1,4,5,6-四氢-6-氧-3-哒嗪酸配合物的合成、晶体结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用溶液法和水热法,本文合成了二十个未见报道的1,4,5,6-四氢-6-氧-3-哒嗪酸(Htopca)金属配合物。通过红外光谱、X-射线单晶衍射等手段,较系统地研究了它们的晶体结构,并对配合物(1)、(2)、(3)、(7)、(8)进行了差热分析,在磁场强度为0.5T外加磁场中,在2~300K温度区间内测定了配合物(15)、(16)和(17)的变温磁化率。
     所用的配体1,4,5,6-四氢-6-氧-3-哒嗪酸(Htopca)在本论文中出现了以下几种配位方式:
     本论文分为以下三部分:
     第一章:1,4,5,6-四氢-6-氧-3-哒嗪酸与锌、镉、钴、镍盐直接反应得到结构类似的配合物[Zn(topca)2(H2O)2] (1)、[Zn(topca)2(H2O)2]·2H2O (2)、[Cd(topca)2(H2O)2] (4)、[Co(topca)2(H2O)2]·2H2O (5)、[Ni(topca)2(H2O)2]·2H2O (6),与硝酸锌、2,2’-bipy反应得到配合物[Zn(topca)(2,2’-bipy)](NO3) (3),与不同的锰盐反应得到了中心离子结构类似、抗衡阴离子不同的配合物{[Mn(topca)(H2O)3](topca)·2H2O}n (7)和{[Mn(topca) (H2O)3](ClO4)}n (8),与氯化铜反应,在不同pH值下,得到了中心离子结构类似、结晶水分子数目不同的配合物[Cu(topca)2]·2H2O (9)和[Cu(topca)2]·4H2O (10)。其中(8)属于正交晶系,其余均单斜晶系,(1)~(10)的空间群分别为:P2(1)/n、P2(1)/n、P2(1)/c、P2(1)/n、P2(1)/c、P2(1)/c、Pc、Pna2(1)、P2(1)/c、P2(1)/n。
     在(1)、(2)、(4)、(5)、(6)中,中心金属离子M(II)为六配位拉长的八面体结构,配体以(a)形式参与配位。在(3)中,中心金属离子Zn(II)为六配位畸变的八面体结构,Zn(II)与来自(a)形式配体的氧原子、氮原子、2,2’-bipy上两个氮原子以及两个水分子配位。在(7)和(8)中,配体均以(b)形式参与配位,羧基氧原子以双齿桥联的形式参与配位,将相邻的两个Mn(II)离子连接起来形成一维链状结构。在(9)和(10)中,配体均以(a)形式参与配位,中心离子Cu(II)处于四配位的平面四边形配位环境中。分子间氢键将配合物(1)~(9)连成二维网状结构,将配合物(10)连接成三维网络结构。此外,对配合物(1)、(2)、(3)、(7)和(8)分别进行了差热分析。
     第二章:1,4,5,6-四氢-6-氧-3-哒嗪酸与钙和铅的氯化物反应得到配合物[Ca(topca)_2(H_2O)_2]n (11)和[Pb(topca)_2(H_2O)_2]_n (12) ,与氧化铋反应得到配合物{[Bi(topca)_3(H_2O)]·H_2O}_n (13)。晶体均属于单斜晶系,空间群均为P2(1)/c。
     在配合物(11)中,中心金属离子Ca(II)为八配位的四方反棱柱结构,配体以(c)形式参与配位,在(12)中,中心金属离子Pb(II)为六配位畸变的八面体结构,配体以(d)形式配位,在配合物(11)和(12)中每个配体连接两个中心离子,一个中心离子则连接四个配体形成二维网状结构。在(13)中,中心金属离子Bi(III)为八配位扭曲的四方反棱柱结构,配体以(a)和(b)两种形式配位,配体的2-N原子和两个羧基氧原子以三齿配体的形式与两个Bi(III)离子配位,从而形成一维链状结构。
     第三章:1,4,5,6-四氢-6-氧-3-哒嗪酸与镧、镨、钕、钐、铕、钆的氯化物反应,用KOH溶液调至恰好产生浑浊(pH = 5.5),得到配合物{[La(topca)_3(H_2O)_3]·2H_2O}_n (14)、{[Pr(topca)_3(H_2O)_3]·2H_2O}n (15)、[Nd(topca)_3(H_2O)2]n (16)、[Sm(topca)3(H_2O)_2]_n (17),用KOH溶液调至恰好产生浑浊(pH = 3.5),得到配合物[Eu(topca)_3(H_2O)_3]·3H_2O (18)和[Gd(topca)_3(H_2O)_3]·3H_2O (19),与氧化镝直接反应得到配合物[Dy(topca)_3(H_2O)3]·3.5H_2O (20)。晶体均属于单斜晶系,(14)和(15)空间群均为Pc,(16)和(17)空间群均为P2(1)/c (18)~(20)空间群均为P2(1)/n。
     在(14)~(20)中,中心金属离子Ln(III)均为九配位的单帽四方反棱柱结构。在(14)和(15)中,配体以(a)、(b)和(e)三种形式配位,在(16)和(17)中,配体以(a)和(b)两种形式配位,由(b)形式的配体将配合物(14)~(17)连接成一维链状结构,在(18)、(19)和(20)中,配体以(a)形式配位,分子间氢键将(14)~(20)连成三维网络结构。磁性数据表明:配合物(15)和(16)的金属离子间存在反铁磁相互作用。
