水下隧道水文地质概念模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于工程环境的特殊性和可能发生涌水灾害的严重性,水下隧道也成了种高风险的地下工程。因此,开挖前对隧道研究区可能发生的灾害进行分析预测,是保障隧道安全施工和正常运营的关键。目前,隧道涌水预测的主要方法是对隧道场区的动态地下水流场进行模拟。而实现这一目的前提则是建立起科学、合理、准确的水文地质概念模型。
     本文以狮子洋水下隧道为例,通过收集该隧道场区的地质、水文地质等资料,对其水文地质条件进行概化,并分析了隧道所在区域边界条件、含水层的源汇项及渗透系数等。文章得到了以下研究结论:
     (1)分析了影响水文地质单元划分的因素,筛选了地层岩性、地质构造、地形地貌、渗透系数、水位、隧道埋深等六个评价指标;
     (2)采用层次分析-模糊综合的数学方法,建立了隧道水文地质单元划分的判别模型;
     (3)将研究区分成了DIK33+660~DIK34+710.DIK34+710~DIK38+520、DIK38+520~950、DIK38+950~DIK39+940、DIK39+940~DIK42+260、DIK42+260~DIK43+000六段,从而分段建立起隧道的水文地质概念模型。
     本文为建立准确、科学的狮子洋水下洋隧道水文地质概念模型提供了依据,也对其他水文地质概念模型的建立有理论参考价值和指导意义。
As the specific characteristics of engineering environmental and the severity of potential groundwater inflow disaster, underwater tunnels have become to be high-risk underground projects. Therefore, predicting the possible disasters in the tunnel area before excavation becomes important to the security of tunnel construction and normal operation. So far, the general method for prediction of tunnel inflow is to simulate the dynamic groundwater flow field within the tunnel area. And the precondition to realize this step is to set up a scientific, reasonable and accurate hydrogeological conceptual model of the study area.
     This thesis took the Shiziyang Underwater Tunnel for example. By collecting the geological and hydrological data from the tunnel area, this thesis conceptualized the hydrogeological conditions of the tunnel and analyzed the parameters like boundary conditions, sources and sinks, permeability of the aquifers. The thesis has such research results:
     (1) An evaluation index system was established by inferring the factors that could impact the division of hydrogeological units, including the strata lithology, geological structure, geographic and geomorphic conditions, permeability, water table and the embedded depths of tunnel.
     (2) By using the AHP-fuzzy comprehensive method, we set up a discriminative model for the division of hydrogeological units.
     (3) Then the Shiziyang Tunnel was divided into 6 sections by this model and the hydrogeological conceptual model was set up for each tunnel division. These 6 divisions were DIK33+660~DIK34+710, DIK34+710~DIK38+520, DIK38+520~950, DIK38+950~DIK39+940, DIK39+940~DIK42+260 and DIK42+260 DIK43+000.
     This thesis proposed a way of establishing scientific and accurate hydrogeological conceptual model for Shiziyang Underwater Tunnel, and also has provided a theoretical reference and the guiding sense for other underwater tunnels.
引文
[1]王梦恕.水下交通隧道发展现状与技术难题[J].岩石力学与工程学报,2008,27(11):2161-2172.
    [2]Z.D.Eisenstein, Large Undersea Tunnels and the Progress of Tunnelling Technology[J], Tunnelling and Underground Space Techonlogy,1994 Vol.9(3):283-292.
    [3]陈宝春,刘织,林涵斌.世界海底隧道工程概况与台湾海峡通道构想[J].福州大学学报,2000,Vol.28(4):51-55
    [4]Anders Odgard, Dvaid Bridges and Steen Rostam, Deisgn of the Storebalt Raliway Tunnel[J], Tunnelling and Underground Space Techonlogy,1994, Vol.9(3):293-307
    [5]B.Nilsen.Analysis of Potential Cave-in from Fault Zones in Hard Rock Subsea Tunnel[J].Rock Mechanics and Rock Engineering.1994, No.2:63-75.
    [6]吕明,Grφve.挪威海底隧道经验[J].岩石力学与工程学报,2005,24(23):4219-4225.
    [7]蔚立元..水下隧道围岩稳定性研究及其覆盖层厚度确定.山东大学博士论文.2010:4-7.
    [8]Blindheim O T, GrcpvE, NilsenB.Nordic subsea tunnel projects[A].In:Proceedings of the ITA Open Session[C].lstanbul:[s.n.],2005.
    [9]Arild Palmstrom.The Challenge of Subsea Tunnelling[J].Tunnelling and Underground Space Technology,1994,9(2):145-150.
    [10]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1513-1521.
    [11]王大纯等.水文地质学基础.地质出版社,1980
    [12]Matthess.G:The properiss of groundwater. John Wiley & Sons.U.S.A1982
    [13]中国地质调查局.水文地质概念模型概化导则.2004,11
    [14]Habermehl M A. Groundwater movement and hydrochemistry of the Great Artesian basin, Australia [C]. Australia Geological Society of Australia,1992, Extended Abstract No.43.1992:228-236.
    [15]Herczeg A L, Torgersen T, Chivas A R, et al.Geochemistry of groundwaters from the Great Artesian basin, Australia[J]. Journal of hydrology,1991, (126):225-245.
