铅冰铜氧压酸浸—电积提铜工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅矿通常伴生有铜,在铅火法冶炼过程中,铜进入粗铅。粗铅火法精炼一般采用加硫除铜的方法脱铜,所产浮渣经反射炉溶析后产出三个产品:粗铅、铅冰铜和渣。铅冰铜除含铜外,还含铅、银等元素。迄今,通常采用火法冶金处理这类物料,然而,这种方法存在金属回收率低、环境污染严重、工艺流程长、投资大、成本高等缺点。所以,开发适合于处理该类物料的高效清洁冶金技术具有重要的现实意义。
     本论文以铅冰铜及铅冰铜与熔析渣混合料(简称混合料)为物料,在查阅大量资料、对比多种处理方法的基础上首次提出了氧压酸浸——直接电积提铜的全湿法清洁冶金新工艺,并对其中的关键技术进行了理论和试验研究。主要包括以下内容:
     1、绘制了423K下的Cu2S-H20系E-PH图和298K下的MeS-H2O系E-pH图,并对铅冰铜和混合料的氧压酸浸过程热力学进行了分析
     2、研究了铅冰铜浸出过程工艺条件。系统研究了铅冰铜用新液或电积废液返回氧压酸浸试验工艺条件:浸出时间、氧分压、液固比、矿样粒度、酸量、浸出温度、搅拌速度和浸出溶液中初始Cu2+浓度对铜浸出率和浸出液中铁含量的影响。结果表明:浸出时间、氧分压、酸量、浸出温度和搅拌速度对铜浸出率和浸出液中铁含量有很大影响,液固比、矿样粒度和用于浸出料样的浸出溶液初始Cu2+浓度对铜浸出率和浸出液中铁含量影响不明显。最佳浸出条件为:浸出时间2-3h,氧分压0.8MPa,总压1.2~1.3MPa,酸量理论量(T),浸出温度140~150℃,搅拌速度600rpm,液固比10:1,料样粒度-100目占55%(粗磨料)。在最佳浸出条件下:铜浸出率≥97%,浸出液铁含量<5g/L。渣率~30%,铅入渣率100%,银入渣率>98%,铁入渣率>60%,单质硫产出率~25%。
     3、熔析渣中也含有铜,在生产中较难将铅冰铜与熔析渣彻底分开,故最好将铅冰铜与熔析渣合起来考虑(混合料),系统研究了混合料浸出过程工艺条件。混合料含硅高,浸出后料浆过滤很困难。通过试验研究找到了提高过滤性能的方法。用新液浸出时,加复合絮凝剂A。废电积液返回浸出时需要在浸出后向料浆中加入CaC03,调pH至1.5左右,然后加复合絮凝剂A,能很好地解决料浆过滤难的问题。在最佳浸出条件下:矿浆过滤速度220~550 L/m2·h,Cu浸出率>90%,浸出液铁含量<2g/L,渣率55-75%,铅入渣率100%,银入渣率>95%,铁入渣率>80%,单质硫产出率~25%。
     4、研究了浸出液直接电积提铜试验。电积最佳工艺技术条件为:极间距4cm,温度25~40℃,电流密度220A/m2,电积液循环速度250L/m3·h,电积终点电积液铜浓度~25g/L,电积液铁含量<10g/L,添加剂20~70g/t·Cu。在此工艺技术条件下,电流效率>90%,槽电压2.0~2.1 V,并得到了符合国标CATH-2要求质量的阴极铜。
     5、为验证工艺的稳定性,进行了浸出——电积,电积废液返回浸出的循环试验,共进行了五个循环,取得的技术指标如下:
     (1)、铜回收率>97.48%
     (2)、渣率~30%
     (3)、铅入渣率100%
     (4)、银入渣率>97.55%
     (5)、铁入渣率>59.68%
     (6)、单质硫产出率~23%
     6、研究了铅冰铜氧压浸出动力学,建立了料样粒度、总压、浸出温度和酸度对其影响的动力学方程。计算了表观反应活化能:21.03KJ/mol,表明铅冰铜氧压酸浸过程受混合控制。最后建立了铅冰铜氧压浸出铜的数学模型:
     α(%)=100×{1-[1-r0/1exp(-1.5856-2608.46T/1+0.646lnP+0.228ln C)t]3}
     以65个试验结果检验此模型,吻合甚好。
     ,论文的创新点为:
     (1)、提出了一条处理铅冰铜和混合料的技术路线,研发了从铅冰铜和混合料中回收铜的全湿法冶金新工艺,并申请了发明专利。
     (2)、系统研究了反射炉处理粗铅加硫除铜所产生的铅浮渣所产铅冰铜和混合料的氧压酸浸的工艺条件,并得到了高的铜浸出率。
     (3)、通过试验找到了解决高硅高铁混合料氧压酸浸料浆过滤难的方法。
     (4)、试验研究了低酸溶液体系的直接电积提铜,并获得了符合国标CATH-2要求的阴极铜。
     (5)、绘制了423K下的Cu2S-H2O系E-pH图;研究了铅冰铜氧压酸浸的动力学,并建立了料样粒度、总压、浸出温度和酸度对其影响的动力学方程,在此基础上建立了铅冰铜氧压浸出铜的数学模型。
Copper is usually associated with lead minerals, of which enters the lead bullion in the pyrometallurgical process of lead. It's usually separated from the lead bullion in the form of copper sulfide (called Pb-Cu matte) by adding sulfur in the pyro-refining of lead bullion. Pb-Cu matte copper usually contains lead, silver and other valuable metals besides copper. So far, it always treated by pyrometallurgy which has a lot of disadvantages such as low recovery of metals, high environmental pollution, long flow, high investment and cost etc. Therefore, the development of a high efficiency and cleaning metallurgical technology to treat such materials has important practical significance.