In this dissertation, twenty new coordination complexes of 1,4,5,6-Tetrahydro-6-oxo-3- pyridazine carboxylic acid have been synthesized by the liquid method or hydrothermal method. They were studied by IR and single crystal X-ray diffraction methods. The thermogravimetric analyses of complexes (1), (2), (3), (7) and (8) were studied, and the magnetic analyses of complex (15), (16) and (17) was also studied.
     The ligand we used is 1,4,5,6-Tetrahydro-6-oxo-3-pyridazine carboxylic acid (Htopca), and it has several coordination modes in this dissertation, as follows:
     There are three chapters in this dissertation:
     Chapter one: The complexes of [Zn(topca)_2(H_2O)_2] (1), [Zn(topca)_2(H_2O)_2]·2H2O (2), [Cd(topca)_2(H_2O)_2] (4), [Co(topca)_2(H_2O)_2]·2H2O (5) and [Ni(topca)_2(H_2O)_2]·2H2O (6) were obtained by the reaction of Htopca and corresponding metallic salts. [Zn(topca)(2,2’-bipy)] (NO3) (3) was obtained by the reaction of Htopca, Zn(NO3)_2·6H2O and 2,2’-bipy. The complexes of {[Mn(topca)(H2O)_3](topca)·2H2O}n (7) and {[Mn(topca)(H2O)_3](ClO4)}n (8) were obtained by reaction of Htopca and different manganic salts. [Cu(topca)_2]·2H2O (9) and [Cu(topca)_2]·4H2O (10) were obtained by the reaction of Htopca and CuCl2·2H2O, while in different pH values. Complex (8) belongs to Orthorhombic, while others belong to monoclinic system, and space groups are P2(1)/n, P2(1)/n, P2(1)/c, P2(1)/n, P2(1)/c, P2(1)/c, Pc, Pna2(1), P2(1)/c, P2(1)/n, respectively.
     In complex (1), (2), (4), (5) and (6), M(II) ion is six-coordinated and then formed a distorted octahedron geometry, and ligands coordinate with M(II) ion via (a) in these complexes. In complex (3), Zn(II) is six-coordinated with N3O3 environment, one oxygen atom and one nitrogen atom from the ligand, two nitrogen atoms from 2,2’-bipy, and two oxygen atoms from water molecules. In complex (7) and (8), the ligands coordinate with Mn(II) ions via (b), and Mn(II) ions are connected to 1-D chain structure by bidentate bridging carboxyl O atoms. In complex (9) and (10), Cu(II) ion is four-coordinated and then formed a rectangle geometry. The complex (1)~(9) are assembled to 2-D network structure and (10) is assembled to 3-D network structure by hydrogen bonds. We also have studied thermogravimetric analyses of complex (1), (2), (3), (7) and (8).