    [16]李春意,崔希民等.隔水关键层水文地质概念模型的建立与分析.[J]煤矿安全,2009,4:p11-p15
    [17]潘海泽,黄涛等.南梁隧道地区水文地质概念模型的建立.[J]路基工程,2008,3:p50-p52
    [18]张春.相关分析在地下水动态预测和渗透系数计算中的应用.[J]地下水,2009,1:p51-p53
    [19]张茂省,胡伏生等.鄂尔多斯白垩系地下水盆地水文地质概念模型.[J]地质通报,2008,8:p 1115-p1122
    [20]皇甫行丰.论水文地质概念模型的建立.[J]河南地质,1997,12:p283-p287
    [21]刘洁,柏彦奇等.概念模型建模方法研究.[J]长春理工大学学报2007,9:126-130
    [22]Wood W L.A note on how to avoid spurious oscillation in the finite element Solution of the unsaturated flow equation [J]. Journal of Hydroloy,1996,176: 205-218.
    [23]张仲根,唐忠林等.水文地质概念模型的水动力场研究方法-“流场分析法”.[J]江苏地质2007,31(2):p143-p146
    [24]Mehl S, Hill M C.Development and evaluation of a local grid refinement Method for block centered finite difference groundwater models using shared nodes.[J]Advances in water Resources,2002,25:497-511
    [25]冯宇明,常发强.太原地区水文地质概念模型.山西水利科技1996,12:6-11
    [26]梁煦枫.天山北麓三维水文地质结构建模及其数值模拟.长安大学硕士学位论文.2007:22
    [27]刘文剑,吴湘滨等.隧道涌水量综合渗透系数的推导及应用.[J]工程勘察2008,2:26-28
    [28]魏成武.大相岭隧道典型地段水文地质模型及其涌水量预测研究.西南交通大学硕士论文.2009:25
    [29]Renard, Philippe.Approximate discharge for constant head test with recharging boundary.Ground Water, v43, n3, May/June,2005,439-442.
    [30]Heuer, Ronald E.Estimating rock tunnel water inflow.Proceedings Rapid Excavation and Tunneling Conference,1995, P41-60.
    [31]谢洪毅.弱渗透裂隙介质埋深长隧洞水文地质概念模型及其涌水量预测研究.河海大学硕士学位论文.2006:43
    [32]洛祖江、曾峰等.地下饮用水水源保护区划分三维渗流与溶质运移耦合数值模型.[J]吉林大学学报2010,2:1353-1358
    [33]宋小军.基于MODFLOW对天津宁河县的地面沉降预测研究.[J]矿产勘查2010,11:564-p568
    [34]徐超.厦门东通道海底隧道海域暗挖段水文地质试验及分析.[J]铁道勘察2007,4:55-59
    [35]薛丽娟、李巍.开采条件下海河流域平原区浅层地下水数值模拟研究.[J]工程勘察,2010,3:50-52
    [36]刘丹,杨立中等.秦岭特长隧道地区同位素水文地质研究.[J]成都理工学院学报,2002,6:340-343
    [37]王芃.数值法预测隧道涌水量及工程措施效果量化评估研究.西南交通大学硕士论文.2008:10
    [38]铁道第四勘察设计院.狮子洋隧道工程地质勘察报告.2007,5.
    [39]铁道第四勘察设计院.珠江狮子洋隧道工程水文地质勘察报告.2007,7
    [40]付新喜.广深港客运专线狮子洋隧道水文地质特征研究.[J]资源环境与工程,2007,4:p152-155
    [41]TheProfessional Standards Compilation Group of People's Republic of China. TB10049-2004/J339-2004 Code for hydrogeological survey of railway engineering[S]. Beijing:China Railway Publishing House,2004.(in Chinese)
    [42]Fatem, M. J, Green, M. F, Campbe, T. I. Dynamic analysis of resilient crosstie track for transit system [J]. Journal of Transportation Engineering,1996,122(2): 173-180.
    [43]刘大海.等价裘布衣半径及其单孔抽水试验解算方法.地下水,1987.3.
    [44]雅贝尔.地下水水力学[M].北京:地质出版社,1985
    [45]孙纳正.地下水流的数学模型和数值方法[M].北京:地质出版社,1 991.
    [46]Vermulst J A, PH, De Lange W J. An analytic-based approach for coupling models for unsaturated and saturated groundwater flow at different scales.Journal of Hydrology,1999,226:262-273.
    [47]De Lange WJ.A Cauchy boundary condition for the lumped interaction between an arbitrary number of surface waters and a regional aquifer Journal of Hydrology,1999,226:250-261
    [48]仵彦卿.岩体水力学基础(六)岩体渗流场与应力场耦合的双重介质模型[J].水文地质工程地质,1998
    [49]Compensated Algorithm of Sensor Characteristic Based on Support Vector Machine[A]. Proceedings of 6th International Symposium on Test and Measurement(Volume 4)[C],2005.
    [50]Xunhong Chen. Measurement of streambed hydraulic conductivity and its anisotropy[J]. Environmental Geology,2000,39(12)
    [51]张吉军.模糊层次分析法[J].模糊系统与数学,2000,14(2):81-85.
    [52]Kim K D, Chung S C. On-machine Inspection System Accuracy Improvement Using an Artifact[J].Journal of Manufacturing Systems, 2003,22 (4):299-308.
    [53]A Multilayer Fuzzy Synthetic Evaluation Model of Fire Safety for Petrochemical Enterprise[A]. Proceedings of the First International Conference on Risk Analysis and Crisis Response[C],2007.
    [54]孟勤宪.成都市餐厨垃圾处置方式优化选择研究.西南交通大学硕士论文.2010:p38
    [55]陈守煜.系统模糊决策理论与应用[M].大连:工业大学出版社,1984:57.
    [56]张培辉.模糊综合评判在封水、降水施工方案选择中的应用.合肥工业大学.2006:p24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700