一种环境友好的黄铜矿浸出新工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了国内外对湿法处理黄铜矿的研究及进展。根据热力学分析和探索性试验研究,首次提出一个拥有自主知识产权的在弱酸性条件下银盐催化过硫酸铵浸出黄铜矿的新工艺。新工艺实现了黄铜矿精矿的清洁浸出,是一种环境友好的浸出方法,也是对不同品位含铜镍复杂硫化矿处理技术的一种创新。本论文研究的主要内容和结论如下:
     一、详细地进行了S-H_2O、Ag_2S-H_2O、Ag_2S-NH_3-H_2O、CuFeS_2-H_2O、CuFeS_2-NH_3-H_2O、Cu-S-O-H、ZnS-H_2O、FeS_2-H_2O和PbS-H_2O等体系的热力学计算和研究。
     浸出原料除了主要含有黄铜矿外,还含有少量的闪锌矿、辉铜矿、黄铁矿和方铅矿等硫化矿物。为了研究这些硫化矿物在浸出过程中的行为,本文通过热力学计算和分析,分别绘制了Ag_2S-H_2O、Ag_2S-NH_3-H_2O、CuFeS_2-H_2O、CuFeS_2-NH_3-H_2O、Cu-S-O-H、ZnS-H_2O、FeS_2-H_2O和PbS-H_2O等体系的E-pH图,首次绘出了S_2O_8~(2-)在这些体系E-pH图中的位置,并讨论了S_2O_8~(2-)浸出黄铜矿、闪锌矿、辉铜矿、黄铁矿和方铅矿等的热力学可行性。另外,为了确定S_2O_8~2-()在S-H_2O系E-pH图中的稳定区域,分别绘制了298K和373K时S-H_2O系的E-pH图,首次绘出了S_2O_8~(2-)在373K时S-H_2O系的E-pH图中的位置。最后,根据同时平衡原理,利用VB计算机语言程序进行了Cu-NH_3-H_2O系的热力学平衡计算,分别计算出不同温度下溶液与固态铜、氧化亚铜和氧化铜的平衡点。这些E-pH图的绘制为过硫酸铵浸出硫化矿提供了理论依据。
     二、系统地进行不同条件下过硫酸铵浸出黄铜矿的试验研究及机理分析。
     1、全面地完成了银盐催化过硫酸铵浸出黄铜矿的试验研究和机理分析。结果表明,在相同浸出条件下,不加银盐时,铜的浸出率仅为30%;而加入银盐后,可显著地提高铜的浸出率,其浸出率可超过97%,说明银离子在过硫酸铵浸出黄铜矿过程中起到了积极的催化作用。动力学试验研究表明,银离子催化过硫酸铵浸出黄铜矿的反应受扩散控制,并导出动力学方程为:
     1-2/3a-(1-a)~(2/3)=0.0685(γ_ο)~(-2).[Ag~+]~(0.27)[S_2O_8~(2-)]~(0.29)exp(-25096/RT)t
     在银离子的催化作用下,过硫酸铵浸出黄铜矿反应速率常数提高21.18倍。浸出机理分析表明,黄铜矿之所以能被S_2O_8~(2-)溶解,一方面有S_2O_8~(2-)与黄铜矿的直接作用,产生Fe~(2+)、Cu~(2+)和S,另一方面有S_2O_8~(2-)与黄铜矿的间接作用,即S_2O_8~(2-)可以氧化Fe~(2+)成Fe~(3+),Fe~(3+)可以氧化黄铜矿,产生Fe~(2+)、Cu~(2+)和S。因此,银离子催化过硫酸铵浸出黄铜矿是过硫酸根分别与黄铜矿直接和间接作用的共同结果,但以过硫酸根与黄铜矿直接作用为主。
     浸出渣分析表明,浸出渣中铁以黄铁矿的形式存在,说明黄铁矿在浸出过程中没有被氧化浸蚀。浸出过程中产生的元素硫呈多孔镶边结构包裹在残存的黄铜矿周围。元素硫的稳定性研究表明,元素硫在浸出过程中是稳定的,没有被氧化。试验加入的银离子最终以Ag_2S的形式包裹在残存的黄铜矿周围。
The researches and advances in the hydrometallurgical treatment of chalcopyrite at home and abroad are reviewed. Based on the thermodynamic analysis and explorative experiments, a novel process of weak acid leaching chalcopyrite with ammonium persulfate in the presence of silver ions or silver sulphide as the catalyst is put forward. This process is in possession of independent knowledge property right. The novel process realizes green leaching chalcopyrite concentrate. It is also an environmentally friendly improvement to the hydrometallurgical methods of treating complex sulphide copper ore. At the same times, this process was also an innovation in processing various grades of copper-bearing and nickel-bearing complex sulphide minerals.The main work and conclusions are as follows:Ⅰ、 Systematic thermodynamics calculation and examination of the systems S-H_2O, Ag_2S-H_2O, Ag_2S-NH_3-H_2O, CuFeS_2-H_2O, CuFeS_2-NH_3-H_2O, Cu-S-O-H, ZnS-H_2O, FeS_2-H_2O and PbS-H_2OIn order to investigate the behaviors of chalcopyrite, sphalerite, chalcocite, pyrite and galena, the E-pH diagrams of the systems Ag_2S-H_2O, Ag_2S-NH_3-H_2O, CuFeS_2-H_2O, CuFeS_2-NH_3-H_2O, Cu-S-O-H, ZnS-H_2O, FeS_2-H_2O and PbS-H_2O are constructed, and the positions of S_2O_8~(2-) in these diagrams are determined for first time. The thermodynamics practicability of leaching Ag_2S, CuFeS_2, Cu_2S, ZnS, FeS_2 and PbS with S_2O_8~(2-) is studied. The E-pH diagrams of the system S-H_2O at _298K and _37_3K are also constructed to determine the stable ranges of S_2O_8~(2-) in the diagrams and the position of S_2O_8~(2-) in the system S-H_2O 373K is determined for first time. According to the principle of simultaneous equilibrium, the thermodynamics equilibrium calculation of the system Cu-NH_3-H_2O at 298/_37_3K is carried out by use of VB computer program, and the points at which the solution are in equilibrium with solid Cu, Cu_2O and CuO were determined. These diagrams lay the theoretical foundation for application of ammonium persulfate to leaching sulphide minerals.Ⅱ、 Systematic experimental study and mechanism-analysis of leaching chalcopyrite with ammonium persulfate under different leaching conditions1. The results of experiment show that the leaching efficiency of copper is only _30 pct in the absence of silver ion, but it is more than 97 pct in the presence of under the same leaching conditions, which suggests that silver ions ct as an active catalyst in leaching chalcopyrite with ammonium persulfate during leaching. The kinetics experiments indicates that the reaction of leaching chalcopyrite with ammonium persulfate is controlled by diffusion and the kinetics equation is derived as follows:
    l-|a-(l-a)l =0.0685fr.)"*. [Ag+]°-27[S2082f"The rate constants of leaching chalcopyrite with ammonium persulfate under the catalytic action of silver ions increases by 21.18times. The analysis of leaching mechanism indicates that the direct action of 52Og2" on chalcopyrite, producing Fe2+, Cu2+ and S;plays a dominant role in the dissolution of chalcopyrite, but S2Og~ can also oxidize Fe2+ to Fe3+ which can, in turn, oxidize chalcopyrite to produce Fe2+, Cu2+ and S. Thus, leaching of chalcopyrite with ammonium persulfate is the common results of the direct and indirect action between 52O82" and chalcopyrite, but the direct action between S2O£~ and chalcopyrite is prevailing during leaching.The analysis results of leach residue show that iron exists in the form of pyrite, which suggests that pyrite is not oxidized and dissolved during leaching process. The unleached chalcopyrite particles are wrapped in the elemental sulfur produced, being of porous and permeable texture, and the Ag2S produced from the added silver ions. The elemental sulfur produced during the leach is stable, and it is not oxidized further.The leaching experiment results show that leaching chalcopyrite with ammonium persulfate in the presence of silver sulfide is practicable and the leaching rate is high. The experiments are also carried out under the conditions of weak acid and relatively low temperature, and the satisfactory leaching rate obtained indicates that leaching chalcopyrite at ambient temperature is practicable. In addition, based on the results of mechanism-analysis of leaching chalcopyrite with ammonium persulfate in the presence of silver sulfide, the experiment of the catalyst replaced by the leach residue obtained from leaching of chalcopyrite with ammonium persulfate in the presence of silver ions was accomplished. The result show leaching chalcopyrite with ammonium persulfate by the leach residue as catalyst at low temperature was practical. 