     Chapter two: Complex [Ca(topca)_2(H_2O)_2]n (11) and [Pb(topca)_2(H_2O)_2]n (12) were obtained by the reaction of Htopca and corresponding metallic chlorides, while {[Bi(topca)_3(H_2O)]·H_2O}n (13) was obtained by the reaction of Htopca and Bi2O3. All the complexes belong to monoclinic system, and space groups are P2(1)/c.
     In complex (11), the ligand exists in the form of (c), and Ca(II) ion is eight-coordinated, and then formed a distorted square antiprismatic coordination polyhedron. In complex (12), the ligand exists in the form of (d), and Pb(II) ion is six-coordinated, and then formed a distorted octahedron geometry. Both in complex (11) and (12), each ligand links two metal centers and each metal center coordinates four ligands to form a 2-D network. In complex (13), the ligand exists in the forms of (a) and (b), and Bi(III) ion is eight-coordinated, and then formed a distorted square antiprism. The ligand is bridging and chelating tridentate mode in which the coordinated atoms are two carboxyl O atoms and one pyridazinly N atom. By bridging carboxyl O atoms, the complex (13) is connected to 1-D chain structure. Chapter three: Complex {[La(topca)_3(H_2O)_3]·2H_2O}n (14), {[Pr(topca)_3(H_2O)_3]·2H_2O}n (15), [Nd(topca)_3(H_2O)_2]n (16), [Sm(topca)_3(H_2O)_2]n (17), [Eu(topca)_3(H_2O)_3]·3H_2O (18) and [Gd(topca)_3(H_2O)_3]·3H_2O (19) were obtained by the reaction of Htopca and corresponding metallic chlorides. The pH values of the reaction systems of (14)~(17) are 5.5, while (18) and (19) are 3.5. Complex [Dy(topca)_3(H_2O)_3]·3.5H_2O (20) was obtained by the reaction of Htopca and Dy2O3.
     Complex (14)~(20) belong to monoclinic system, and space groups of (14) and(15) are Pc, (16) and(17) are P2(1)/c, and (18)~(20) are P2(1)/n. In complex (14)~(20), Ln(III) ion is nine-coordinated and then formed a distorted single-capped square antiprismatic geometry. In complex (14) and (15), the ligands exist in the forms of (a), (b) and (e), and in (16) and (17), the ligands coordinate with Ln(III) ions via (a) and (b). Complex (14)~(17) were connected to 1-D chain structure via the form of (b). In complex (18), (19) and (20), the ligands exist in the form of (a), and intermolecular hydrogen bonds link the complexe of (14)~(20) into 3-D network structures. The magnetic data indicates antiferromagnetic coupling between the metal ions in complex (15) and (16).
引文
[1] D. Braga, F. Brepioni, G. R. Kesiraju. Crystal Engineering and Organometallic Architecture. Chem. Rev., 1998, 98(4): 1375-1405.
    [2] J. C. MacDonald, G. M. Whitesides. Solid-State Structure of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides. Chem. Rev., 1994, 94(8): 2383-2420.
    [3] J. G. Riess. Oxygen Carriers (“Blood Substitutes”)-Raisond’Etre, Chemistry, and Some Physiology. Chem. Rev., 2001, 101(9): 2797-2919.
    [4] S. R. Batten, R. Robson. Interpenetrating Nets: Ordered, Periodic Entanglement. Angew. Chem. Int. Ed., 1998, 37(11): 1461-1494.
    [5] P. J. Hagrman, D. Hagrman, J. Zubieta. Organic-Inorganic Hybrid Materials: From “Simple” Coordination Polymers to Organodiamine-Templated Molybdenum Oxides. Angew. Chem. Int. Ed., 1999, 38(18): 2639-2684.
    [6] P. N. Prasad, D. J. Williams. Introduction to Nonlinear Optical Effects in Molecules and Polymers. Wiley, New York, 1992.
    [7] B. Moulton, M. J. Zaworotko. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev., 2001, 101, 1629-1658.
    [8] 马建方, 倪嘉缵. 稀土羧酸配合物的结构. 化学进展, 1996, 8(4): 259-276.