     It takes Pb-Cu matte and mixed materials as materials in experiments. A new technology of hydrometallurgy for treating such materials by pressure oxidative leaching and electrowinning directly is proposed, and the theory and experiment of the key process were investigated. The main contents of the paper contain as follows:
     1. The thermodynamics of pressure oxidative leaching of Pb-Cu matte and mixed materials was analyzed by the E-pH diagrams of Cu2S-H2O system at 423K and MeS-H2O system at 298K.
     2. The leaching conditions of Pb-Cu matte were studied. The effects of leaching time, oxygen partial pressure, L/S ratio, materials granularity, acid addition, leaching temperature, agitation speed and initial Cu2+ concentration on the extraction of copper and iron at pressure oxidative leaching of Pb-Cu matte by new solution which no Cu2+ and waste electrolyte were investigated systematically. The effect of initial Cu2+ concentration, L/S ratio and materials granularity are insignificant compared to the other reaction parameters. The best found conditions are: leaching time 2~3 h, oxygen partial pressure 0.8 MPa, total pressure 1.2~1.3 MPa, acid addition theoretical mass, leaching temperature 140~150℃, agitation speed 600 rpm, L/S ratio 10:1 and materials granularity 55% smaller than -100 mesh. Under these conditions,>97% Cu is extracted with the concentration of iron in solution<5g/L. The leaching residue is about 30% of the initial mass, the recovery of lead and silver is close to 100% and 98% respectively, the iron is more than 60% as deposition in residue and the yield of sulfur is about 25% of total sulfur mass.
     3. It is very difficult to separate Pb-Cu matte from slag which contains copper in the pyrometallurgical process of lead. So, it has to put the Pb-Cu matte and slag (called mixed materials) together into considered. The pressure oxidative leaching of mixed materials with high silicon was studied systematically. The filtration of magma is very difficulty after Pox leaching. The technique for improving the filtration performance is achieved by experiments. It can resolve the difficulty of the filtration by adding composition flocculation reagent A, CaCO3 and composition flocculation reagent A after the leaching by new solution and waste electrolyte respectively. Under the best conditions, the filtration rate is 220~550 L/m2·h, the Cu extraction is more than 90% with the concentration of iron in solution <2g/L, the leaching residue is about 55~75% of the initial mass, the recovery of lead and silver is close to 100% and 95% respectively, the iron is more than 80% as deposition in residue and the yield of sulfur is about 25% of total sulfur mass.
