饮用水中三氯硝基甲烷的形成过程与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮用水安全问题是人类最关注的问题之一,饮用水消毒副产物具有致癌作用、细胞遗传毒性和致突变性,对人们的身体健康产生极大的危害,因此对饮用水消毒副产物的研究具有重要的现实意义。
     本论文采用气相色谱/质谱法,选择甲基叔丁基醚为萃取剂,1,2.二溴丙烷为内标物,建立了含氮消毒副产物三氯硝基甲烷(TCNM)的测定方法。以甲胺为前体物,考察了消毒副产物TCNM的生成过程及影响因素。以三氯硝基甲烷为研究对象,分别采用活性炭吸附、铁还原和高级氧化技术,系统研究了TCNM的控制技术,分析了其降解机理及动力学规律。
     根据加标回收率和精密度试验结果,本研究建立的三氯硝基甲烷的测定方法,具有较高的准确度,其回收率为97.3%.106%,相对标准偏差为1.43%-2.25%,最小检测限(MDL)小于1μg/L。
     以甲胺为前体物,考察了消毒副产物TCNM的生成过程、影响因素。结果表明:pH在碱性条件下TCNM的生成量比中性和酸性条件下高,TCNM的生成量随着pH的增大而逐渐提高。在投氯量2-8mmol/L的范围内,TCNM的生成量随着投氯量的增加而提高,当投氯量由8mmol/L增加到12mmol/L时,因自由氯的浓度较高,甲胺还通过其它路径发生反应生成了腈类和醛类,从而使TCNM的生成量降低。在10.30℃范围内,温度对甲胺生成TCNM的影响较明显,温度越高,TCNM的生成量越高。甲胺氯化形成TCNM的过程符合亲电反应的机理,HCl0和C10-可以作为亲电试剂进攻甲胺最终形成TCNM。
     为了提高活性炭对TCNM的去除效率,采用NaOH (30%, w/v)对颗粒活性炭进行改性,以提高其吸附容量。分别采用比表面孔径分布测定仪、扫描电镜、傅立叶红外变换光谱等先进仪器及Boehm官能团滴定法,对改性前后活性炭的表面理化性质进行表征。结果表明:NaOH-GAC的比表面积比GAC增加了9.47%,NaOH-GAC的表面的酸性基团(羧基、内酯基、酚羟基)比GAC减少了29.6%,改性活性炭对三氯硝基甲烷的吸附容量大大增加。
     吸附试验结果表明:对于浓度为10μg/L的三氯硝基甲烷溶液,吸附剂投加量为0.3g/L时,NaOH-GAC的吸附去除率为87%,是GAC的1.71倍。吸附剂对三氯硝基甲烷的吸附过程大致分3个阶段:快速阶段、慢速阶段和动态平衡阶段。GAC吸附三氯硝基甲烷溶液的吸附平衡时间为36h,30%NaOH-GAC吸附三氯硝基甲烷溶液的吸附平衡时间为6h。
     铁刨花对低浓度的三氯硝基甲烷有较好的去除效果,对于100ml浓度为5μtg/L的三氯硝基甲烷溶液,当铁刨花的投加量为4g时,反应180min后,去除率达到90.15%。铁刨花投加量对三氯硝基甲烷的去除效果影响较大,随着铁刨花投加量的增加,三氯硝基甲烷的去除率增加。在低浓度三氯硝基甲烷浓度条件下,三氯硝基甲烷初始浓度的变化对去除三氯硝基甲烷的去除效果影响不大。铁刨花还原去除三氯硝基甲烷的反应符合一级反应动力学规律。
     当三氯硝基甲烷初始浓度为20μg/L时,反应150min后,单独H202降解时,随着反应时间和H2O2投加量的增加,三氯硝基甲烷去除率逐渐提高,H2O2投加量为15mg/L,去除率达到39.54%;单独03降解三氯硝基甲烷,随着臭氧的投加浓度增加,三氯硝基甲烷去除率提高,臭氧浓度控制为10.06mg/L,去除率为35.30%;单独UV降解,随着紫外光强的增加,紫外光对三氯硝基甲烷的去除率明显提高,紫外光强为31μw/cm2时,去除率为43.53%。
     联合工艺对三氯硝基甲烷有更好的去除效果。在UV-H2O2工艺中,控制紫外光强为31μw/cm2,当H202投加量在15-45mg/L范围内时,随着H202投加量的增加,三氯硝基甲烷去除率有较为明显的提高。当H202投加量从15mg/L增加到45mg/L时,初始浓度为20μg/L的三氯硝基甲烷在反应150min后,去除率从82.26%提高到95.61%。而且随着紫外光强的增加,UV-H2O2联合工艺对三氯硝基甲烷的去除率,也有较为明显的提高。在UV-H2O2-O3联合工艺中,在紫外光强为31μw/cm2,H202投加量为15mg/L,臭氧投加量为10.06mg/L的条件下,初始浓度为20μg/L的三氯硝基甲烷在反应150min后,去除率达到了97.28%的最高值。UV-H2O2-O3联合工艺降解三氯硝基甲烷符合一级反应动力学。
The safety of drinking water has become one of the most serious concerns and it is well known that the disinfection by-products in drinking water cause great harm to human health due to the carcinogenesis, genetic toxicity and mutagenicity. Therefore, it is of great practical significance to probe and research on the disinfection by-products in drinking water.