    [9] D. A. dickie, G. Schatte, M. C. Jennings, H. A. Jenkins, S. Y. L. Khoo, J. C. Clybrune, Structure of Organic and Metal-Organic Networks Based on a Bifunctional m-Terphenyl Carboxylic Acid. Inorg. Chem., 2006, 45: 1646-1655.
    [10] X. M. Zhang, R. Q. Fang. Hydrothermal Syntheses and Structures of Two Mixed-Valence Copper(I, II) 2-Pyrazinecarboxylate Coordination Polymers. Inorg. Chem., 2005, 44: 3955-3959.
    [11] Z. Z. Lin, F. L. Jiang, L. Chen, M. C. Hong. New 3-D Chiral Framework of Indium with 1,3,5-Benzenetricarboxylate. Inorg. Chem., 2005, 44: 73-76.
    [12] J. Yang, Q. Yue, G. D. Li, J. J. Cao, G. H. Li, J. S. Chen. Structures, Photoluminescence, Up-Conversion, and Magnetism of 2D and 3D Rare-Earth Coordination Polymers with Multicarboxylate Linkages. Inorg. Chem., 2005, 44: 2857-2865.
    [13] E. C. Carson, S. J. Lippard. Synthesis, Characterization, and Preliminary Oxygenation Studies of Benzyl- and Ethyl-Substituted Pyridine Ligands of Carboxylate-Rich Diiron(II) Complexes. Inorg. Chem., 2006, 45: 828-836.
    [14] Z. H. Zhang, T. A. Okamura, Y. Hasegawa, H. Kawaguchi, L. Y. Kong, W. Y. Sun, N. Ueyama. Syntheses, Structures and Luminescent and Magnetic Properties of Novel Three-Dimensional Lanthanide Complexes with 1,3,5-Benzenetriacetate. Inorg. Chem., 2005, 44: 6219-6227.
    [15] L. Wang, M. Yang, G. H. Li, Z. Shi, S. H. Feng. Highly Stable Chiral Cadmium 1,2,4-Benxenetricarboxylate: Synthesis, Structure, and NLO and Fluorescence Properties. Inorg. Chem., 2005, 44: 2474-2478.
    [16] M. V. Bennett, M. P. Shores, L. G. Beauvais, J. R. Long. Expansion of the Porous Solid Na2Zn3[Fe(CN)6]2·9H2O: Enhanced Ion-Exchange Capacity in Na2Zn3[Re6Se8 (CN)6]2·24H2O. J. Am. Chem. Soc., 2000, 122(28): 6664-6668.
    [17] H. J. Choi, M. P. Suh. Dynamic and Redox Active Pillared Bilayer Open Framework: Single-Crystal-to-Single-Crystal Transformations Upon Guest Removal, Guest Exchange and Framework Oxidation. J. Am. Chem. Soc., 2004, 126(48): 15844-15851.
    [18] G. Sundarababu, M. Leibovitch, D. R. Corbin, J. R. Scheffer, V. Ramamurthy. Gas-phase Catalytic Asymmetric Reaction Using Chirally Modified Microporous Catalysts. Chem. Commun., 1995, 23: 2409-2411.
    [19] W. Chen, H. M. Yuan, J. Y. Wang, Z. Y. Liu, M. Y. Yang, J. S. Chen. Synthesis, Structure, and Photoelectronic Effect of a Uranium-zinc-organic Coordination Polymer Containing Infinite Metal Oxide Sheets. J. Am. Chem. Soc., 2003, 125(31): 9266-9267.
    [20] T. J. Prior, M. J. Rosseinsky. Chiral Direction and Interconnection Helical Three-connected Networks in Metal-organic Frameworks. Inorg. Chem., 2003, 42: 1564-1575.
    [21] C. J. Kepert, T. J. Prior, M. J. Rosseinsky. A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality. J. Am. Chem. Soc., 2000, 122(21): 5158-5168.
    [22] C. J. Kepert, M. J. Rosseinsky. A porous chiral framework of coordinated 1,3,5-benzentricarboxylate: quadruple interpenetration of the (10,3)-a network. Chem, Commun., 1998, 1: 31-32.