     4. The experiment of copper electrowinning was studied. The best found conditions are:the pole pitch 4cm, the temperature 25~40℃, the current density 220A/m2, the circuit speed of the electrolyte 250L/m3·h, the terminal copper content of the waste electrolyte 25g/L, the concentration of iron <10g/L and the amount of additive is 20-70g/t·Cu. Under these conditions, the current efficiency is greater than 90%, the tank voltage is 2.0-2.1V and the cathode copper are up to CATH-2.
     5. In order to prove the stability of the process, the circulation experiments of leaching, electrowinning and leaching by waste electrolyte were carried out. It achieves some parameters through 5 circulation experiments.
     (1). Cu extraction rate >97.48%
     (2). Yield of residues~30%
     (3). Lead recovery rate 100%
     (4). Silver recovery rate >97.55%
     (5). Iron as deposition >59.68%
     (6). Yield of sulfur~23%
     6. The kinetics of pressure oxidative leaching of Pb-Cu matte was studied. The kinetics equations of materials granularity, total pressure, leaching temperature and acidity are found respectively. The apparent reaction activation energy is 21.03KJ/mol which indicates that the pressure oxidative leaching of Pb-Cu matte is driven by mix-controlled. The mathematics model of Cu extraction from Pb-Cu matte by pressure oxidative leaching is found.
     a(%)=100×{1-[1-1/r0exp(-1.5856-2608.461/T+0.6461n P+0.2281nC)t]3}
     The model was proved by 65 experiments. It indicates that the calculated consequences and experimental consequences are inosculation very well.
     The innovations of the paper are as follows:
     (1). A new technology route for Pb-Cu matte and mixed materials is proposed. A new process of hydrometallurgy for Cu extraction from Pb-Cu matte and mixed materials is researched and developed, and the patent is applied also.
     (2). The technology conditions of pressure oxidative leaching of Pb-Cu matte and mixed materials were investigated systematically. It achieves high copper extraction rate.
     (3). The technique for improving the filtration performance of magma which is very difficult filtration after Pox leaching of mixed materials with high silicon and iron is achieved by experiments.
     (4). The copper electrowinning of low acidity solution was studied and the cathode copper which is up to CATH-2 is achieved.
     (5). The E-pH diagrams of Cu2S-H2O system at 423K is constructed firstly. The kinetics of pressure oxidative leaching of Pb-Cu matte was studied. The kinetics equations of ore granularity, total pressure, leaching temperature and acidity are found respectively. The mathematics model of Cu extraction from Pb-Cu matte by pressure oxidative leaching is found.
引文
[1]朱祖泽,贺家齐.现代铜冶金学[M].北京:科学出版社,2003.
    [2]彭容秋.铜冶金[M].长沙:中南大学出版社,2004.
    [3]康义.中国有色金属工业发展报告[R].昆明,2007.
    [4]殷德洪.世界铜市场:2005年回眸与2006年展望[J].世界有色金属,2006,(2):48-52.
    [5]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003.
    [6]于润沧,唐建,李有余.试论我国铜资源的危机和对策[J].有色金属工业,2002,(8):10-1 3.
    [7]杨遇春,李玉增.关于充分利用国外铜资源的思考[J].有色金属技术经济研究,1996,(8):1 5-20.
    [8]马继伦.发展湿法炼铜技术:我国矿山走出困境的重要途径[J].有色金属工业,1999,(6):14-16.
    [9]刘大星.国内外湿法炼铜技术的发展与前景[C].《2004年中国国际铜业论坛》论文集,2004,63-72.
    [10]何蔼平,郭森魁,彭楚峰.湿法炼铜技术与进展[J].云南冶金2006,3 1(3):94-100.
    [11]刘大星,蒋开喜,王成彦.铜湿法冶金技术的现状及发展趋势[J].有色冶炼,2000,29(4):1-5.