     In this study, the quantitative analysis of trichloronitromethane (TCNM), one kind of nitrogen disinfection by-product in drinking water by gas chromatography/mass spectrometry (GC/MS) on the extracting agent of methyl tertiary butyl ether (MTBE) and using1,2-dibromopropane as internal standard, was introduced. Based on this analytical method, the formation process of TCNM and its influencing factors were evaluated with methylamine as the precursor. In addition, the technologies, such as activated carbon adsorption, iron reduction and advanced oxidation technologies were applies to control the TCNM, and then its degradation mechanism and dynamic behaviors were also discussed.
     According to the spiked recovery and accuracy, the measurement method for TCNM was highly accurate and the recovery rate was between97.3%and106%with relative standard deviation of1.43%-2.25%and limit of detection less than1μg/L.
     It was indicated from the formation process of TCNM that the TCNM amount produced under alkali condition was higher than those produced under the neutral and acid conditions, and the TCNM amount increased with the increase of pH value. It was also found that the TCNM amount increased with the increase of chlorine addition when the chlorine dosage was in the range of2-8mmol/L. However, TCNM amount reduced when the chlorine dosage was enhanced from8mmol/L to12mmol/L, in which the concentration of free chlorine was higher and methylamine turned into nitriles and aldehydes through other reactions. Temperature is another important factor to affect the TCNM formation from methylamine especially in the range of10-30℃and the higher temperature was, the more TCNM amount was produced. The formation process of TCNM from methylamine by chlorination corresponded with the mechanism of electrophilic reaction, in which HClO and ClO-could be used as electrophilic reagent to attack methylamine and then to form TCNM.
     In order to enhance the removal efficiency of TCNM by activated carbon, the modification of granule activated carbon by sodium hydroxide was applied with the higher adsorption capacity. The surface physical and chemical properties of activated carbon before and after modification were investigated separately by surface porosity detector, scanning electron microscope (SEM), fourier transform infrared spectrometry (FTIR) and Boehm functional group titration method. The results showed that the specific surface area of NaOH(30%, w/v)-GAC increased by9.47%compared to that of GAC, while the acidic groups (mainly carboxyl group, lactone group and phenolic hydroxyl group) on the surface of NaOH-GAC reduced by29.6%, which revealed that the adsorption capacity of TCNM by modified GAC was enhanced greatly.
     The results of adsorption tests also showed that when the initial concentration of TCNM solution was10μ/L,87%removal was achieved using NaOH-GAC with the addition of0.3g/L, which was1.71times higher than that by GAC. The adsorption process of TCNM by the modified GAC could be divided into three phases, which are rapid phase, slow phase and dynamic equilibrium phase. The time of equilibrium adsorption of TCNM by GAC was36h, while the time by NaOH (30%, w/v)-GAC was reduced to6h.
     Meanwhile, the addition of iron scraps enhanced the removal efficiency of TCNM in low concentration, and when the initial concentration of TCNM was5μg/L, TCNM removal was90.15%with the addition and reaction time of40g/L and180min, respectively. The concentration of iron scraps was of great impact on TCNM removal and the removal increased with the increase of iron scraps addition. However, TCNM removal did not change a lot with the variation of initial concentration of TCNM when it was in a low level. The TCNM reduction by iron scraps followed the first-order kinetic model.
     In the experiments of advanced oxidation processes, when the initial TCNM concentration of was20μg/L, after150min, we found that TCNM removal was enhanced by using hydrogen peroxide (H2O2) and it increased with the increase of reaction time and H2O2addition; the removal was39.54%when H2O2concentration were15mg/L; ozone (O3) has a great effect on TCNM removal and the removal was obviously improved with the increased ozone concentration, the removal reached35.30%when the ozone concentration were10.06mg/L, the application of UV light was also helpful to increase TCNM removal, the removal were43.53%when the UV light intensity were31μw/cm2.
     Furthermore, the research on TCNM removal by the UV-H2O2process and UV-H2O2-O3process was conducted, which performed better with higher TCNM removal than the individual process shown above. In the UV-H2O2process, when the UV light intensity was set at31μw/cm2, after reaction time of150min, removal of TCNM with the initial concentration of20ug/L was improved from82.26%to95.61%with the increase of H2O2addition from15mg/L to45mg/L. The enhancement of UV light intensity also contributed to the TCNM removal. In the UV-H2O2-O3process, the highest TCNM removal of97.28%with the initial TCNM concentration of20μg/L was obtained when the UV light intensity, H2O2addition and O3addition were only31μw/cm2,15mg/L and10.06mg/L, respectively due to the more hydroxyl radical generated in this process. The TCNM degradation by UV-H2O2-O3process accorded with the first-order kinetics model.