2.The experimental results of leaching chalcopyrite with ammonium persulfate in the presence of silver ion under the ultrasonic irradiation show that the leaching reaction is self-catalyzed reaction, and the rate equation is derived as follows:Under the ultrasonic irradiation, the apparent rate constants increase by 5.81 times. The analysis results of leach residue indicate that the elemental sulfur in the residue is discrete and surface-uneven, which suggests that the sulfur films on the surfaces of chalcopyrite particles are broken by the effect of ultrasonic cavitation effect and fall off the surfaces of unleached chalcopyrite cores <, As the result of that, the exposure of new surfaces of chalcopyrite contracts with oxidant and catalyst, and this facilitates the dissolution of chalcopyrite. 3.The experimental results of leaching chalcopyrite with ammonium persulfate in the presence
    of silver ion under the microwave irradiation show that the leaching rate of copper reaches more than twice that under the conditions of conventional heat and in the absence of silver ions. The of results kinetic experiment show that the leaching reaction is chemical controlled, and the apparent rate constants increase by 2.79 times. The overall apparent rate equation is derived as follows:4>=1238.01X r/1The analysis of leaching mechanism shows that the stirring effect produced by microwave irradiation breaks the elemental sulfur films on the surfaces of chalcopyrite particles and makes the elemental sulfur films disperse discretely in the residue. The exposure of unreacted chalcopyrite cores facilitates the dissolution of chalcopyrite. IIIn Examination of treatment of the leach residue and leach solutionProcessing technologies for the leach residue and solution are carried out, and the technology to treat the leaching residue also determined. The cycle use of catalyst silver ions and the oxidant by regeneration is realized. IV > Application of this process to leaching other sulphide mineralsThe experimental results show that leaching complex copper -nickel sulfide ores of various grades with ammonium persulfate in the presence of silver ions at relative low temperature is practicable, which opens up wide prospect for the application of this process.In summary, a novel process of wet chemical leaching chalcopyrite and other sulphide minerals is researched. The advantages of this process are: high leaching rate, simple operation, short flowsheet, regeneration cycle of catalyst and oxidant, and high environmental acceptability. This process meets the requirements of green clean production, and is a new promising hydrometallurgical method of direct leaching sulfide ores.
引文
[1] 贾龙光.铜冶炼技术发展回顾.有色金属(冶炼部分),1997(增刊):19~24
    [2] 广东冶金学院.马坝冶炼厂(合编).硫化铜矿湿法冶金.北京:冶金工业出版社,1978,11:4
    [3] M.E.Wadsworth.湿法冶金的历史、现状和前景.湿法冶金,1984,(2):1
    [4] 刘微平,邱定蕃,卢惠民.湿法冶金新技术进展.矿冶过程,2003,23(5):39
    [5] 曹异生.国际湿法炼铜最新进展.世界有色金属,1995,(4):10
    [6] 蒋继穆.泛谈我国湿法炼铜.铜业工程,2001,(4):10
    [7] 马育新.新疆喀拉通克铜精矿的加压酸浸研究.新疆有色金属,2002,(2):24~25
    [8] 小林干男.黄铜矿湿法冶金方法研究开发的现状.锡业科技,2001,2(2):67
    [9] 姜永智,廖雪珍,郭亮明,赵国育,等.铜湿法冶金技术的研究与应用评述.甘肃有色金属,2002,17(1):17~22
    [10] 刘大星.铜湿法冶金技术进展及对铜工业的影响.有色金属工业,2000,(10):36
    [11] Alan Toylor.铜湿法冶金的进展和趋势.湿法冶金,1997,(1):52~55
    [12] 王海北,蒋开喜,邱定蕃,卢惠民.国内外硫化铜湿法冶金发展现状.有色金属,2003,55(4):101~103
    [13] 张忠平.硫化铜矿湿法冶金工艺综述.安徽化工,2002,(5):8~10
    [14] 雷贵春.国外黄铜矿浸出研究综述.新疆有色金属,1999,No.1:40~43
    [15] M, M. Antonijevic, G. D. Bogdanovic. Investigation of the leaching chalcopyrite ore in acidic solutions. Hydrometallurgy, 2004, 73:245~256
    [16] 张兴仁(译).处理黄铜矿的几种可供选择的工艺方案述评.国外黄金参考,1998,(11/12):19~22
    [17] 左永斌.铜矿石浸出技术现状.湿法冶金,1997,No.2:44~47
    [18] 肖玉娟(译).次氯酸浸出硫化矿物.有色科技,1989,(#):92
    [19] Fathi Habashi, Tej Toor. Aqueous oxidation of chalcopyrite in hydrochloric acid. Metallurgical transactions B, 1979, 10B: 49~56
    [20] EUNG HA CHO. Leaching Studies of Chalcopyrite and sphalerite with hypochlorous acid. Metallurgical transactions B, 1987, 18B: 315~316
    [21] J. E. Dutrizac. Elemental sulphur formation during the ferric sulphate leaching of chalcopyrite. Canada Metallurgical Quarterly, 1989, 28(4): 337~344
    [22] J. E. Dutrizac. Ferric ion leaching of chalcopyrite from different localities. Metallurgical Transactions 1982, 13B: 303~309
    [23] KNONA C. LIDDELL, RENATO G. BAUTISTA. A partial equilibrium model to characterize the precipitation of ferric ion during the leaching of chalcopyrite with ferric sulfate. Metallurgical Transactions 1983, 14B: 5~15
    [24] Naoki Hiroyoshi, Hajime Miki, Tsuyoshi Hirajima, Masami Tsunekawa. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solution. Hydrometallurgy, 2001, 60:185~197
    [25] Naoki Hiroyoshi, Masahiko Hirota, Tsuyoshi Hirajima, Masami Tsunekawa. A case of ferrous sulfate addition enhancing chalcopyrite leaching. Hydrometallurgy, 1997, 47:37~45
    [26] Hiroshi Majima, Yasuhiro Awakura, Tetsuji Hirato, Toshihiko Tanaka. The leaching of chalcopyrite in ferric chloride and ferric sulfate solutions. Canada Metallurgical Quarterly, 1985, 24(4): 283~291