    [12]刘大星.我国铜湿法冶金技术的进展[J].有色金属(矿山部分),2002,54(3):6-10.
    [13]王海北,蒋开喜,邱定蕃等.国内外硫化铜矿湿法冶金发展现状[J].有色金属,2003,55(4):101-104.
    [14]马德彪.国内外湿法提铜发展现状[J].湿法冶金,1996,(3):15-19.
    [15]杨进涛.铜矿物处理工艺的变革[J].有色冶金,2001,(2):22-24.
    [16]朱屯.现代铜湿法冶金[M].北京:冶金工业出版社,2002.
    [17]安纯善.硫化铜矿加压氧化浸出在芒特戈登的运作[C].昆明湿法冶金 研讨会技术论文集,昆明,1999.
    [18]史有高.清洁的炼铜工艺[J].中国有色冶金,2006,(1):1-5.
    [19]黄怀国,谢洪珍,孙鹏等.紫金山高品位铜矿石的热压氧氨浸铜研究[J].有色金属(冶炼部分),2003,(3):7-10.
    [20]王春,蒋开喜,王海北等.用LIX 622从含砷铜/锌混合精矿加压浸出液中萃取铜[J].有色金属,2004,56(4):70-73.
    [21]王海北,蒋开喜,张邦胜等.新疆某复杂硫化铜矿低温低压浸出工艺研究[J].有色金属,2004,56(3):52-56.
    [22]马育新.新疆喀拉通克铜精矿的加压酸浸研究[J].新疆有色金属,2002,(2):24-28.
    [23]赵宙,李小康.铜锌混合矿加压浸出的试验研究[J].中国有色冶金,2006,(3):28-30.
    [24]李滦宁,马玖彤,张凤君等.铜精矿中铜镍的浸出研究[J].湿法冶金,2001,20(1):14-17.
    [25]李运刚.某低品位难选离析铜矿的加压氨浸[J].矿产综合利用2001,(1):1-4.
    [26]烟伟.混合铜矿的高压氨浸工艺[J].化工冶金,2000,21(4):403-406.
    [27]烟伟.混合铜矿的常压氨浸与高压氨浸[J].湿法冶金2001,20(2):76-78.
    [28]王海北,蒋开喜,邱定蕃等.辉铜矿湿法冶金新工艺[J].材料与冶金学报,2007,6(3):192-195.
    [29]谢洪珍,黄怀国,江城等.黄铜矿精矿的酸性热压氧化提铜工艺研究[J].矿冶工程,2003,23(4):54-59.
    [30]李小康,许秀莲.低品位铜锌混合矿加压浸出研究[J].南方冶金学院学报,2004,25(4):5-9.
    [31]刘大星.湿法炼铜的发展与前景[J].有色金属再生与应用,2005,(7):34-36.
    [32]刘维国.溶浸、萃取、电积工艺在二次资源综合回收中的应用[J].重有色冶炼,1997,(5):13-17.
    [33]科莱恩.溶剂萃取在铜湿法冶金中的发展和应用[C].铜镍湿法冶金技 术交流及应用推广会议文集,厦门,200 1,(5):85-110.
    [34]李超忠.高效铜萃取剂的研制[C].铜镍湿法冶金技术交流及应用推广会议文集,厦门,2001,(5):129-131.
    [35]中出和彦.日本业会[M].1998,30(92-4):355.
    [36]邓志城.铅冰铜氧化和酸浸制硫酸铜的研究[J].福建化工,1 994,(2):12-16.
    [37]金嗣水.铅冰铜的湿法处理[J].有色金属(冶炼部分),1 982(2):29-32.
    [38]吴连平.氯化溶浸法处理铅冰铜[J].有色金属: 冶炼部分,1995(2):7-8,16.
    [39]方兆珩.酸性溶液中复杂铜锍的氯气浸取[J].有色金属:冶炼部分,1993(4):6-10.