引文
[1]Bellar TA, Lichtenberg JJ, Kroner RC. Determining volatile organics at microgram-per-litre levels by gas chromatography. Journal of American Water Works Association,1974,66: 703-706.
    [2]Kopfler FC, Melton RG, Lingg RD, et al. In identification and analysis of organic pollutants in water[R]. Ann Arbor Science Ann Arbor MI,1976,87.
    [3]National Cancer Institute Report on Carcinogenesis Bioassay of Chloroform, Carcinogenesis Program, Division of Cancer Cause and Prevention, Bethesda, MD, Mar 1976.
    [4]伍海辉,高乃云,贺道红,等.臭氧活性炭工艺中卤乙酸生成潜能与相对分子质量分布关系的研究[J].环境科学,2006,27(10):2035-2039.
    [5]Rodriguez MJ, Serodes J, Danielle R. Formation and fate of haloacetic acids (HAAs) within the water treatment plant, Water Research,2007,41(18):4222-4232.
    [6]Zhao YY, Boyd J, Hrudey SE, et al. Characterization of New Nitrosamines in Drinking Water Using Liquid Chromatography Tandem Mass Spectrometry. Environment Science and Technology,2006,40(24):7636-7641.
    [7]Plewa MJ, Wagner ED, Richardson SD, et al. Environment Science and Technology,2004,38 (18):4713-4722.
    [8]Plewa MJ, Wagner ED, Jazwierska P, et al. Environment Science and Technology,2004,38 (1): 62-68.
    [9]Hang X, Gao NY, Deng Y. Bromate ion formation in dark chlorination and ultraviolet/chlorination process for bomide-containing water. Journal of Environment Science, 2008,20,246-251.
    [10]Richardson SD. Disinfection by-products and other emerging contaminants in drinking water[J]. Trends in Analytical Chemistry,2003,22(10):666-684.
    [11]Richardson SD, Plewa MJ, Wagner ED, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:A review and roadmap for research. Mutation Research/Reviews in Mutation Research,2007,636(1-3):178-242.
    [12]Plewa MJ, Muellner MG, Richardson SD. Occurrence, Synthesis, and Mammalian Cell Cytotoxicity and Genotoxicity of Haloacetamides:An Emerging Class of Nitrogenous Drinking Water Disinfection Byproducts. Environment Science and Technology,2008,42,955-961.
    [13]McGuire MJ, McLain JL, Obolensky A, Information Collection Rule Data Analysis, AWWA Foundation and AWWA, Denver, CO,2002.
    [14]Weinberg HS, Krasner SW, Richardson SD, et al. The occurrence of disinfection by-products (DBPs) of health concern in drinking water:results of a nationwide DBP occurrence study, EPA/600/R02/068,2002.
    [15]Mitch WA. N-nitrosodimethylamine (NDMA) as a drinking water contaminant:A review. Environment Engineering,2003,36,389-404.
    [16]南国英,任淑萍,杨国丽等.我国城市居民饮用水水质风险分析[J].给水排水,2010,36(5):33-36.
    [17]崔利峰,仇芳,李潮思等.农村地区饮用水水质污染调查及控制对策研究[J].现代农业科技,2008(19):323-324.
    [18]莫家斌.探讨我国城市水污染现状及其对策[J].科技咨询,2009(13):136.
    [19]曲久辉.对未来中国饮用水水质主要问题的思考[J].给水排水,2011,37(4):1-3.
    [20]国家环境保护总局.中国环境状况公报(2010年)[R].北京:国家环境保护总局,2011年6月.
    [21]《联合国秘书长呼吁:迫切采取行动解决全球水危机》,海河水利,2008(2):42-51
    [22]朱晓辉,郄燕秋,刘文君等.新《生活饮用水卫生标准》提示了饮用水安全消毒的必要性[J].给水排水,2008,34(11):24-26.
    [23]蓝楠.创新我国饮用水资源保护之法律制度[J].中国环保产业,2004.1:9-11
    [24]环境保护期刊记者.我国水资源污染治理严重滞后,部分城市饮用水受威胁[J].环境保护,2004,10:47.
    [25]蒋建美,郭改梅.消毒副产物形成的影响因素研究[J].浙江水利水电专科学校学报,2010,22(4):30-34.
    [26]于鑫,张晓健,王占生.水源水及饮用水中的有机物对人体健康的影响[J].中国公共卫生,2003(19):481-482.
    [27]曲久辉.饮用水安全保障技术原理[M].北京,科学出版社,2007.