    [27] Naoki Hiroyoshi, Hajime Miki, Tsuyoshi Hirajima, Masami Tsunekawa. A model for ferrous-promoted chalcopyrite leaching. Hydrometallurgy, 2000, 57:31~38
    [28] G. W. Warren, M. E. Wadsworth, S. M. El-Raghy. Passive and transpassive anodic behaviour of chalcopyrite in acid solutions. Metallurgical Transactions B 1982, 13B: 571~579
    [29] 金作美,刘恒.银在某些硫化矿中的催化作用.中国有色金属学会冶金物理化学学术委员会-1987年全国“湿法冶金物理化学学术会议”论文集.昆明,1987,9:1~5
    [30] P. B. Munoz, J. D. Miller, M. E. Adsworth. Reaction mechanism for the acidic ferric sulfate leaching of chalcopyrite. Metallurgical Transactions B, 1979, 10B: 149~158
    [31] KlARA TKACOVA, PETER P. BALAZ. Structural and temperature sensitivity of leaching chalcopyrite with iron(Ⅲ) sulphate. Hydrometallurgy, 1988, 21: 103~112
    [32] F. Letowski, B. Kolodziej, M. Czernecki, A. J Edrozak, Z. Adamski. A new hydrometallurgical method for the processing of copper concentrate using ferric sulphate. Hydrometallurgy, 1979, 4:169~184
    [33] B. L. Tiwari, J. Kolbe, H. W. Hayden, JR. Leaching of high-solids, attritor-ground chalcopyrite concentrate by In Situ generated ferric sulphate solution. Metallurgical Transactions B, 1980, 11B: 89~93
    [34] F. BARRIGA MATEOS, I.PALENGCIA PEREZ, F. CAR ANZA MORA. The passivation of chalcopyrite subjected to ferric sulfate leaching and its reactivation with metal sulfides. Hydrometallurgy, 1987, 19:160
    [35] 金作美,刘恒.银在浸出黄铜矿中的催化作用.应用化学,1990,7(6):43~46
    [36] Naoki Hiroyoshi, Masatoshi Arai, Hajime Miki, Masami Tsunekawa, et al. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in the acid solutions. Hydrometallurgy, 2002, 63:257~267
    [37] D. W. Price, G. W. Warren. The influence of silver ion on the electrochemical response of chalcopyrite and other mineral suphfide electrodes in suphuric acid. Hydrometallurgy, 1986, 15:303~324
    [38] R. P. Hackl, D. B. Dreisinger, E. Peters, J. A. King. Passivation of chalcopyrite during oxidative leaching in sulfate medium. Hydrometallurgy, 1995, 39:25~48
    [39] Tetsuji Hirato, Makoto Kinoshita, Yasuhiro Awakura, Hiroshi Majima. The leaching of chalcopyrite with ferric chloride. Metallurgical Transactions 1986, 17B: 19~28
    [40] Z. Y. Lu, M. I. Jeffrey, F. Lawson. The effect of chloride ions the dissolution of chalcopyrite in acid solutions. Hydrometallurgy, 2000, 56:189~202
    [41] D. Maurice, J. A. Hawk. Ferric chloride leaching of mechanically activated chalcopyrite, Hydrometallurgy, 1998, 49:103~123
    [42] D. Maurice, J. A. Hawk. Simultaneous autogenous milling and ferric chloride leaching of chalcopyrite. Hydrometallurgy, 1999, 51:3713~377
    [43] D. Maurice, J. A. Hawk. Ferric chloride leaching of mechanically activated pentlandite-chalcopyrite concentrate. Hydrometallurgy, 1999, 52:289~312
    [44] J. E. Dutrizc. The leaching of sulphide minerals in chloride medium. Hydrometallurgy, 1992, 29:1~45
    [45] Tomas HavlIk.黄铜矿精矿的三氯化铁浸出.湿法冶金,1996,(4):47~51
    [46] 刘恒,游贤贵,段朝玉.氯盐浸出硫化矿全湿法工艺的实践.四川有色金属,1994,(3):7~11
    [47] 钟辉.低品位硫化铜矿的湿法浸出工艺研究.矿产综合利用,1998,(6):1~4
    [48] 程步升,赵旺盛.无公害炼铜新工艺研究(Ⅰ)-三氯化铁浸出铜精矿及其浸出剂的再生.有色金属(冶炼部分)1997,(6):13~16
    [49] 丁伟安.硫化铜精矿三价铁盐浸出研究新进展.新疆有色金属,1997,(3):22~24
    [50] M. L. O'mally, K. C. Liddell. Leaching of CuFeS_2 by aqueous FeCl_3, HCl and NaCl: Effects of solution composition and limited oxidant. Metallurgical Transactions 1987, 18B: 505~510
    [51] J. E Dutrizac. Elemantal sulphur formation during the ferric chloride leaching of chalcopyrite. Hydrometallurgy, 1990, 23:153~176
    [52] J. E. Dutrizc. The dissolution of chalcopyrite in ferric sulfate and ferric chloride media. Metallurgical Transactions B 1981, 12B: 371~378
    [53] T. Havlik, R. Kammel. Leaching of chalcopyrite with acidified ferric chloride and carbon tetrachloride addition. Minerals Engineering, 1995, 8(10): 1125~1134
    [54] Tetsuji Hirato, Hiroshi Majima, Yasuhiro Awakura. The leaching of chalcopyrite with cupric chloride. Metallurgical Transactions B, 1987, 17B: 31~39
    [55] Rene Winand. Chloride Hydrometallurgy. Hydrometallurgy, 1991, 27:285~316
    [56] J. P. Wilson, W. W. Fisher. Cupric chloride leaching of chalcopyrite. Journal of metals, 1981, 33(2): 52~57
    [57] M. Bonan, J. M. Demarthe, H. Renon, F. Baratin. Chalcopyrite leaching by CuCl_2 in strong NaCl solutions. Metallurgical Transactions B, 1981, 12B: 269~274
    [58] George W. Mcdonald, Terrance J. Udovic, Dumestic, James A. Dumesic, Stanley H. Langer. Equilibria associated with cupric chloride leaching of chalcopyrite concentrate. Hydrometallurgy, 1984, 13:12~135
    [59] N. B. Devi, M. Madhuchhanda, K. Srinivasa Rao, P. C. Rath, et al. Oxidation of chalcopyrite in the presence of manganese dioxide in hydrochloric medium. Hydrometallurgy, 2000, 57:57~76
    [60] B. P. Gantayat, P. C. Rath, R. K. Paramguru, S. B. Rao, et al. Galvanic interaction between chalcopyrite and manganese dioxide in sulfuric acid medium. Metallurgical and materials transactions 2000, 31B: 55~61
    [61] N. B. Devi, M. Madhuchhanda, P. C. Rath K. Srinivasa Rao, et al. Simultaneous leaching of a deep-sea manganese nodule and chalcopyrite in hydrochloric medium. Metallurgical and materials transactions 2001, 32B: 777~784
    [62] 邢卫国,钟竹前,梅光贵.黄铜矿溶解动力学研究.有色金属(冶炼部分),1990, (5):27~30
    [63] 黄祖强,董毅宏,黎铉海,谢小红.软锰矿湿法常压催化分解黄铜矿的研究.广西大学学报,1996,21(4):346~350
    [64] 黄祖强,董毅宏,黎铉海,谢小红.软锰矿和黄铜矿同时浸出的研究.广西化工,1996,25(4):7~10
    [65] A. Rubio, F .J. Garcia Frutos. Bioleaching capacity of an extremely thermophilic culture for chalcopyrite materials. Minerals engineering, 2002, 15:689~694