    [40]李卫平摘译,戴永年校.真空蒸馏铅冰铜[J].真空冶金,1993,(32):1-38.
    [41]Habashi F. A Testbook of Hydrometallurgy [M]. Quebec:University of Laval,1993.
    [42]柯家骏.有色金属湿法冶金中加压浸出过程的进展[C].中国有色金属学会第二届学术会议论文集,北京:冶金工业出版社,1996.
    [43]邱定藩.加压湿法冶金过程化学与工业实践[J].矿冶,1994,3(4):55-67.
    [44]Holmes J. A.张仁里译.应用湿法冶金技术的新经验[J].湿法冶金,1993,(4):53-57.
    [45]Habashi F. Pressure Hydrometallurgy Past, Present and Future [C]. Proceedings of the third International Conference on Hydrometallurgy, ICHM'98, Kunming, China:International Academic Publisher,1998.
    [46]《黄金生产工艺指南》编委会.黄金生产工艺指南[M].北京:地质出版社,2001.
    [47]《浸矿技术》编委会.浸矿技术[M].北京:原子能出版社,1994.
    [48]Berezeowsky R.M.G.S. Recovery of Metals by Pressure Oxidation Leaching [J]. J. of Metals.1991,43(2):9-15.
    [49]Berezeowsky R.M.G.S. Gold Extractive Metallurgy Technology and Practices [C]. Proceeding of the First Joint International Meeting between SEM and AusIMM, KeNo, Nevada,1989.
    [50]Parker E.G., Romanchuk S. Lead-Zinc-Tin [C]. Cigan J.M., Macury T. S. and O'keefe T.J. (ed.), AIMS, New York,1980,407-425.
    [51]Johuston B.H., Presented at Zinc [C].13th annual hydrometallurgical meeting, Edmonton, Alberta, August,1983.
    [52]Berezeowshy R.M.G.S, Weir D.R. Gold forum on technology and practices-world gold [C]. Proceeding of the First Joint International Meeting between SEM and AusIMM, Keno, Nevada,1989.
    [53]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1 998.
    [54]邱伟之摘译, 范家骏校.湿法冶金进展述评[J].湿法冶金,1989(4):43-49.
    [55]邱定蕃.加压湿法冶金过程化学与工业实践[J].矿冶,1994,3(4):55-67.
    [56]Mike Anthony, Doug Flett. Pressure hydrometallurgy:A review [M]. England, Mineral Industrial Research Organization. September,2000.
    [57]王吉坤,周廷熙.硫化锌精矿加压酸浸技术及产业化[M].北京:冶金工业出版社,2005.
    [58]陈家镛.湿法冶金的研究与发展[M].北京:冶金工业出版社,1998.
    [59]Nogueira E.D., Recent advances in the development of hydrometallurgical processes for the treatment of base-metal sulphides [J]. Council for Mineral Technology,1985,2:677-693.
    [60]宋复伦,宁模功摘译,张丽霞校.加压湿法冶金的过去-现在和未来[J].湿法冶金,2001,20(3):165-166.
    [61]汪镜亮摘译,黄正生校.加压湿法冶金的研究和发展前景[J].四川有色金属,1992,(1):19-20.
    [62]F.Habashi. The origins of pressure hydrometallurgy [C]. M.J.Collins and V.G.Papangelakis. Pressure Hydrometallurgy 2004, Banff, Alberta, Canada:The Canadian Institute of Mining, Metallurgy and Petroleum, 2004:3-20.
    [63]Dreisinger, D.R&D. Opportunities for pressure hydrometallurgy. JOM,1991.
    [64]Habashi, F. Recent advances in pressure leaching technology. Proc XX IMPC, Aachen, September,1997,129-139.
    [65]Handbook of extractive metallurgy. F Habashi, New developments in zinc production. Vol Ⅱ, Wiley-VCH,1997,660-661.
    [66]柯家骏.湿法冶金中加压浸出过程的进展[J].湿法冶金1996,58(2):1-6.
    [67]邓彤.镍钴的加压氧化浸出[J].湿法冶金,1994,50(2):16-22.