    [28]肖子宇.加大水资源管理力度,实现水资源的可持续利用.海河水利,2008(2):24-27.
    [29]王建平,谢洪毅.阿坝壤塘县大骨节病区环境地质分析[J].南水北调与水利科技,2006(4):30-32.
    [30]杨伟利.新水标下的给水产业Envronment.2007(9):23-25.
    [31]Rook,J.J.Formation of haloforms during chlorination of natural waters.[J]. Water Treat.Exam.1974,23, p; 234-243.
    [32]Andreyl, Egorov, Andrei A, Tereschenko, et al. Exposures to drinking water chlorination by-products in a Russian city[J]. Environ. Health,2003(206):539-551.
    [33]Yang X. Shang C. Chlorination byproduct formation in the presence of humic acid,model nitrogenous organic compounds, ammonia, and bromide[J]. Environ Sci Techol,2004(38): 4995-5001.
    [34]Richardson, S.D. Meyers, R. A.(Ed). Drinking water disinfection by-products[J]. Encyclopedia of Environmental Analysis and Remediation, Wiley, NewYork,1998(3):1398-1421.
    [35]Richardson S D, Thruston A D, Caughran T V, et al. Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramines and chlorine[J]. Water Air Soil Poll,2000(123):95-102.
    [36]Plewa M J, Wagner E D, Richardson S D, et al. Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts [J]. Environ Sci Technol, 2004(38):4713-4722.
    [37]Gerecke A C, Sedlakd D L. Precursors of N-nitrosodimethylamine in natural waters [J]. Environ Sci Technol,2003(37):1331-1336.
    [38]Charrois J A, Arend M W, Froese K L, et al. Detection N-nitrosamines in drinking water at nanogram per liter levels using ammonia positive chemical ionization[J]. Environ Sci Teclnol, 2004(38):4835-4841.
    [39]Zhao Y, Boyd J, Hrudey S E, Li X. Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry[J]. Environ Sci Technol,2006(40): 7636-7641.
    [40]J.H. Park, B. J. Lee, S. K. Lee, et al. Genotoxictity of drinking water from three Korean cities[J]. Mutation Research,2000(466):173-178.
    [41]Koivusalo, M; Vartiainen, T. Drinking water chlorination by-products and cancer[J]. Rev Environ Health,1997(12):81-90.
    [42]Hwang, B.F; Jaakkola, J.D. Water chlorination and birth defects:a systematic review and meta-analysis[J]. Arch Environ Health,2003(58):83-91.
    [43]Waller, K, Swan, S. H., De Lorenzo G, et al. Trihalomethanes in drinking water and spontaneous abortion[J]. Epidemiology,1998(9):134-140.
    [44]Morris R, Audet A, Angeliko L. Chlorination, chlorination by-products, and cancer: ameta-analysis[J]. Public Health,1992,82(6):955-963.
    [45]Bull R J, Kopfler F C.Health effects of disinfectants and disinfection by-products[M]. AWWARF. Denver,1991.
    [46]WHO. Gidelines for drinking water quality(second edition)Volume21,Healty Criteria and Other Supplement Information[M]. World Health Oraganization, Geneval,1996.
    [47]WHO. Guidelines for drinking water quality(second edition) Addendum to Volume 2, Healty Criteria and Other Supplement Information[M]. World Health Organazation, Geneval,1998.
    [48]EPA. List of Drinking Water Contaminants and MCLs:National Primary Drinking Water Regulations(EPA816-F-02-013)[S]. Environmental Protection Agency, July,2002.
    [49]Krasner SW, McGuire MJ, Jacangelo J G. et al. The occurrence of disinfection by-products in U.S. drinking water. J Am Water Works Assoc,1989,81(8):41-53.
    [50]Kang JL Byoung HK, Jee EH, et al. A study on the distribution of chlorination by-products (CBPs) in treated water in Korea. Water Res,2001,35(12):2861-2872.
    [51]Krasner SW, Weinberg HS, Richardson SD, et al.Occurrence of a new generation of disinfection by-products. Environ Sci Technol,2006,40(23):7175-7185.
    [52]Weisel CP, Kim H, Haltmeier P, et al. Exposure estimates to disinfection by-products of chlorinated drinking water[J]. Environ Health Perspect,1999,107(2):103-110.
    [53]Malliarou E, Collins C, Graham N, et al. Haloacetic acids in drinking water in the United Kingdom. Water Res,2005,39(12):2722-2730.
    [54]Egorov AI, Tereschenko AA, Altshul LM, et al. Exposures to drinking water chlorination by-products in a Russian city. Int J Hyg Envikon Health,2003,206(6):539-551.
    [55]Zhou H, Zhang XJ, Wang ZS. Occurrence of haloacetic acids in drinking water in certain cities of China. Biomed Environ Sci,2004,17(2):299-308.