    [66] P. Balas, D. Kupka, Z. Bastl, M. achimovcova. Combined chemical and bacterial leaching of ultrafine ground chalcopyrite. Hydrometallurgy, 1996, 42:237~244
    [67] Nirumpam Chakraborti, L. E Murr. Kinetics of leaching chalcopyrite-bearing waste rock with thermophilic bacteria. Hydrometallurgy, 1980, 5:337~354
    [68] 李宏煦,邱冠周,胡岳华,王淀佐.原电池效应对混合硫化矿细菌浸出的影响.中国有色金属学报,2003,13(5):1283~1287
    [69] V. K. Berry, L. E. Murr, J. B. Hiskey. Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low-grade waste. Hydrometallurgy, 1978, 3: 309~326
    [70] Pinches A., Al-Jaid, F. O., Williams D. J. A. Leaching of chalcopyrite concentrates with thiobacillus ferrooxidans in bath culture. Hydrometallurgy, 1976, 2:87~103
    [71] 徐茗臻.湿法炼铜技术在江西铜业公司的应用.湿法冶金,2000,19(4):26~27
    [72] C. Gomz, M. L. Blazquez, A. Ballester. Influence of various factors in the bioleaching of a bulk concentrate with mesophilic microorganisms in the presence of Ag(Ⅰ). Hydrometallurgy, 1997, 45:271
    [73] R. J. West, G. M. Stephens, J. J. Cilliers. Zata potential of silver absorbing thiobacillus ferrooxidans. Minerals engineering, 1998, (3): 189~194
    [74] E. Gomez, A. Ballester, M. L. Blazquez, F. Gonzalez. Silver-catalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms. Hydrometallurgy, 1999, 51:37~46
    [75] F. Carranza, N. Iglesias, A. Mazuelos, I. Palencia, R. Romero. Treatment of copper concentrates containing chalcopyrite and non-ferrous sulphides by the BRIAS process. Hydrometallurgy, 2004, 71:413~420
    [76] C. Gomez, M. Figueroa, J. MUNOZ, A. Ballester, M. L. BLAZQUEZ. A study of bioleaching chalcopyrite surfaces in the presence of Ag(Ⅰ) by voltammetric methods. Minerals engineering, 1997, 10(1): 111~116
    [77] 邱冠周,王军,钟康年,王淀佐.银催化铜矿石的细菌浸出.矿冶工程,199818(3):22~26
    [78] 王康林,韩效钊,汪模辉,王百年.银离子在细菌浸出黄铜矿中的催化行为研究.矿冶工程,2003,23(5):60~62
    [79] 胡岳华,张在海,邱冠周,王淀佐.Ag~+在细菌浸出中的催化作用研究.矿冶工程,2001,21(1):24~28
    [80] Lasse Ahonen, Ollih Touvinen. Catalytic effects of silver in the microbiological leaching of finely ground chalcopyrite-containing ore materials in shake flasks. Hydrometallurgy, 1990, 24:219~236
    [81] Ahonen, L, Touvinen, O. H. Silver catalysis of the bacterial leaching of chalcopyrite containing ore material in column reactors. Minerals engineering, 1990, 3(5): 437~445
    [82] Munoz, J. A., Gomez, C., Ballester, A., Blazquez, M. L., Gonzalez, F. et al. Electrochemical behaviour of chalcopyrite in the presence of silver and Sulfolobus bacteria. Journal of applied electrochemistry, 1998, 28:49~56
    [83] C. GOMEZ, E. ROMAN, M. L. BLAZQU, A. BALLESTERZ. SEM and AES studies of chalopyrite bioleaching in the presence of catalytic ions. Minerals Engineering, 1997, 10(8): 825~835.
    [84] Romero. R, Mazuelos. A, Palencia. I., Carranza. F. Copper recovery from chalcopyrite concentrates by the BRSA process. Hydrometallurgy, 2003, 70: 205~215
    [85] 兰兴华.铜生产仍以火法熔炼为主.世界有色金属,2004,(3):44
    [86] A. Ballester. A study of the mechanism of silver-catalysed bioleaching of chalcopyrite. Separation process in hydrometallurgy, 1987:99~110.
    [87] Hu Yuehua, Qiu Guanzhou, Wang Jun, Wang Dianzuo. The effect of silver-bearing catalysts on bioleaching of chalcopyrite. Hydrometallurgy, 2003, 64:81~88
    [88] 姚凤仪,郭德威,桂明德.无机化学丛书(第五卷).北京:科学出版社,1990:129~134
    [89] Tomas Havlik, Milan Skrobian. Acid leaching of chalcopyrite in the presence of ozone. Canada Metallurgical Quarterly, 1990, 29(2): 133~139
    [90] T. Havlik, J. Dvorscikova, Z. Ivanova, R. Kammel. Sulphuric acid chalcopyrite leaching using ozone as oxidant. Metall, 1999, 53(1/2): 57~60
    [91] A. R. Burkin, G. D. Manning, A. J. Monhemius.双氧水及过硫酸在湿法冶金中的应用.湿法冶金,1982,(2):34~41
    [92] 王致勇,董松琦,张庆芳.简明无机化学教程.北京:高等教育出版社,1988年4月:430
    [93] Tao Jiang, Yongbin Yang, Zhucheng Huang, Bin Zhang, Ouanzhou Qiu. Leaching kinetics of pyrolusite from manganese-silver ores in the presence of hydrogen peroxide. Hydrometallurgy, 2004, 72:129~138
    [94] Tao Jiang, Yongbin Yang, Bin Zhang, Zhucheng Huang. Kinetics of silver leaching from manganese-silver associated ores in sulphuric solutuion in the presence of hydrogen peroxide. Metallurgical and materials transactions 2002, 33B: 813~816
    [95] 孙亚光,余丽秀.过氧化氢湿法处理锰银银矿工艺研究.中国锰业,2003,21(2):13
    [96] M. M. Antonijevic, Z. D. Jankovic, M. D. Dimitrijevic. Kinetics of chalcopyrite dissolution by hydrogen peroxide in sulphuric acid. Hydrometallurgy, 2004, 71: 329~334
    [97] G. Deschenes. Leaching of gold from a chalcopyrite concentrate by Thiourea. Hydrometallurgy, 1988, 20:179~202
    [98] A. O. adebayo, K. O. Ipinmoroti, O. O. Ajayi. Dissolution kinetics of chalcopyrite with peroxide in sulphuric acid medium. Chem. Biochem. Eng. Q, 2003, 17(3): 213~218
    [99] 赵天从.重金属冶金学.北京:冶金工业出版社,1981年12月:171
    [100] Antonijevic, M .M, Jankovic, Z., Dimitrijevic,M. Investigation of the kinetics of chalcopyrite oxidation by potassium dichromate. Hydrometallurgy, 1994, 35:187~201
    [101] L. E. Murr, J. B. Hiskey. Kinetics effects of particle-size and crytal islocation density on the dichromate leaching of chalcopyrite. Metallurgical Transactions B 1981, 12B: 255~267
    [102] Bell.S.L.黄铜矿原地氨浸的研究.湿法冶金,1996,(3):52~58
    [103] L. W. Beckstead, J. D. Miller. Ammonia, oxidation leaching of chalcopyritereaction kinetics. Metallurgical transactions B, 1977, 8B: 19~29
    [104] L. W. Becksted, J. D. Miller. Ammonia, oxidation leaching of chalcopyrite-surface deposit effects. Metallurgical transactions B, 1977, 8B: 31~38
    [105] 郑于炼.湿法冶金中的浸出过程.湿法冶金,1986,(3):76
    [106] Y. CHARLES GUAN, KENNETH. HAN. The leaching kinetics of chalcopyrite (CuFeS_2) ammonium iodide solutions with iodine. Metallurgical and materials transactions B, 1997, 28B: 979~985