    [68]Kyung-Ho Park, Debasish Mohapatra, B. Ramachandra Reddy, Chul-Woo Nam. A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu-Ni-Co-Fe) matte [J]. Hydrometallurgy, 2007,86(3-4):164-171.
    [69]J. A. M. Rademan, L. Lorenzen, J. S. J. van Deventer. The leaching characteristics of Ni-Cu matte in the acid-oxygen pressure leach process at Impala Platinum [J]. Hydrometallurgy,1999,52,(3):231-252.
    [70]J. L. Provis, J. S. J. van Deventer, J. A. M. Rademan, L. Lorenzen. A kinetic model for the acid-oxygen pressure leaching of Ni-Cu matte [J]. Hydrometallurgy,2003,70(1-3):83-99.
    [71]S. Anand, R. P. Das, P. K. Jena. Sulphuric acid pressure leaching of Cu---Ni---Co matte obtained from copper converter slag-optimisation through factorial design [J]. Hydrometallurgy,1991,26(3):379-388.
    [72]Yunjiao Li, Ilya Perederiy, Vladimiros G. Papangelakis. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching [J]. Journal of Hazardous Materials,2008,152(2): 607-615.
    [73]S. Prasad, B. D. Pandey. Alternative processes for treatment of chalcopyrite — A review [J]. Minerals Engineering,1998,11(8): 763-781.
    [74]W.G. Davenport, M. King, M. Schlesinger, A.K. Biswas. Hydrometallurgical Copper Extraction:Introduction and Leaching [J]. Extractive Metallurgy of Copper,2002,289-305.
    [75]A. Akcil. A preliminary research on acid pressure leaching of pyritic copper ore in Kure Copper Mine, Turkey [J]. Minerals Engineering, 2002,15(12):1193-1197.
    [76]R. Padilla, D. Vega, M.C. Ruiz. Pressure leaching of sulfidized chalcopyrite in sulfuric acid-oxygen media [J]. Hydrometallurgy,2007, 86(1-2):80-88.
    [77]R.G. McDonald, D.M. Muir. Pressure oxidation leaching of chalcopyrite. Part Ⅰ. Comparison of high and low temperature reaction kinetics and products [J]. Hydrometallurgy,2007,86(3-4):191-205.
    [78]R.G. McDonald, D.M. Muir. Pressure oxidation leaching of chalcopyrite:Part Ⅱ:Comparison of medium temperature kinetics and products and effect of chloride ion [J]. Hydrometallurgy,2007,86(3-4): 206-220.
    [79]M.C. Ruiz, E. Abarzua, R. Padilla. Oxygen pressure leaching of white metal [J]. Hydrometallurgy,2007,86(3-4):131-139.
    [80]B. Ramachandra Reddy, Kyung Ho Park, D. Mohapatra. Process development for the separation and recovery of copper from sulphate leach liquors of synthetic Cu-Ni-Co-Fe matte using LIX 84 and LIX 973N [J]. Hydrometallurgy,2007,87(1-2):51-57.
    [81]R. P. Hackl, D. B. Dreisinger, E. Peters, J. A. King. Passivation of chalcopyrite during oxidative leaching in sulfate media [J]. Hydrometallurgy,1995,39(1-3):25-48.
    [82]A. Kosyakov, M. Hamalainen, P. Gromov, A. Kasikov, V. Masloboev, Yu. Neradovsky. Autoclave processing of low grade copper-nickel concentrates [J]. Hydrometallurgy,1995,39(1-3):223-234
    [83]W.J. Bruckard, G.J. Sparrow, J.T. Woodcock. Gold and silver extraction from Hellyer lead-zinc flotation middlings using pressure oxidation and thiourea leaching [J]. Hydrometallurgy,1993, 33(1-2):17-41.
    [84]T. J. Harvey, W. T. Yen, J. G. Paterson. Selective zinc extraction from complex copper/zinc sulphide concentrates by pressure oxidation [J]. Minerals Engineering,1992,5(9):975-992.