    [56]刘勇建,牟世芬,林爱武,等.北京市饮用水中溴酸盐、卤代乙酸及高氯酸盐研究[J].环境科学,2004,25(2):51-55.
    [57]魏建荣,王振刚,郭新彪,等.生活饮用水中消毒副产物的分布水平[J].环境与健康杂志,2004,21(1):33-37.
    [58]Meier JR, Blamk WF, Knohl RB. Mutagenic and clastogenic properties of 3-chioro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone:a potent bacterial mutagen in drinking water. Environ Mol Mutagen,1987,10(4):411-424.
    [59]Zou X, Xu X, Zhang J, et al. The determination of strong mutagen MX[3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone]in drinking water in China. Chemosphere,1995, 30(12):2219-2225.
    [60]Mitch WA. N-nitrosodimethylamine (NDMA) as a drinking water contaminant:A review. Environment Engineering,2003,36,389-404.
    [61]Kundu B, Richardson SD, Swartz PD. Mutagenicity in Salmonella of halonitromethanes:a recently recognized class of disinfection by-products in drinking water. Mutation Research, 2004,562,39-65.
    [62]Woo YT, Lai D, McLain JL, et al. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products. Environment Health Prospect,2002,110(1):75-87.
    [63]Chang E.E., Lin.Y.P., Chiang.PC. Effects of bromide on the formation of THMS and HAAs. Chemosphere,2001,43:1029-1034.
    [64]Anderws J.E., Niehols H.P., Schmid J.E., et.al., Developmental toxicity of mixtures:the water disinfection by-products diehloro-, dibromo-and bromochloro acetic acid in rat embryo culture. Reproductive Toxicology,2004,19:111-116.
    [65]杨晓波.加氯消毒过程中三种不同类型前体物生成消毒副产物研究[D].广州;华南理工大学,2010:1-2.
    [66]董丽丽,黄骏雄,饮用水消毒副产物及其分析技术[J].化学进展,2005,17(2):350-358.
    [67]Yang Xin, Shang Chii. Quantification of aqueous cyanogen chloride and cyanogen bromide in environmental samples by MIMS[J]. Water Research,2005,39 (9):1709-1718.
    [68]U.S.EPA. Method 556, Determination of Carbonyl Compounds in Drinking Water by Pentafluoro benzylhydroxylamine Derivatization and Capillary Gas Chromatography with Electron Capture Detection[M].1998.
    [69]U.S.EPA. Method 502.2, Volatile organic compounds in water by purge and t rap capillary column gas chromatography with photoionization and electrolytic conductivity detectors in series [M].1995.
    [70]U.S.EPA. Method 524.2, Measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry[M].1995.
    [71]U.S.EPA. Method 551, Determination of chlorination disinfection by-products and chlorinated solvents in drinking water by liquid-liquid extraction and gas chromatography with electron-capture detection[M].1995.
    [72]U.S.EPA. Method 551.1, Determination of chlorination disinfection by-products, chlorinated solvents, and halogenated pesticides/herbicides in drinking water by liquid-liquid extraction and gas chromatography wit h electron capture detection[M].1998.
    [73]Cho Deok Hee, Kong Sung-Ho, Oh Seong Geun. Analysis of trihalomet hanes in drinking water using headspace -SPME technique with gas chromatography[J]. Water Research,2003, 37 (20):402-408.
    [74]Zhao Ru-song, Lao Wen-jian, Xu Xiao-bai. Headspace liquid-phase microext raction of trihalomet hanes in drinking water and their gas chromatographic determination [J]. Talanta, 2004,62(4):751-756.
    [75]Emmert Gary L. Cao Gang, Duty Chris, et al. Measuring t rihalomet hane concent rations in water using supported capillary membrane sampling-gas chromatography[J]. Talanta.2004,63 (3):675-682.
    [76]Maria Concetta Bruzzoniti, Rosa Maria De Carlo, Krisztian Horvath, et al. High performance ion chromatography of haloacetic acids on macrocyclic cryptand anion exchanger [J]. Journal of Chromatography A,2008,1187 (2):188-196.
    [77]M.Mark.V Barry, J. David, optimizingthed etermination of Haloacetic Acids in Drinking Waters.Chromatogrophy,2004, N o.1035,9-16.
    [78]X.YU Efeng, Analyze Haloacetic Acids Using Gas Chromatograp/Mass Spetrom etry[J], Water Research,2001,Vol.35(5), No.6.5-12.
    [79]T. Mashiko, D. Shigeki,Y.Kenji, Determination of Haloaceti Acids In Water by Li quid Chromatography- Ectrospray Ionization-Mass Spectrometry Using Volat ile Ion-Paring Reagents.Analyst,2000,No.125,1097-1102.