    [107] G. W. Warren, M. E. Wadsworth. The electrochemical oxidation of chalcopyrite in ammoniacal solutions. Metallurgical transactions B, 1984, 15B:289~297
    [108] 邱定番.矿浆电解的特点和研究背景.矿冶,1998,7(4):43~45
    [109] 刘维平,邱定番,卢惠民.湿法冶金新技术进展.矿冶工程,2003,23(5):39~40
    [110] 杨显万,邱定番.湿法冶金.北京:冶会工业出版社,1998.4:460~463
    [112] 杨显万,张英杰.矿浆电解原理.北京:冶金工业出版社,2000.5
    [113] 邱定番.矿浆电解.北京:冶金工业出版社,1999.1:47~48
    [114] 邱定番.铜矿浆电解.有色金属(冶炼部分),1996(4):1~4
    [115] 陈军.黄铜矿在矿浆电解直接电解中的行为.有色金属(冶炼部分),1981(6):15~20
    [116] 邱定番.黄铜矿在矿浆电解过程中浸出强化与电积节能.有色金属(冶炼部分),1996(6):1~12
    [117] 邱定番.黄铜矿矿浆电解化学过程.有色金属(冶炼部分),1996(5):1~3
    [118] David Dreising, Nedam Abed. A fundamental study of the reductive leaching of chalcopyrite using metallic iron part Ⅰ: kinetics analysis. Hydrometallurgy, 2002, 66: 37~57
    [119] J. B. Hiskey, M. E. Wadsworth. Galvanic conversion of chalcopyrite. Metallurgical transactions B, 1975, 6B: 183~190
    [120] Hun-Joon Sohn, M. E. Wadsworth. Reduction of chalcopyrite with SO_2 in the presence of cupric ions. Journal of metals, 1980, 32(11): 18~22
    [121] J. Avraamides, D. M. Muir, A. J. Parker. Cuperous hydrometallurgy part Ⅵ. Activation of chalcopyrite by reduction with copper and solutions of copper(Ⅰ) salts. Hydrometallurgy, 1980, 5:325~336
    [122] R. Padilla, M. Rodriguez, M. Cruiz. Sulfidation of chalcopyrite with elenental sulfur. Metallurgical and materials transactions B, 2003, 34B: 15~23
    [123] R. Padilla. E. Olivres, M. Cruiz, H. Y. Sohn. kinetics of the sulfidation of chalcopyrite with Gaseous sulfur. Metallurgical and materials transactions B, 2003, 34B: 61~68
    [124] R. Padilla, P. Zambrano, M. Cruiz. Leaching of sulfidized chalcopyrite with H_2SO_4-NaCl-O_2. Metallurgical and materials transactions B, 2003, 34B: 153~159
    [125] G. P. Demopoulos, P. A. Distin. Ferric chloride leaching of sulphidized chalcopyrite. Hydrometallurgy, 1983, 10:111~122
    [126] Chu Yong cheng, Frank Lawson. The kinetics of leaching chalcopyrite in acidic oxygenated sulphate-chloride solutions. Hydrometallurgy, 1991, 27:249~268
    [127] Chu Yong cheng, Frank Lawson. The kinetics of leaching covellite in acidic oxygenated sulphate-chloride solutions. Hydrometallurgy, 1991, 27:269~284
    [128] Tong Deng, Yiqiang Lu, Zhen Wen, Dong Liu. Oxygenated chloride-assisted leaching of copper residue. Hydrometallurgy, 2001, 62:23~30
    [129] Rajko Z. Vracar, Natasa Vuekovic, Zeljko Kamberovic. Leaching of copper(Ⅰ) sulphide by sulphuric acid solution with addition of sodium nitrate. Hydrometallurgy, 2003, 70:143~151
    [130] P. Neou-Singouna, G. Fourlaris. A kinetics study of the ferric chloride leaching of an Iron-Activated bulk sulfide concentrate. Hydrometallurgy, 1990, 23:203~220
    [131] Antonucci, V, Correa, C. Sulphurie acid leaching of chalcopyrite concentrate assited by application of microwave energy. In Proc. International conference copper 95,Electrorefining and hydrometallurgy of copper, The metallurgical society of CIM, Santiago, Chile, 1995, 3:549~557.
    [132] 苏永庆,刘纯鹏.微波加热下硫酸浸溶黄铜矿动力学.有色金属,2000,52(1):62~68
    [133] J.W. Walkiewicz, G. Kazonieh, S.L. Mcgill. Microwave heating characteristics of selected minerals and compounds. Minerals and metallurgical processing, 1988, 5(1): 39~42
    [134] 丁伟安.微波辐射下下硫化铜精矿三氯化铁浸出.湿法冶金,1996,(1):53~55
    [135] Weian, D. Leaching behavior of complex sulphide concentrate with ferric chloride by microwave irradiation. Rare metals, 1997, 16(2): 152~155
    [136] M. Al-Harahsheh, S. W. Kingman. Microwave-assisted leaching-a review. Hydrometallurgy, 2004, 73: 189~203
    [137] Havlik. T., Popovicova. M., Ukaslk. M. Use of microwave energy for chalcopyrite leaching. Metal, 2003, 56:131~134
    [138] 孙家寿,罗惠华,齐振龙.超声波作用下FeCl_3浸出硫化铜精矿的研究.湿法冶金,1999,(1):22~24
    [139] Nedam Abed, David Dreisinger. The sonochemical leaching of chalcopyrite[C]. 5th international symposium on hydrometallurgy, 2003, 419~430
    [140] Maurice, D., Hawk, J. A. Ferric chloride leaching of mechanically activated chalcopyrite. Hydrometallurgy, 1998, 49(1/2): 103~123
    [141] 李洪桂,杨家红,赵中伟,郭睿情,等.黄铜矿的机械活化浸出.中南工业大学学报,1998,29(1):28~30
    [142] P. Balaz, L. Takacs, M, Luxova, E. Godocikova, et al. Mechanochemical processing of suphidie minerals. International journal of mineral processing, 2004, 74(suppl. 1): 365~371
    [143] 黄昆,嵇学林,刘华.有机化学最新进展.化学通报,1993,(5):7
    [144] 林仲茂.声化学发展概况.应用声学,1993,12(1):1
    [145] 冯若,李化茂.声化学及其应用.合肥:安徽科学技术出版社,1992,6:64~68
    [146] 于凤文,徐之超,计建炳.超声波在化学工业中的应用.化工时刊,2000,(7):1
    [147] 甘雪萍,戴曦,张传福.超声空化及其在电化学中的应用.四川有色金属,2001,(3):24~25
    [148] 戴曦,张传福.超声空化与过程强化.有色金属(冶炼部分),2001,(1):20~21
    [149] 冯若,黄金兰.超声波清洗及其物理机制.应用声学,1994,13(1):43~47
    [150] 张龙力,杨国华,孙在春,王宗贤,等.超声波对沥青质分散作用的研究进展.应用声学,2002,21(2):31~34
    [151] 陈世琯.超声波在湿法冶金中的应用.上海有色金属,2003,24(3):142
    [152] 《重有色金属冶炼设计手册》编委会,重有色金属冶炼设计手册:铅锌铋卷.北京:冶金工业出版社,1996,5:252
    [153] 李洪桂.浸出过程的理论基础及实践.稀有金属与硬质合金,1993,(113):37~41
    [154] Taner tekin. Use of ultrasound in the dissolution kinetics of phosphate rock in HCl. Hydrometallurgy, 2002, 64:187~192
    [155] 邱贤德,黄木坤,阎宗岭,黄文章.超声强化钙芒硝矿水溶浸出率的研究. 化工矿物与加工,2000,(7):6~8
    [156] 刘彬,李苏,梅立新.硫化铜矿超声波处理浸出研究.应用技术,2001,(6):25~26
    [157] 陈玉明,张培科,张丽萍,王勋业.金精矿超声波强化硝酸预氧化提金研究.中国矿业,2004,13(7):68~70
    [158] 念保义,郑炳云.超声波强化硫脲提金的研究.福建化工,2001,(2):21~22,42
    [159] 彭少方,向兰,张昭.超声波振动下盐酸浸出白钨矿的研究.中国钨业,1989,(2):7~13,6
    [160] K. M. Swamy, L. B. Sukla, K. L. Narayana, R. N. Kar, et al. Use of ultrasound in microbial leaching of nickel from laterites. Ultrasonics .sonochemistry, 1995, 2(1): 5~9
    [161] 赵文焕.超声波强化浸出(PUL)银精矿中金银的研究.矿冶,1995,4(3):62.