    [23] C. D. Wu, A. Hu, L. Zhang, W. B. Lin. A Homochiral Porous Metal-organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. J. Am. Chem. Soc., 2005, 127(25): 8940-8941.
    [24] Y. T. Wang, H. H. Fan, H. Z. Wang, X. M. Chen. A Solvothermally in Situ Generated Mix-ligand Approach for NLO-Active Metal-organic Framework Materials. Inorg. Chem., 2005, 44: 4148-4150.
    [25] L. Han, M. Hong, R. Wang, J. Luo, Z. Lin, D. Yuan. A novel nonlinear optically active tubular coordination network based on two distinct ability of terephthalate to mediate exchange coupling homo-chiral helices. Chem. Commun., 2003, 20: 2580-2581.
    [26] J. Cano, G. D. Munno, J. L. Sanz .Ability of terephthalate to mediate exchange coupling inta-brudged copper(II), nickel(II), cobalt(II) and manganese(II) dinuclear complexs. J.Chem. Soc., Dalton Trans., 1997, 1915-1923.
    [27] X. Shi, G. S. Zhu, Q. R. Fang. Novel Supramolecular Frameworks Self-Assembled from One-Dimensional Polymeric Coordination Chains. Eur. J. Inorg. Chem., 2004, 185-191.
    [28] L. L Wen, Y. Y Li, D. B. Dang, Z. F. Tian, Z. P. Ni, Q. J. Meng. Syntheses, crystal structures and luminescent properties of two new 1D d10 coordination polymers constructed from 2,2’-bibenzimidazole and 1,4-benzenedicarboxylate. Journal of Solid State Chemistry. 2005, 178: 3336–3341.
    [29] T. J. Prior, M. J. Rosseinsky. Crystal engineering of a 3-D coordination polymer from 2-D building blocks. Chem. Commun., 2001, 495.
    [30] F. A. A. Paz, A. D. Bond, Y. Z. Khimyak, J. Klinowski. Synthesis and characterization of a new layered compound of trimesic acid. New J. Chem., 2002, 26: 381.
    [31] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 1999, 283: 1148.
    [32] S. Jain, M. Z. Alexanda, J. D. Woollins. The Reactions of Elemental Iron with Dipicolinic Acid (H2dipic) and Quinaldicaicd (Hquin)-X-ray Crystal Structures of [C5H5NH][Fe(dipic) (Hdipic)(C5H5N)2]·3C5H5N, [Fe2(μ-O)(Dipic)2(C5H5N)4]·3C5H5N ·2H2O and trans-[Fe (Quin)2(MeOH)2]. Eur. J. Inorg. Chem. 2005, 721-726.
    [33] 尹汉东, 王其宝, 薛绳才. 有机锡化合物{n-Bu2Sn[2,6-(O2C)2C5H3N](H2O)}2的合成和晶体结构. 化学试剂, 2006, 28(4): 222-224.
    [34] 陈小明, 蔡继文. 单晶结构分析原理与实践. 广州: 中山大学出版社, 2003.
    [35] 杨士姚. 钴、镍、铜、锌离子与芳香羧酸配位聚合物的组装、结构和性质. 厦门: 厦门大学, 2002.
    [36] 任鹏. 新型无机及无机-有机杂化二阶非线性光学材料的设计、合成和性能. 武汉: 武汉大学, 2003.
    [37] 施尔畏, 夏长泰, 王步国, 仲维卓. 水热法的应用与发展. 无机材料学报, 1996, 11(2): 193-206.
    [38] 尹明彩. 芳香羧酸配合物的合成、结构及性能表征. 武汉: 武汉大学, 2004
    [39] 王金龙. 用流变相反应制备芳族羧酸盐单晶和镍酸盐正极材料. 武汉: 武汉大学, 2003.
    [40] 袁良杰. 流变相合成法及其应用研究. 武汉: 武汉大学, 2003.
    [41] 朱洪友, 林军, 李全, 刘复初. 3,4,6,7-四甲基-5-芳基吡咯并[3, 4-d]哒嗪衍生物的合成. 厦门大学学报(自然科学版). 1999, 38: 518-518.