    [80]L.Robert, Damia B, Determination of Haloacetic Acidsin A queous Enviroments by Solid-Phase Extraction Followed by Ion Pai rLiquid Chromatography-Eletrospray Ionization Mass Spetrometric Detection,Chromatography,2001,No.938,45-55,
    [81]Yang Xin. Shang Chii, Wester hoff Paul. Factors affecting for mation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination[J]. Water Research, 2007,41 (6):1193-1200.
    [82]Romero J, Ventura F, Caixach J, et al. identification and quantification of the mutagenic compounds 3-chloro-4-(dichloromethyl)-5-hydroxy-2 (5H)-furanone (MX) in chlorine treated water [J]. Bull Environ. Centum. Toxicol.,1997 (59):715-722.
    [83]Linag L, Singer PC.Factors in fluencing the formation and relative distribution of haloacetic acids and trihalomethnaes in drinking water[J]. Environmental Sciences and Technology,2003, 37:2920-2928.
    [84]Boyer T H, Singer P C. Bench-scale testing of a magne ionexchange resin for removal of disinfection by-product precursors [J]. Water Research,2005,39(7):1265-1276.
    [85]Fearing D A, Banks J, Guyetand S, et al. Combination of ferric and MIEX(R) for the treatment of a humic rich water [J]. Water Research,2004,38(10):2551-2558.
    [86]Boyer T H, Singer P C. Ailot-scale evaluation of magneti ion exchange treatment for removal of arural organic material and inorganic anions [J]. Water Research,2006,40(5):2865-2876.
    [87]Singer P C, Bilyk K. Enhanced coagulation using a magnetic ionexchange resin [J]. Water Research,2002,36(16):4009-4022.
    [88]Mergen M R D, Jefferson B, Parsons S A, et al. Magneticion-exchange resin treatment:Impact of water type and resin use[J]. Water Research,2008,42(8):1977-1988.
    [89]Johnson C J, Singer P C. Impact of a magnetic ion exchange resin Works Assocon ozone demand and bromate formation during drinking water treatment [J]. Water Research,2004, 38(17):3738-3750.
    [90]李为兵,陈卫,袁哲,刘泽山,李慧.磁性离子交换树脂处理南方湖泊水的中试研究[J].中国给水排水,2011,27(1):5-11.
    [91]陈卫,韩志刚,刘成,等.磁性离子交换树脂对原水中有机物去除效能的研究[J].中国环境科学,2009,29(7):707-712.
    [92]Singer P.C. Control of disinfection by-products in drinking water[J]. Water Environment Research,1998,70(4):727-734.
    [93]王占生,刘文俊,微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.57-66.
    [94]KimM.H,Yu M.J.,Characterization of NOM in the Han River and evaluation of treatability using UF-NF membrane[J]..Environmental Research,2005.97:116-123
    [95]Siddiqui M, Amy G, RyanJ. et al.Membranes for the control of natural organic matter from surface waters[J].. Water Research,2000,34(13):3355-3370.
    [96]Dvaid B E., Fraeoise A. Analysis of haloacetic acids in water by a novel technique: simultaneous extraction-derivatization. Water Researeh,1998,32(9):2798-2806.
    [97]伍海辉,高乃云,万容芳.高级氧化技术降解卤乙酸效果及动力学研究[J].哈尔滨工业大学学报,2007,39(12):1974-1978.
    [98]Themistokles D. Lekkas, Anastasia D. Nikolaou. Degradation of Disinfection Byproducts in drinking water[J]. Environment engineering Science,2004,21 (11):493-506.
    [99]翟旭,陈忠林,刘小为,赵淑清,杨磊,王鹤.臭氧氧化去除饮用水消毒副产物二氯乙酸[J].中国给水排水,2010,26(11):139-141.
    [100]顾春晖,郑正,杨光俊.辐照降解饮用水氯化DBPs的研究.环境科学与技术,2005,28(2):3-8.
    [101]Zhou Haojiang, Xie Yuefeng F. Using BAC for HAA removal-partl:Batch study. Journal American Water Works Association,2002,94 (4):194-200.
    [102]Me Rae, Bethany, Lapara Timothy, Hozalski Raymond M. Biodegradation of haloacetic acids by bacterial enrichment cultures[J].. Chemosphere,2004,55 (6):915-925.
    [103]Landmeyer, James, Bradley Paul, Thomas James. Biodegradation of disinfection by products as a potential removal process during aquifer storage recovery[J]. Journal of the American Water Resources Association,2000,36 (4):861-868.
    [104]安丽,陈祖奇,顾国维.活性炭纤维吸附水中卤代烃[J].给水排水,2000,Vol.26(2):28-31.
    [105]曹莉莉,张晓健,王占生.饮用水处理中活性炭吸附HAAs的特性[J].环境科学,1999,20(5):72-75.
    [106]Subramanyan N.C, Mayanna S.M. Haloacetic acids as corrosion inhibitors for copper in nitric acid. Indian Journal of Technology,1986,24 (1):17-21.