    [162] 赵文焕.强化氯化法提取金银工艺研究.湿法冶金,1996(1).-24-33
    [163] 赵文焕.超声波强化浸出(PUL法)金生产应用可行性研究.矿冶,1996,5(4):51.
    [164] 张通,张志全,张冬艳,张晨鼎.硫化铜矿超声波预处理提高细菌浸铜浸出率.过程工程学报,2001,1(3):315~317
    [165] K. Sarveswara Rao, K. L. Narayana, K. M. Awamy, J. S. Murty. Influence of ultrasound in ammoniacal leaching of a copper oxide ore. Metallurgyical and materials transactions B, 1997, 28B: 721~723
    [166] 徐盛明,吴延军,张传福,赵天从.超声波在有色冶金中的应用研究新进展.声学技术,1994,13(4):153-154
    [167] 范兴祥,彭金辉,张利波,张世敏,等.超声波强化草酸氧化锌精矿.有色金属,2003,54(1):51~53.
    [168] 范兴祥,彭金辉,张世敏,张利波,等.超声波强化锌浮渣浸出的研究.昆明理工大学学报,2003,28(1):8~11.
    [169] 温俊杰,李荐.超声波强化冶金过程研究进展.四川有色冶金,2002,(4):17~20
    [170] 彭金辉,杨显万.微波能技术新应用.云南:科技出版社,1997年6月.
    [171] J.B.Yianatos, V.Antonucci. Molybdenite concentrate cleaning by copper sulfation activated by microwave. Minerals engineering, 2001, 14(11): 1412
    [172] 微波能推广应用站.微波能应用技术,1984,4:17~22
    [173] K.E.哈克.矿物处理过程中的微波能量.国外金属矿选矿,2000,(1):18~27
    [174] 杨伯伦,贺拥军.微波加热在化学反应中的应用进展.现代化工,2001,21(4):8~12
    [175] 孙红.微波快速烧结精细陶瓷技术.材料导报,1993,(1):35
    [176] 李易进.微波干燥的特点及其在陶瓷生产中应用.全国性建材科技期刊—《陶瓷》,2001,(3):44
    [177] Dr N Patnaik, Dr R B Rao. Microwave energy in mineral processing-a review IE(Ⅰ) Jounal-MN, 2004, 84:56
    [178] J. MA, C. A. Pickles. Microwave segregation process for nickelferous siliate laterites. Canadian metallurgical quarterly, 2003, 42(3): 313~325
    [179] 丁伟安.微波辐射加热在湿法冶金中的应用.有色金属(冶炼部分),1997,(3):43~44
    [180] D. K. Xia, C. A. Pickles. Microwave caustic leaching of electric arc dust. Minerals engineering, 2000, 13(1): 79~94
    [181] 彭金辉,刘纯鹏.微波场FeCl_3溶液浸出闪锌矿动力学.中国有色金属学报,1992,2(1):46
    [182] Peng jinhui, Liu Chunpeng. The kinetics of ferric chloride leaching of sphalerite in the microwave field. Trans. Nonferrous Met. Soc. China, 1992, 2(1): 46~49
    [183] 彭金辉,刘纯鹏.微波辐照下硫化铅矿常压溶解动力学.有色金属,1993,45(1):68~71
    [184] Peng jinhui, Liu. Chunpeng. Kinetics of leaching sphalerite with pyrolusite simultaneously by microwave irradition. Trans. Nonferrous Met. Soc. China, 1997, 7(3): 152~154
    [185] Jiann-yang hwang, Shangzhao Shi, Zhiyong Xu, Xiaodi Huang. Oxygenateg leaching of copper sulfide mineral under microwave-hydrothermal conditions. Journal of minerals & materials characterization & engineering, 2002, 1(2): 111~119
    [186] J. H. Huang, N. A. Rowson. Hydrometallurgical decomposition of pyrite and marcasite in a microwave field. Hydrometallurgy, 2002, 64:169~179
    [187] M. Al-Harahsheh, S. W. Kingman. Microwave-assisted leaching-a review. Hydrometallurgy, 2004, 73:189~193
    [188] Y. Hua, Z. Lin, Z. Yan. Application of microwave irradiation to quick leach of silicate ore. Mineral engineering, 2002, 5:451~456
    [189] D. Jafarifar, M. R. Daryanavard, S. Sheibani. Ultra fast microwave-assisted leaching for recovery of platinum from spent catalyst. Hydrometallurgy, 2005, 78: 166~171
    [190] S. W. Kingman, N. A. Rowson. Microwave treatment of minerals-a review. Mineral engineering, 1998, 11 : 1081~1087
    [191] D. N. Whittles, S.W. Kingman, D.J. Reddish. Application of numerical modeling for prediction of the influence of power density on microwave-assisted breakage. International journal of mineral process, 2003, 68:71~91
    [192] S. W. Kingman, .W. Vorster, N. A. Rowson. The influence of mineralogy on microwave assisted grinding. Mineral engineering, 2000, 13:313~327
    [193] 周中平,赵毅红,朱慎林(编著).清洁生产工艺及应用实例.北京:化学工业出版社,2002.5:1
    [194] N.N.Greenwood Aearnshaw(著).李学同,孔玲,单辉,张兴英,等(译).元素化学.北京:高等教育出版社,1996,10:466~467
    [195] H. Y. Sohn. R&D in the metallurgical industry toward the 21st century. Review of extraction & processing. JOM, 1997, 4:36
    [196] 烟伟,蔡万玲,张红专。混合铜矿混酸浸出工艺研究.湿法冶金,1999,(2):41
    [197] 孙家寿,刘琴兰,马锦孝.温和条件下提高铜精矿浸出率的试验研究.湿法冶金,2000,19(3):13
    [198] 孙家寿,罗惠华,周菊容.铜精矿的硫酸熟化-催化氧化浸出工艺研究.国外金属矿选矿,2000,(7):40
    [199] 徐凯,徐慧.世界铜冶炼发展趋势及我国铜工业发展对策.有色金属,2003,55(2):129
    [200] R. R. Moskalyk, A. M. Alfantazi. Review of copper pyrometallurgical practice: today and tomorrow. Mineral engineering, 2003, 16:893~919
    [201] 邱定蕃,王成彦,王春.中国废杂铜回收与利用.有色金属,2003,55(4):95
    [202] 谢洪珍,黄怀国,江城,林鸿汉,等.黄铜矿精矿的酸性热压氧化提铜工艺 研究.矿冶工程,2003,23(4):54
    [203] 宋宁.黄铜矿硫化焙烧相变反应动力学研究.昆明理工大学学报,2002,27(4):5
    [204] 严明英.硫化铜的浸出新工艺研究.重庆工业高等专科学校学报,2002,17(增刊):175
    [205] S.普拉法德.黄铜矿与蒸汽和氧气的直接硫酸盐化.国外金属矿选矿,1998,(8):6
    [206] Mari Lundstrom, Jari Aromaa, Olof Forsen, Olli Hyvarinen, et al. Leaching of chalcopyrite in cupric chloride solution. Hydrometallurgy, 2005, 77:89~95
    [207] M. Skrobian, T. Havlik, M. Kasik. Effect of NaCl concentration and particle size on chalcopyrite leaching in cupric chloride solution. Hydrometallurgy, 2005, 77: 109~114
    [208] Tomas Havlik, Martina Laubertova, Andrea Mskufova, Jan Kondas, et al. Extraction of copper, zinc, nickel and cobalt in acid oxidative leaching of chalcopyrite at the presence of deep-sea manganese nodules as oxidant. Hydrometallurgy, 2005, 77:51~59
    [209] A. Ballester, F. Gonzalez, M. L. Blazquez, J. L. Mier. The influence of various ions in the bioleaching of metal sulphides. Hydrometallurgy, 1990, 23:222
    [210] A. Ballester, F. Gonzalez, M. L. Blazquez, J. L. Mier. The use of catalytic ions in bioleaching. Hydrometallurgy, 1992, 29:145
    [211] Ezequiel Cruz Sanchez, Yoshiaki Umetsu, Fumio Saito. Acid leaching of chalcopyrite concentrate with hematite power as an effective promoter.资源与素材, 1997, 113:631~634
    [212] 张永德,李岭值,阮仁满.黄铜矿的湿法冶金工艺研究进展.稀有会属,2005,29(1):84
    [213] Marcel Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, Oxford: pergamon press, first English edition, 1966.