    [85]A.N. Buckley, H.J. Wouterlood, R. Woods. The surface composition of natural sphalerites under oxidative leaching conditions [J]. Hydrometallurgy,1989,22(1-2):39-56.
    [86]S. Anand, S.C. Das, R.P. Das, P.K. Jena. Leaching of manganese nodules at elevated temperature and pressure in the presence of oxygen [J]. Hydrometallurgy,1988,20(2):155-167.
    [87]R. Padilla, P. Pavez, M.C. Ruiz. Kinetics of copper dissolution from sulfidized chalcopyrite at high pressures in H2SO4-O2 [J]. Hydrometallurgy,2008,91(1-4):113-120.
    [88]B.K. Loveday. The use of oxygen in high pressure acid leaching of nickel laterites [J]. Minerals Engineering,2008,21(7):533-538.
    [89]Juhani Kronholm, Kari Hartonen, Marja-Liisa Riekkola. Analytical extractions with water at elevated temperatures and pressures [J]. TrAC Trends in Analytical Chemistry,2007,26(5):396-412.
    [90]Ting-sheng QIU, Guang-hua NIE, Jun-feng WANG, Li-feng CUI. Kinetic process of oxidative leaching of chalcopyrite under low oxygen pressure and low temperature [J]. Transactions of Nonferrous Metals Society of China,2007,17(2):418-422.
    [91]Hu Long, David G. Dixon. Pressure oxidation kinetics of orpiment (As2S3) in sulfuric acid [J]. Hydrometallurgy,2007,85(2-4):95-102.
    [92]James A. Brown, Vladimiros G. Papangelakis. Interfacial studies of liquid sulphur during aqueous pressure oxidation of nickel sulphide [J]. Minerals Engineering,2005,18(15):1378-1385.
    [93]鲁根启.云南铜业股份有限公司现流程元素分布调查[D].昆明理工大学硕士学位论文,2000.
    [94]肖兴国,谢蕴国.冶金反应工程学基础[M].北京:冶金工业出版社1997.
    [95]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,2001.
    [96]Pourbaix M. Corrosion, Passivite & Passivation du Fer, Le R le pH et du Potentiel. Thesis, CEBELCOR Publication F 21, Bruxellels,1945.
    [97]李自强,何良惠.水溶液化学位图及其应用[J].成都:成都科技大学出版社,1991.
    [98]陈小文,白新德,薛祥义等.电位-pH平衡图及其在核材料腐蚀研究中的应用[J].清华大学学报(自然科学版),2002,42(5):692-695.
    [99]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[J].中南工业大学出版社,1986.
    [100]钟竹前,梅光贵.电位-pH图在湿法冶金中的应用[J].有色金属,1979,3:28-35.
    [101]钟竹前,梅光贵.电位-pH图在湿法冶金中的应用[J].有色金属,1979,4:28-35.
    [102]李自强,何良惠.水溶液化学位图及其应用[J].成都:成都科技大学出版社,1991.
    [103]Woods R, Yoon R H, Young C A. Eh-pH diagrams for stable and metalstable phases in the copper sulfur water system [J]. International Journal of Mineral Processing,1987,20:109-120.
    [104]Herbert E., Barner. Handbook of Thermochemical data for compounds and aqueous species [M].Canada:A Wiley-Interscience Publication, 1978:46-89.
    [105]路殿坤,蒋开喜,王春等.辉铜矿和铜蓝的浸出机理研究[J].有色金属,2002,54(3):31-35.
    [106]Crundwell F K. The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals[J]. Hydrometallurgy,1988,21:155.
    [107]Koch D. F., McIntyre R. J. J. Electroanal. Chem.,1976,71:285.
    [108]G.W.Warern. The Electorchemical Oxidation of CuFeS2. Ph. D. Dissertation. University of Utah,1978.
    [109]Goble R. J. Copper sulfides from Alberta:Yarrowite Cu9S8 and Spionkopite CU39S28.Canadian Mineralogist,1980,18:511-518.