    [107]吴方同,苏秋霞,吴淑娟.空气吹脱法去除饮用水中的三卤甲烷[J].给水排水,2009,35(12):26-30.
    [108]Krasner Stuart W, Wright J, Michael. The effect of boiling water on disinfection by-product exposure[J].Water Research,2005,39 (5):855-864.
    [109]Wu, W.W., Benjamin, M.M.Korshin.G.V. Effects of thermal treatment on halogenated disinfection by-product in drinking water[J]. Water Research.2005,35 (15):3545-3550.
    [110]Batterman, S., Huang, W., Wang, S. Reduction of ingestion exposure to trihalomethanes due to volatilization[J]. Environ. Sci Technol.,2000,34 (20):4418-4424.
    [111]Stuart Batterman, Lianzhong Zhang, Shuqin Wang. Quenching of chlorination disinfection by-product frmation in drinking water by hydrogen peroxide[J]. Water Research,2000,34 (5): 1652-1658.
    [112]邵青,谭靖,吴维.等.零价铁/TiO2去除水中三氯甲烷的实验研究[J].环境科学与技术,2009,32(11):91-94.
    [113]International Agency for Research on Cancer, Some drinking-water disinfectants and contaminants, including arsenic, IARC Monographs on Evaluation of Carcinogenic Risks to Humans, vol.84, International Agency for Research on Cancer, Lyon, France,2003.
    [114]Kundu B, Richardson SD, Swartz PD. Mutagenicity in Salmonella of halonitromethanes:a recently recognized class of disinfection by-products in drinking water[J]. Mutation Research, 2004,562,39-65.
    [115]Woo YT, Lai D, McLain JL, et al. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products[J]. Environment Health Prospect,2002,110 (1):75-87.
    [116]刘海龙,工东升,程芳琴等.微污染原水预臭氧化-强化混凝处理及其安全性[J].环境科学学报,2008,(7):1320-1326.
    [117]Renneeker JL.Marinas BJ, Owens JH, et al. Inactivation of cryptospoddium parvum oocyst with ozone[J]. Water Res,1999,33(11):2481-2488.
    [118]Turssell RR Safety of water disinfection:Balancing Chemical and Microbial Risks Washington[M]. International Life Science Institute Press,1993,319-343.
    [119]漆文光,陆少鸣.臭氧在“臭氧-生物活性”饮用水处理工艺中的作用研究[J].四川环境,2006(6):18-21.
    [120]吴明松,黄君礼,鲍立峰,等.复合二氧化氯发生器对饮用水消毒的适用性研究[J].中国给水排水,2009,25(17):106-108.
    [121]陈艳丽,王如华,欧阳剑,等.紫外线消毒在上海临江水厂改扩建工程中的应用[J].给水排水,2009,35(1):9-11.
    [122]韩艳梅,郄燕秋,方自毅,等.天津开发区净水厂实现水质达标的技术设计[J].给水排水,2010,36(1):7-11.
    [123]尹军,谭学军,赵可等.饮用水深度处理技术若干研究进展[J].吉林建筑工程学院学报,2004,21(2):7-13.
    [124]刘萍,曾光明,黄瑾辉.膜技术在饮用水深度处理上的应用[J].环境科学与技术,2004,27(6):100-103.
    [125]吴启州.饮水中有机物的危害及对策[J].水处理技术,1997,23(4):240-244.
    [126]黄剑明,需廷国,胡静等.饮用水氯胺消毒技术应用现状及面临的课题[C].城镇饮用水安全保障技术研讨会论文集.深圳,2004年8月,p:418-412.
    [127]黄明珠,杨涛.消毒方法浅议[C].城镇饮用水安全保障技术研讨会论文集.深圳,2004年8月,p:423-425.
    [128]陈忠标,焦中志,王东田.氯胺消毒对消毒副产物的控制研究[C].城镇饮用水安全保障技术研讨会论文集.深圳,2004年8月,p:410-413.
    [129]Valentine, R. L., K. Ozekin, and P.J.Vikesland.Chloramine Decompositioon in Distribution System and Model Waters[C]. American Water Works Association Research Foundation. Denver,CO.1998.
    [130]Junsung Kim,Yong Chung,Dongchum Shin,Myungsoo Kim,Yonghun Lee, Youngwook Lim,Duckhce Lee. Chlorination by-products in surface water treatment process[J]. Desalination,2002,151:1-9.
    [131]Dianchen Gang. Modeling of THM and HAA Formatin in Missouri Waters upon Chlorination. [M]USA:Bell& Howell Information and Learning Company,2001,8.
    [132]Emma H, Goslan, Stuart W. Krasner, Matthew Bower,et al.A. Kms小-r'MatⅢew Bower'et aL A comparison of disinfection byproducts found in chlorinated and chlorinated drinking waters in Scotland [J]. Water Research,2009,43:4689-4706.