    [214] 刘纯鹏.铜的湿法冶会物理化学.北京:科学技术出版社,1991,第一版:110~111
    [215] 李自强,何良惠(编).水溶液化学位图及其应用.四川:成都科技大学出版社,1991,第1版:134~141
    [216] Robert C. Weast. Ph. D(editor-in chief), David R. Lide, Ph. D. CRC Handbook of chemistry and Physics. CRC Press Inc. Boca Raton, Florida: D-87
    [217] 蒋汉赢(主编).湿法冶金过程物理化学.北京:冶金工业出版社,1984年6月第1版:64
    [218] 杨显万,张英杰.矿浆电解原理.北京:冶金工业出版社,2000年5月,第1版:21
    [219] 陆跃华,水承静.Ag_2S-NH_3-H_2O系热力学.贵金属,1995,16(2):26
    [220] 傅崇说.有色冶金原理.北京:冶金工业出版社,1984年,第1版:183
    [221] 傅崇说,郑蒂基.关于Cu-NH_3-H_2O系的热力学研究.中南矿冶学院学报,1979,(1):27~36
    [222] 朱祖泽,贺家齐(主编).现代铜冶金学.北京:科学出版社,2003年第1版:612
    [223] 黄振谦.黄铜矿.水系在高温的E-pH图.有色金属(冶炼部分),1980,(5):38
    [224] 黄振谦.黄铜矿-水系在高温的E-pH图(续).有色金属(冶炼部分),1980,(6):41
    [225] 黄振谦.黄铜矿-水系统的E-pH图(25℃).中南矿冶学院学报,1981,(2):48
    [226] 钟竹前,梅光贵.电位-pn图在湿法冶金中的应用.有色金属(冶炼部分),1979,(3):28
    [227] 梅光贵,钟竹前.湿法冶金新工艺.湖南:中南工业大学出版社,1994年7月:211,369
    [228] 何清鉴.Cu-Fe-S-O-H、Fe-S-O-H等体系Eh-pH图(150℃)及其在热液矿床中的应用.中南矿冶学院学报,1984,(1):60
    [229] Courtney A. Young, Erie J. Dahlgren, Robert G. Robins. The solubility of copper sulfides under reducing conditions. Hydrometallurgy, 2003, 68: 23~31
    [230] 傅崇说.冶金溶液热力学原理与计算.北京:冶金工业出版社,1989年,第2版:375
    [231] 杨显万,何蔼平,袁宝州,胡汉.高温水溶液的热力学计算.有色金属(冶炼部分),1979,(6):27
    [232] 钟竹前,梅光贵(编).湿法冶金过程.湖南:中南工业大学出版社,1988年,第1版:63
    [233] Ernest Peters. Direct leaching of sulfides: chemistry and applications. Metallurgical transactions B, 1976 7B: 510~515
    [234] 钟廷科,李仕雄,袭晓宾.金属硫化物浸出过程的电化学机理.中国西安:全国第五届冶金物理化学会议论文集(下册),1984.
    [235] 广东地质局中心,地质部第二海洋地质大队实验室编著.《砂矿物图侧》.北京:地质出版社,1979:15、29~30.
    [236] 天津化工研究院等编.无机盐工业手册,第1版.北京:化学工业出版社.
    [237] N.N.Greenwood,A.Earnshaw.李学同,孔玲,张兴英,郑利民,等(译).元素化学.北京:高等教育出版社,1996年10月,第1版:493
    [238] 朱屯.现代铜湿法冶金.北京:冶金工业出版社,2002年10月,第1版:201
    [239] O.库巴谢夫斯基,C.B.奥尔考克,著.邱竹贤,梁英教,李席孟,王介淦,译.冶金热化学.北京:冶金工业出版社,1985年3月第1版:347
    [240] 刘翊纶,主编.基础元素化学.北京:高等教育出版社,1992年4月第1版:597~603
    [241] 北京矿冶研究总院分析室.矿石及有色金属分析手册.北京:冶金工业出版社,1990年12月,第1版:59
    [242] 李国斌,杨明平.活性氧化锌生产中脱除铁锰杂质工艺研究.湘潭矿业学院学报,2001,16(4):39
    [243] 李天文,王春娥.过硫酸铵在铁锰杂质脱除中的应用.无机盐工业,1998,30(3):26
    [244] 金作美,刘恒.银在某些硫化矿中的催化作用.中国有色金属学会冶金物理化学学术委员会.1987年全国“湿法冶金物理化学学术会议”论文集.昆明,1987,9:1~5
    [245] 彭少方,郑昌琼,邓淑华,张霞.氯盐浸出硫化银之研究.贵金属,1988,9(3):2
    [246] 《浸矿技术》编委会.浸矿技术.北京:原子能出版社,1994,10:113~115
    [247] 陈寿椿.重要无机化学反应.上海:科学技术出版社(第2版),1980年12月:1151
    [248] Hu Long, David G. Dixon. Pressure oxidation of pyrite in sulfuric acid medium: a kinetics study. Hydrometallurgy, 2004, 73: 335~349
    [249] Bradley C. Paul, H. Y. Sohn, M. K. Mccarter. Model for ferric sulfate leaching of copper ores containing a variety of sulfide minerals: part Ⅰ. modeling uniform size ore fragments. Metallurgical Transactions B, 1992, 23B: 537
    [250] 邓敬石.中温嗜热菌强化镍黄铁矿浸出的研究.昆明理工大学博士学位论文,2002年6月:81
    [251] Bruce R. Conard. The role of hydrometallurgy in achieving sustainable development. Hydrometallurgy, 1992, 30: 13
    [252] M.Misra, M.C.Fuerstenau. Chalcopyrite leaching at moderate temperature and ambient pressure in the presence of nanosize silica. Minerals Engineering, 2005, 18: 293~297
    [253] WLADYLAWA MULAK. Silver ion catalysis in nitric acid dissolution of Ni_3S_2. Hydrometallurgy, 1987, 18: 195~205
    [254] 王成彦,邱定番,江培海,王飞.辉铋矿矿浆电解过程硫的形成及氧化机理.有色金属(冶炼部分),2002,(6):4
    [255] 王成彦,邱定番,江培海,王飞.脆硫锑铅矿矿浆电解过程硫的形成机理.有色金属,2002,54(4):43~44
    [256] 龙春光,王霞瑜.提高聚甲醛复合材料耐磨性的正交试验研究.应用科学学报,2004,22(2):234
    [257] 秦文峰.微波能在钼化学品中的应用研究.昆明理工大学硕士学位论文,2004年2月:35,41
    [258] R. C. M. Mambote, P. Kijgsman, M. A. Reuter. Hydrothermal precipitation of arsenic compounds in the ferric-arsenic(Ⅲ)-sulfate system: thermodynamic modeling. Minerals engineering, 2003, 16: 429~440
    [259] Gordon M. Ritcey. Tailings management in gold plants. Hydrometallurgy, 2005, 78: 10~12