    [42] 张淑琼. 3-甲基-6-对甲苯基哒嗪的合成及晶体结构研究, 四川师范大学学报(自然科学版). 2001, 24(4): 384-387。
    [43] 龙自力, 孙莉, 李东伟, 裴文. 氟代哒嗪的研究进展. 浙江化工, 2004, 35(2):7-8.
    [44] 杜晓华,戴建辉,范忠明,徐振元. 六氢哒嗪合成方法的改进. 农药,2006, 45(2): 95-96.
    [45] G. B. Kline, S. H. Cox. A new Synthesis of DL-Glutamine. J. Org. Chem., 1961, 26: 1854-1856.
    [46] C. Y. Sun, X. J. Zheng, L. P. Jin. Supramolecular formation via hydrogen bonding in the Zn(II), Mn(II) and Cu(II) complexes with 3-hydroxypicolinic acid. J. Mol. Struct., 2003, 646: 201-210.
    [47] H. J. Chen, X. M. Chen. Crystal structures of two- and three-dimensional polymeric complexes assembled by metal pseudohalides and 4-aminobenzoic acid via hydrogen bonds and covalent bonds. Inorg. Chim. Acta., 2002, 329: 13-21.
    [48] 姚景才,赵喆. Zn(H2O)4(4-PDC)2的晶体结构和氢键相互作用. 洛阳师范学院学报,2004, 2: 63-66.
    [49] H. Jun. [Zn2(BTDC)(bpy)(H2O)]·0.5bpy: a new three-dimensional metal-organic framework constructed from flexible and rigid mixed ligands. J. Mol. Struct., 2005, 752: 166–169.
    [50] 林勇, 陈梓云, 余小岚, 陈小明. 两例弯曲型二酸Zn(II)、Cd(II)配合物的合成, 结构与荧光性质. 无机化学学报, 2006, 22(8): 1467-1472.
    [51] 邓兆鹏,谷长生,高山,霍丽华,赵经贵. 1H-咪唑-4, 5-二羧酸镉配合物[Cd(HDC)2 ·(H2O)2]的合成、晶体结构与与热性质研究. 黑龙江大学自然科学学报, 2006, 23(1): 120-127.
    [52] Y. Inomata, M. Ando, F. S. Howell. Characterization and crystal structures of copper(II), cobalt(II), and nickel(II) complexes with two kinds of piperidine carboxylic acids. J. Mol. Struct., 2002, 616: 201–212.
    [53] H. J Chen, X. M. Chen. Crystal structures of two- and three-dimensional polymeric complexes assembled by metal pseudohalides and 4-aminobenzoic acid via hydrogen bonds and covalent bonds. Inorg. Chim. Acta., 2002, 329: 13–21.
    [54] Q. L. Wang, L. N. Zhu, D. Z. Liao, S. P. Yan, Z. H. Jiang, P. Cheng, G. M. Yang. A new oxamato-bridged heterotrinuclear NiIICuIINiII complex with irregular spin state structure: Synthesis, spectroscopy, crystal structure and magnetism. J. Mol. Struct., 2005, 754: 10–15.
    [55] F. N. Shi, F. A. Paz, P. I. Girginovaa, L. Mafraa, V. S. Amaralc, J. Rochaa, A. Makald, K. Wozniakd, J. Klinowskie, T. Trindadea. Hydrothermal synthesis, structural characterization and magnetic behaviour of hybrid complexes of N-(phosphonomethyl) iminodiacetate. J. Mol. Struct., 2005, 754: 51–60.
    [56] A. B. Corradi, G. Lusvardi, L. Menabue, M. Saladini, P. Sgarabotto. Coordinationproperties of N-p-tolylsulfonyl-L-glutamic acid toward metal Part 1. Crystallographic study on Zn and Cd complexes. Polyhedron, 1999, 18: 1975–1982.
    [57] M. Borsari, L. Menabue, M. Saladini. Coordination properties of N-p-tolylsulfonyl-L- glutamic acid toward metal Part 2. Solution study on binary and ternary 2,2’-bipyridine containing systems. Polyhedron, 1999, 18:1983–1989.