    [110]Whiteside L. S., Goble R. J. Structural and compositional changes in copper sulfides during leaching and dissolution. Canadian Mineralogist, 1986,24.
    [111]Scott D. J. The mineralogy of copper leaching:concentrates and heaps. Copper'91, Copper Hydrometallurgy Short Course, Ottawa,1991.
    [112]Scott D. J. The mineralogy of copper leaching:concentrates and heaps. Copper'95, Copper Hydrometallurgy Short Course, Santiago,1995.
    [113]刘纯鹏.铜的湿法冶金物理化学[M].北京:中国科技技术出版社,1991.
    [114]M.E.Wadsworth.湿法冶金中的电化学反应[J].中国金属学会编译组.化学冶金进展评论.北京:冶金工业出版社,1995.
    [115]Dutrizac J E, Hardy D J, Chen T T. The behaviour of cadmiurn during jarosite precipitation [J]. Hydrometallurgy,1996,41(2-3):269-285.
    [116]Baron D, Palmer C D. Solid-solution aqueous-solution reactions between Jarosite KFe3(SO4)2(OH)6 and its chromate analog [J]. Geochimica et Cosmochimica Acta,2002,66(16):2841-2853.
    [117]Prieto M., Fernandez-Gonzalez A, Martin-Diaz R. Sorption of chromate ions diffusing through barite-hydrogel composites: Implica—tions for the fate and transport of chromium in the environment [J]. Geochimica et Cosmochimica Acta,2002,66(5): 783-795.
    [118]Courtin-Nomade A, Bril H, Neel C, Lenain J F. Arsenic in iron cements developed within tailings of a former metalliferous mine. Enguiales, Aveyron, France [J]. Applied Geochemistry,2003,18(3):395-408.
    [119]Drouet C, Baron D, Navrotsky A. On the thermochemistry of the solid solution betwen jarosite and its chromate analog [J]. American Mineralogist.2003,88:1949-1954.
    [120]邹学功.黄钾铁矾除铁理论分析[J].冶金丛刊,1998,(6):18-20.
    [121]王长秋,马生凤,鲁安怀等.黄钾铁矾的形成条件研究及其环境意义[J].岩石矿物学杂志,2005,24(6):607-611.
    [122]梅光贵,王德润,周敬元等.湿法冶金学[M].长沙:中南大学出版社2001.
    [123]徐鑫坤,魏昶.锌冶金学[M].昆明:云南科技出版社,1996.
    [124]王赞美.氧化锌矿石的直接湿法处理[J].有色金属设计1997,24(3):20.
    [125]李军旗.湿法处理高硅氧化矿的工艺研究[J].湿法冶金,1996,(4):32.
    [126]范斌.矿石中锌的浓酸熟化浸出[J].湿法冶金,1 999,(3):60.
    [127]刘云霞.影响锌浸出料浆过滤的因素及改善其过滤的方法[J].过滤与分离,1997,(4):18.
    [128]杨佼庸.湿法炼铜浸出——萃取——电积[C].全国重冶新技术新工艺成果交流大会文集,1 998,(11):358-360.
    [129]王海瑞.德兴铜矿细菌堆浸出厂的工程设计及投产[C].铜镍湿法冶金技术交流及应用推广会议文集,厦门,200 1,(5):55-58.
    [130]F.Habash. Principles of Extractive Metallurgy, Vol.2. Gordon and Breach, New York,1970.
    [131]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987.
    [132]韩其勇.冶金工业动力学[M].北京:冶金工业出版社,1983.
    [133]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004.
    [134]Arrhenius S, Phys Z. Chem.,1889,4:226.
    [135]姜志新.湿法冶金分离工程[M].北京:原子能出版社,1993.
    [136]蒋汉瀛.湿法冶金过程物理化学[M].北京:冶金工业出版社.1987.
    [137]Ke-qiang XIE, Xian-wan YANG, Ji-kun WANG,et al. Kinetic study on pressure leaching of high iron sphalerite concentrate [J]. Transactions of Nonferrous Metals Society of China,2007,17(1):187-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700