    [260] T. Havlik, K. Sulek, J. Brianein, R. Kammel. The use of high frequency-heating in chalcopyrite leaching. Metal, 1998, 52(10/11): 625
    [261] A. O Orumwense, T Negeri. Impact of microwave irradiation on the processing of a sulfide ore. Mineral & metallurgical processing. Litteton: 2004, 21, Iss. 1:44
    [262] Kazi E. Haque. Microwave energy for mineral treatment processes-a brief review. International journal of mineral processing, 1999,57: 1~24
    [263] J. B. Hiskey, P. P. Phule, M. D. Pritzker. Studies on the effect of addition of silver ions on the direct oxidation of pyrite. Metallurical Tansactions B, 1987, 18B: 641~647
    [264] J. Peacey, Guo Xian-jian, E. Robles. Copper hydrometallurgy-current status, prelimininary economics, future direction and positioning versus smelting. Trans. Nonferrous Met. Soc. China, 2004, 14(3): 564
    [265] 周勤俭.湿法冶金渣中元素硫的回收方法.湿法冶金,1997,(3):50
    [266] 邓日章,赵天从,钟竹前,梅光贵.从含硫浸出渣中回收元素硫的研究.中南矿冶学院学报,1992,23(3):287~288
    [267] 朱继民.元素硫在(NH_4)_2S+NH_3溶液中溶解的研究.有色金属,1989,41(1):61
    [268] 周勤俭.从含铜锌铅矿氧压酸浸渣中回收铅和硫的研究.有色金属(冶炼部分),1996,(4):16
    [269] 杨天足,赵天从.用二甲苯从湿法冶金残渣中提取元素硫.中南矿冶学院学报,1990,21(2):171
    [270] 张启卫,章永化.从软锰矿与黄铁矿硫酸浸出渣中回收硫磺的研究.中国锰业,2002,20(1):8
    [271] 刘志宏,严晓晖,蒋荣英,张多默,等.硝酸“催化”分解黄铁矿的动力学研究.中南矿冶学院学报,1993,24(6):761
    [272] 邓昭玉.几种盐银的提纯与还原方法.广西冶金,1992,(1):35
    [273] 王吉华,普正昌,陈国安.水合肼—液碱法制备单质银.云南化工,1993,(3):30
    [274] 张华.从富银渣中回收银的方法研究.四川有色金属,2000,(1):32~36
    [275] 田琴芝.铜萃取剂的发展及新型萃取剂7801、7802、7803萃取性能初探.铀矿冶,1989,8(3):28~29
    [276] 李红英,甘树才,徐冬梅,陈彪,等.钴矿石浸取液中Co、Cu、Fe的萃取分离.长春科技大学学报,2000,30(3):310~312
    [277] 刘向东,李宁,马玖彤,张凤君,等.LIX973萃取浓料液中铜的应用研究.有色金属(冶炼部分),2004,(4):2~4
    [278] 吕文东,陈志武.调节剂对烷基水杨醛胯萃取铜铁的影响.广东有色金属学报,2003,13(1):60~63
    [279] 柳建设,葛玉卿,邱冠周,王淀佐.从含铜铁锌的酸性溶液中选择性萃取铜.湿法冶金,2002,21(2):88~90
    [280] 柳建设,葛玉卿,邱冠周,王淀佐.从铜铁锌酸性溶液中选择性萃取铜.铜业工程,2002,(1):18~20
    [281] 崔薇.溶剂萃取-电积溶液除铁新工艺.世界采矿快报,1997,13(6):18~19
    [282] 王红鹰,郑伟,任致伟,李箐,等.铜萃取剂(KM)的萃取性能研究.云南冶金,2003,32(增刊):168
    [283] 兰兴华.国外湿法提铜近况.世界有色金属,2002,(3):29~32
    [284] 丛玉凤,肖光,乔庆东,张金辉,等.电解稀硫酸铵溶液生产过硫酸铵,抚顺石油学院学报,2001,21(4):29~31
    [285] 范祥清,修荣,张锅红.电解法制备过硫酸铵的应用研究.无机盐工业,1997,29(2):7~9
    [286] 赵世忠,陈力.电解法制备过硫酸铵的研究.无机盐工业,1992,24(1):6~9
    [287] G. B. BALAZS, J. F. COOPER, T. E. SHELL. Effect of trace additives on the efficiency of peroxydisulfate regenernation. Journal of applied electrochemistry, 1999, 29:285~292
    [288] 姚凤仪,郭德威,桂明德.《无机化学丛书》第五卷.北京:科学出版社,1998年10月,第1版:289~290
    [289] 吴峰,隋娟玲.新疆阿舍勒铜矿石工艺特征研究.矿冶,2003,12(2):27
    [290] O. Kanome, H. Abe, A. Okuwki, T. Okabe. Sulfuric acid oxygen-pressure leaching of Ni_3S_2 prepared by a wet process. Hydrometallurgy, 1987, 19:1~9
    [291] Wladyslawa Mulak. Kinetics of dissolution of synthetic heazlewoodite(Ni_3S_2) in nitric acid solutions. Hydrometallurgy, 1985, 14:67~81
    [292] Wladyslawa Mulak. The catalytic action of cupric and ferric ions in nitric acid leaching of Ni_3S_2. Hydrometallurgy, 1987, 17: 201~214
    [293] Edward L. Ghalli et Bertrand Girad. Ferric chloride leaching of nickel sulphide concentrates. Hydrometallurgy, 1978, 3: 355~371
    [294] 李金丽,张明杰,王洪亮.三氯化铁浸出高冰镍.东北大学学报(自然科学版),1998,19(2):154
    [295] 张昭,胡亮,唐晓.酸浸高冰镍的新工艺研究.四川有色金属,1989,(3):11
    [296] 罗远辉,王颖,黄小河,蒋汉瀛,等.高冰镍浸出机理及工艺研究.有色金属(冶炼部分),2002,(1):5
    [297] 严明英.高冰镍的湿法新工艺试验.四川有色金属,1998,(2):24
    [298] 黄忠淼,王含渊,江培海,张寅生.矿浆电解法处理镍高冰镍.矿冶,1999,8 (2): 42
    [299]Wladyslawa Mulak. Kinetics of dissolution of synthetic millerite(β-NiS) in acidic potassium dichromate solutions. Hydrometallurgy, 1983, 11: 79-89
    [300]R. P. PLASKET. Recovery of nickel and copper from high-grade matte at impala platinum by the sherritt process. Hydrometallurgy, 1978, 3: 135-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700