlic D, Slippers B, Coutinho TA, Wingfield MJ. Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae:a case of study on the Neofusicoccum parvum/N. ribis complex. Mol Phylogenet Evol,2009, 51:259-268.
    95. Pennycook SR, Samuels GJ. Botryosphaeria and Fusicoccum species associated with ripe fruit rot of Actinida deliciosa (kiwifruit) in New Zealand. Mycotaxon,1985, 24:445-458.
    96. Phillips AJL, Crous PW, Alves A. Diplodia seriata, the anamorph of "Botryosphaeria" obtusa. Fungal Divers,2007,25:141-155.
    97. Phillips AJL, Fonseca F, Povoa V, Castilho R, Nolasco G. A reassessment of the anamorphic fungus Fusicoccum luteum and description of its teleomorph Botryosphaeria lutea sp. nov. Sydowia,2002,54:59-77.
    98. Phillips AJL. Botryosphaeria species associated with diseases of grapevines in Portugal. Phytopathol Mediterr,2002,41:3-18.
    99. Phillips AJL, Alves A, Correia A, Luque J. Two new species of Botryosphaeria with brown,1-septate ascospores and Dothiorella anamorphs. Mycologia,2005, 97:513-529.
    100.Plant MRR, Joyce DC, Ogle HJ, Johnson GI. Mango stem-end rot (Botryosphaeria dothidea) disease control by partial-pressure infiltration of fungicides. Austral J Exp Agric,2002,42:625-629.
    101.Punithalingam E. Botryodiplodia theobromae. CMI Description of Pathogenic Fungi and Bacteria. Kew, Surrey, England:Commonwealth Mycological Institute Press, 1976.519.
    102.Punithalingam E. Plant diseases attributed to Botryodiplodia theobromae Pat. In: Cramer J ed., Biblioteca Mycologica. Vadus, Berlin, Germany:Cramer J Press,1980, 71.
    103.Pusey PL, Bertrand PF. Seasonal infection of nonwound peach bark by Botryosphaeria dothidea. Phytopathology,1993,83:825-829.
    104.Ramos LJ, Davenport TL, McMillan RT Jr. Lara SP. The resistance of mange (Mangifera indica) cultivar to tip dieback disease in Florida. Plant Dis,1997, 81:509-514.
    105.Ramos LJ, Lara SP, McMillan RT Jr, Narayanan KR. Tip dieback of mango (Mangifera indica) caused by Botryosphaeria ribis. Plant Dis,1991,75:315-318.
    106.Rayachhetry MB, Blakeslee GM, Miller T. Histopathology of Botryosphaeria ribis in Melealeuca quinquenervia:pathogen invasion and host response. Int J Plant Sci, 1996,157:219-227.
    107.Rollo F, Salvi R, Torchia P. Highly sensitive and fast detection of Phoma tracheiphila by polymerase chain reaction. Appl Micro Biotech,1990,32:572-576.
    108.Sanchez de la Hoz MP, Davila JA, Loarce Y, Ferrer E. Simple sequence repeat primers used in polymerase chain reaction amplications to study genetic diversity in barley. Genome,1996,39:112-117.
    109.Sanchez-Navarro JA, Aparicio F, Herranz MC, Minafra A, Myrta A, Pallas V. Simultaneous detection and identification of eight stone fruit viruses by one-step RT-PCR. Eur J Plant Pathol,2005,111:77-84
    11 O.Sheridan GEC, Masters CI, Shallcross JA, Makey BM. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cell. Appl Environ Microbiol,1998,64:1313-1318.
    111.Slippers B, Crous PW, Denman S, Coutinho TA, Wingfield BD, Wingfield MJ. Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia,2004a, 96:83-101.
    112.Slippers B, Fourie G, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ. Multiple gene sequences delimit Botryosphaeria australis sp. nov. from B. lutea. Mycologia,2004b,96:1030-1041.
    113.Slippers B, Johnson GI, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ. Phylogenetic and morphological re-evaluation of the Botryosphaeria species causing diseases of Mangifera indica. Mycologia,2005,97:99-110.
    114.Slippers B, Smit WA, Crous PW, Countinho TA, Wingfield BD, Wingfield MJ. Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world. Plant Pathol, 2007,56:128-139.
    115.Smith CO. Inoculations showing the wide host range of Botryosphaeira ribis. J Agric Res,1934,49:467-476.
    116.Smith DR. Michailides TJ. Stanosz GR. Differentiation of a Fusicoccum sp. causing panicle and shoot blight on California pistachio trees from Botryosphaeria dothidea. Plant Disease,2001a,85:1235-1240.
    117.Smith DR, Stanosz GR. Molecular and morphological differentiation of Botryophaeria dothidea (anamorph Fusicoccum aesculi) from some other fungi with Fusicoccum anamorphs. Mycologia,2001,93:505-515.
    118.Smith H, Crous PW, Wingfield MJ, Coutinho TA, Wingfield BD. Botryosphaeria eucalyptorum sp. nov., a new species in the B. dothidea-complex on Eucalyptus in South Africa. Mycologia,2001b,93:277-285.
    119.Smith VF, Parker DM, Koller W. Sensitivity distribution of Venturia inaequalis to the sterol demethylation inhibitor flusilazole. Baseline sensitivity and implication for resistance monitoring. Phytopathology,1991,81:392-396.