    [58] 谷长生,高山,霍丽华,朱志彪,赵经贵. 羧基苯氧乙酸锰配位聚合物[Mn(p-CPOA) (H2O)3]的合成与晶体结构. 无机化学学报, 2004, 20(7): 853-856.
    [59] A. E. Gueddi, S. Guesmi, B. Mernari, H. S. Evans, J. Ribas, R. Vicente, M. Lagrenee. Synthesis and Characterization of Bis(3.6-dicarboxypyridazine)-bis(aqua) Manganese(II) dehydrate. Polyhedron, 1996, 15(23): 4283-4288.
    [60] 李贯良, 曹广秀, 邢利平, 赵东, 郭利兵. 2,3-吡啶二羧酸铜(II)配合物的合成与结构, 化学研究与应用, 2003, 15(6): 857-858.
    [61] J. L. Tian, S. P. Yan, D. Z. Liao, Z. H. Jiang, P. Cheng. Syntheses, structures and properties of two one-dimensional chain complexes: [Mn(Hpdc)(H2O)2]n and [Cu2(Hpdc)2][4,4’-dpdo] (Hpdc = 3,5-pyrazoledicarboxylic acid group, dpdo = 4,4’-dipyridyl-N,N’-dioxide hydrate). Inorg. Chem. Commun., 2003, 6: 1025–1029.
    [62] K. L. Zhang, H. W. Kuai, G. W. Diao. Synthesis, characterization and crystal structure of a novel coordination compound based on the mixed N- and O- donor ligands exhibiting the metal ion-bridged ligand–ligand interaction: [Zn(2,2'-bipy)(Phmal)(H2O)]·2H2O. J. Mol. Struct., 2005, 786: 11–15.
    [63] S. Brooker , S. S. Iremonger, P. G. Plieger. A new bis(phenol-armed) pyridazine- containing Schiff base ligand: synthesis, complexation and reduction to the amine ligand analogue. Polyhedron, 2003, 22: 665-671.
    [64] B. Jasiewicz, W. Boczoń, B. War?ajtis, U. Rychlewska1, T. Rafa?owicz. Synthesis, spectral and structural characterization of zinc(II) methacrylate complexes with sparteine and a-isosparteine: The role of hydrogen bonds and dipolar interactions in stabilizing the molecular structure. J. Mol. Struct., 2005, 753: 45-52.
    [65] Y. Q. Guo, J. Lü, Y. G. Li, E. B. Wang, Y. Lu, X. X. Xu, X. Lin. Hydrothermal synthesis and structure of an unprecedented layered Cd-citrate complex containing helical chains. J. Mol. Struct., 2006, 782: 44-48.
    [66] S. A. Sadeek. Synthesis, thermogravimetric analysis, infrared, electronic and mass spectra of Mn(II), Co(II) and Fe(III) norfloxacin complexes. J. Mol. Struct., 2005, 753: 1–12.
    [67] D. D. Radanovi?, U. Rychlewska, M. Djuran, B. War?ajtis, N. S. Dra?kovi?, D. M. Gure?i?. Alkaline earth metal complexes of the edta-type with a six-membered diaminechelate ring: crystal structures of [Mg(H2O)6] [Mg(1,3-pdta)]·2H2O and [Ca(H2O)3Ca(1,3-pdta)(H2O)]·2H2O: comparative stereochemistry of edta-type complexes. Polyhedron, 2004, 23: 2183-2192.
    [68] A. Datta, G. M. Hossain, N. K. Karan, K. M. Malik, S. Mitra. A new cyano-bridged Ca(II)–Fe(III) complex containing both molecular square and linear trimetallic species. Inorg. Chem. Commun., 2003, 6: 266-269.
    [69] L. F. Ma, L. Y. Wang, J. G. Wang, Y. F. Wang, X. Feng. Two Novel Three-Dimensional Lead(II) Coordination Polymers Involving 16-Membered Rings: [Pb2(Bs-glu)2(bipy)2] and [Pb2(Bs-glu)2(phen)2]. Z. Anorg. Allg. Chem. 2006, 632: 487-490.