    [133]王海鸥,陈忠林.氯胺和联合氯胺控制消毒副产物的研究[J].黑龙江大学自然科学学报,2010,27(6):764-773.
    [134]MARKM DOM INO,BARRY V PEP ICH,DAV ID JMUNCH et al. EPA 815-B-03-002.Determination of haloacetic acids and dalapon in drinking by liquid-liquid microext raction, derivatization, and gas chromatography with electron capture detection.[S]. Cincinnati: Technical support center office of ground w ater and drinking water U.S.EPA,2003.
    [135]Merlet N, Thibaud H, Dore M. Chloropicrin formation during oxidative treatments in the preparation of drinking water[J]. Sci Total Environ.,1985,47:223-228.
    [136]李伟,徐斌,夏圣骥,等.饮用水中溶解性有机氮类化合物的控制研究进展[J].中国给水排水,2009,25(8):22-26.
    [137]Gnaim J M, Sheldon R A. Highly Regioselective ortho-Chlorination of Phenol With Sulfuryl Chloride in the Presence of Amines[J]. Tetrahedron Letters,1995,36(22),3893-3896.
    [138]Joe S H, Mitch W A. Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines[J]. Environ Sci Technol.,2007, 41(4):1288-1296.
    [139]朱明华.仪器分析[M].北京:高等教育出版社,2002.
    [140]Boehm H P. Chemical Identification of Surface Groups[J]. Adv. Catal,1966.37:197-225.
    [141]Faria P C C, Qrfao J J M, Pereira M F R, Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon [J]. Water research,2005,39(8):1461-1470.
    [142]傅成诚,梅凡民,周亮,杨青莉NaOH改性活性炭的表面特征及吸附甲醛的性能[J].化工环保,2009,29(4):381-384.
    [143]张晶.改性ACF的制备及性能和对空气中S02吸附的研究[D].大连:大连交通大学2009,18-19.
    [144]刘桂芳,马军,关春雨,等.改性活性炭对水溶液中双酚-A的吸附研究[J].环境科学,2008,29(2):349-355.
    [145]周维芝,李伟伟,张玉忠,等.深海适冷菌Pseudoalteromonas sp. SM9913胞外多糖对Pb2+和Cu2+的吸附性能研究[J].环境科学,2009,30(1):200-205.
    [146]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004.
    [147].Gotpagar.J.,Grude E., Bhattacharyya D,. Reductive dehalogenation of trichloroethylenc using zero-valent iron environmental Progress,1997, Vol.16(2):137-143.
    [148]Yak H. K., lang Q., Wai C. M., Relative resistance of positional isoiners of polychlormated toward reductive dechlorunation by zero-valent iron in subcritical water-Environ. Sci Technol, 2000,Vol.34(13):2792-2798.
    [149]李海花,单爱琴,蔡静,黄媛媛.零价铁去除三氯乙烯及四氯乙烯对比实验研究[J].环境科学与技术,2010,Vol.33(6):130-132.
    [150]周红艺,汪大,徐新华,赵伟荣,颜晓莉.含铁化合物对有机氯化物的脱氯处理技术研究[J].环境污染治理技术与设备,2002,Vol.3(1):522-56.
    [151]Arnold W.A., Roberts A. L., pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe0 particles. Environ. Sci. Technol.,2000, Vol.34(9):1794-1805.
    [152]Farrell J., KasonM., Melitaslv. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroetylene Environ. Sci. Technol.,2000, Vol. 34(9):1794-1805.
    [153]Cole S. K.. Halonitromethane treatment using advanced oxidation process:rates, mechanisms and kinetic modeling[D]. Norfolk, Old Dominion University,2005:70-83.
    [154]El Abd H., Hafez A., El Zanati E.. Modeling of water-ozone reaction system. Environment international,1985,11(6):493-498.
    [155]Nadezhdin A.D.. Mechanism of ozone decomposition in water. The role of termination. Industrial and Engineering Chemistry Research,1988,27(4):548-550.
    [156]桑海波,张鑫,吴石山HDPE的紫外辐射官能化研究[J].高分子材料科学与工程,2005,Vo1.21(4):182-184.
    [157]Schoolenberg G.E.A fracture mechanics approach to the effects of UV-degradation on polypropylene Journal of Materials Science.1988, Vol.23(5):1580-1590.
    [158]Rudra Anjana, Thacker Neeta P, Pande Sunil P Kinetics of oxidative decolourisation of Acid Orange in water by ultraviolet radiation in the presence of hydrogen peroxide.Environmented Monitoring and Assessment,2005, Vol.109(1-3):189-197.
    [159]刘绮.环境化学[M],北京:化学工业出版社,2004.
    [160]伍海辉.预氯化消毒副产物生成特性和去除机理研究[D],上海,同济大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700