    120.Spagnolo A, Marchi G, Peduto F, Phillips AJL, Surico G. Detection of Botryosphaeriaceae species within grapevine woody tissues by nested PCR, with particular emphasis on the Neofusicoccum parvum/N. ribis complex. Eur J Plant Pathol,2011,129:485-500.
    121.Sutton TB, Arauz LF. Influence of temperature and moisture on germination of ascospore and conidia of Botryosphareia dothidea. Plant Dis,1991,75:1156-1159.
    122.Sutton TB, Boyne JV. Inoculum availability and pathogenic variation in Botryosphaeria dothidea in apple production areas of North Carolina. Plant Dis,1983, 67:503-506.
    123.Sutton TB. Production and dispersal of ascospores and conidia by Physalospora obtusa and Botryosphaeria dothidea in apple orchards. Phytopathology,1981, 71:584-589.
    124.Swart L, Crous PW, Petrini O, Taylor JE. Fungal endophytes of Proteaaceae, with particular emphasis on Botryosphaeria proteae. Mycoscience,2000,41:123-127.
    125.Tavares S. Inacio J. Fonseca A, Oliveira C. Direct detection of Taphrina deformans on peach trees using molecular methods. Eur J Plant Pathol,2004,110:973-982.
    126.Taylor BH, Manhart JR, Amsoino RM. Isolation and characterization of plant DNA. In:Glick B R, Thompson J E eds., Methods in plant molecular biology and biotechnology. Boca Raton:CRC press,1993,37-47.
    127.Taylor JB, Sherman WB. Foliar applied phosphorous fertilizers inhibit peach gummosis. Proc Fla State Hort Soc,1997,110:182-183.
    128.Thormann CE, Ferreira ME, Camargo LEA, Tivang JG, Osborn TC. Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theoretical and Applied Genetics,1994,88:973-980.
    129.Thomidis T, Michailides TJ. Studies on Diaporthe eres as a new pathogen of peach trees in Greece. Plant Dis,2009,93:1293-1297.
    130.Uddin W, Stevenson K L, Pardo-Schultheiss R A. Pathogenicity of a species of Phomopsis causing a shoot blight on peach in Georgia and evaluation of possible infectin courts. Plant Dis,1997,81:983-989.
    131.Urbez-Torres JR, Bruez E, Hurtado J, Gubler WD. Effect of temperature on conidial germination of Botryosphaeriaceae species infecting grapevines. Plant Dis.2010, 94:1476-1484.
    132.Urbez-Torres JR, Leavitt GM, Voegel TM, Gubler WD. Identification and distribution of Botryosphaeria spp. associated with grapevine cankers in California. Plant Dis,2006,90:1490-1503.
    133.Urbez-Torres JR, Leavitt G, Guerrero JC, Guevara J, Gubler WD. Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the causal agent of bot canker disease of grapevines in Mexico. Plant Dis,2008,92:519-529.
    134.van Brouwershaven IR, Bruil ML, van Leeuwen GCM, Kox LFF. A real-time (TaqMan) PCR assay to differentiate Monilinia fructicola from other brown rot fungi of fruit crops. Plant Pathol,2010,59:548-555.
    135.van Niekerk JM, Crous PW, Groenewald JZ, Fourie PH, Halleen F. DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines. Mycologia, 2004,96:781-798.
    136.Varveri C, Bern F. Viruses of stone and pome-fruit mother-tree plantations in Greece. Acta Horticulturae,1995,386:431-438.
    137.Wang Y, Shi XX, Du GQ. Studies on techniques of conidiophores inducing culture in vitro in apple ring spot. Chin Agri Sci Bull,2009,25:194-197.
    138.Weaver DJ. A gummosis disease of peach trees caused by Botryosphaeria dothidea. Phytopathology.1974,64:1429-1432.
    139.Weaver DJ. Role of conidia of Botryosphaeria dothidea in the natural spread of peach tree gummosis. Phytopathology,1979,69:330-334.
    140.White TJ, Brunes T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosoman RNA genes for phylogenetics. In:Innis MA, Gelfand DH, Sninsky JJ, White TJ eds., PCR protocols:A guide to methods and applications. San Diego: Academic Press,1990,315-322.
    141.Witcher W, Clayton CN. Blueberry stem blight caused by Botryosphaeria dothidea (B. ribis). Phytopathology,1963,53:705-712.
    142.Wright AF, Harmon PF. Identification of species in the Botryosphaeriaceae family causing stem blight on southern highbush blueberry in Florida. Plant Dis,2010, 94:966-971.
    143.Zehr El, Luszcz LA, Olien WC, Newall WC, Toler JE. Reduced sensitivity in Monilinia fructicola to propiconazole following prolonged exposure in each orchards. Plant Dis,1999,83:913-916.
    144.Zhou S, Smith DR. Stanosz GR. Differentiation of Botryosphaeria species and related anamorphic fungi using Inter Simple or Short Sequence Repeat (ISSR) fingerprinting. Mycol Res,2001,105:919-926.
    145.Zhou S, Stanosz GR. Primers for amplification of mt SSU rRNA, and a phylogenetic study of Botryosphaeria and associated anamorphic fungi. Mycol Res,2001a, 105:1033-1044.
    146.Zhou S, Stanosz GR. Relationships among Botryosphaeria species and associated anamorphic fungi inferred from the analysis of ITS and 5.8S rDNA sequences. Mycologia,2001b,93:515-526.
    147.Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain amplification. Genomics,1994, 20:176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700