    [70] V. Stavila, R. L. Davidovich, A. Gulea, K. H. Whitmire, Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure, Coord. Chem. Rev., 2006, 250: 2782-2810.
    [71] 谢洪珍, 魏丹毅, [La2(C6(COO)6)(H2O)8]·2H2O的合成、晶体结构和热分析, 宁波大学学报(理工版). 2006, 19(2): 233-236.
    [72] 蔡正洪,唐静,唐瑜,谭民裕,郁开北,新型笼状稀土配合物[La2(TCM)2(DMF)6] ·2DMF的合成与结构,高等学校化学学报,2005, 6: 1021-1023.
    [73] L. Li, J. P. Li, H. W. Hou, Y. T. Fan, Y. Zhu. Ferrocenesuccinate-bridged lanthanide polymeric complexes: Syntheses, structures and properties. Inorg. Chim. Acta., 2006, 359: 3139–3146.
    [74] D. Ang, G. B. Deacon, P. C. Junk, D. R. Turner. Synthesis and structure of the two-dimensional coordination networks [Ln(PDC)(N-HPDC)]n (PDC = pyridine-3,4- dicarboxylate, Ln = La, Ce, Pr). Polyhedron, 2007, 26: 385–391.
    [75] J. Wang, Z. R. Liu, X. D. Zhang, W. G. Jia, H. F. Li. Syntheses and structural researches of nine-coordinate (NH4)2[ErIII(Httha)]·6H2O and ten-coordinate(CH3NH3)3[NdIII (ttha)]·CH3NH2 ·4H2O. J. Mol. Struct., 2003, 644: 29–36.
    [76] J. Gregoliński, A. Kochel, J. Lisowski. Lanthanide complexes of 2+2 meso-type macrocycle derived from trans-1,2-diaminocyclohexane and 2,6-diformylpyridine: X-ray crystal structures of La(III) and Sm(III) complexes. Polyhedron, 2006, 25: 2745–2754.
    [77] M. C. Yin, L. J. Yuan, C. C. Ai, C. W. Wang, E. T. Yuan, J. T. Sun. Synthesis, structure and luminescence properties of europium and zinc ionic complexes. Polyhedron, 2004, 23: 529–536.
    [78] B. L. An, M. L. Gong, J. M. Zhang, S. L. Zheng. Synthesis, bright luminescence and crystal structure of a novel neutral europium complex. Polyhedron, 2003, 22: 2719–2724.
    [79] Y. M. Wang, Y. J. Wang, R. S. Sheu, G. C. Liu, W. C. Lin, J. H. Liao. Relaxivity studies and X-ray structure of Gd(III)-diethylenetriamine-N,N’,N”-triacetic acid-N, N’-bis(2-methoxy phenethylamide) as a potential contrast agent for magnetic resonance imaging. Polyhedron, 1999, 18: 1147–1152.
    [80] D. X. Jia, J. Deng, Q. X. Zhao, Y. Zhang. Solvothermal syntheses and characterization of new thioantimonates [Pr(en)3(H2O)(μ2-SbS4)] and [Gd(en)4]SbS4·0.5en (en = ethylene diamine): The SbS43- anion acting as a bridging ligand to lanthanide complex. J. Mol. Struct., 2007, 833: 114–120.
    [81] Y. Huang, B. Yan, M. Shao, Z. X. Chen. A new family of dimeric lanthanide (III) complexes: Synthesis, structures and photophysical property. J. Mol. Struct., 2007, xxx: xxx–xxx.
    [82] 王君,张向东,贾卫国,李慧芳,任百祥. 九配位(NH4)3[Dy(TTHA)]·5H2O配合物的合成及结构测定. 中国稀土学报, 2002, 20: 7-11.
    [83] Y. Li, F. K. Zheng, X. Liu, W. Q. Zou, G. C. Guo, C. Z. Lu, J. S. Huang. Crystal Structure and Magnetic and Luminescent Properties of a Series of Homodinuclear Lanthanide Complexes with 4-Cyanobenzoic Ligand. Inorg. Chem., 2006, 45: 6308-6316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700