农林复合与炼山对巨桉人工林土壤酶活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农林复合模式被认为是低山丘陵区农林协调发展的典型模式,但普遍存在着农林争地、平衡发展不够等具体矛盾。炼山是传统常见的造林整地方式,但由于可能导致水土和养分流失而饱受争议。这些不确定的原因主要在于对农林复合模式和炼山处理下土壤质量特征的认识不足。土壤酶活性不仅是土壤质量的重要生物学指标之一,而且与土壤生态系统的物质循环密切相关,但有关农林复合模式和炼山对土壤酶活性影响的研究远远不足。因此,以四川省低山丘陵区发展最迅速、面积最大的巨桉(Eucalyptus grandis)人工林为研究对象,通过在夏季(2009年7月)、秋(2009年10月)和春季(2010年3月)动态监测,比较典型农林复合模式和炼山处理下巨桉人工林土壤酶活性特征和相关养分变化,以期为合理农林复合模式的构建和巨桉人工林的合理管理提供一定科学依据。研究结果表明:
     1)农林复合模式土壤容重和全磷含量均低于巨桉人工纯林,但显著增加土壤有机碳和全氮含量。同时,农林复合模式下土壤有效氮(铵态氮和硝态氮)和有效磷含量高于纯林,且有效磷和硝态氮含量表现为春季最低而生长季节最高,铵态氮含量以3月最高,10月最低。
     2)相对于巨桉人工纯林,农林复合模式下土壤转化酶活性较低,但脲酶和磷酸酶活性较高。巨桉人工纯林和农林复合模式下土壤转化酶、脲酶和磷酸酶活性的季节性动态变化基本一致,土壤转化酶活性在7月最高而10月最低;土壤脲酶和酸性磷酸酶活性以7月而3月最低,土壤中性磷酸酶活性以10月最低。
     3)农林复合模式下土壤氧化还原酶活性明显高于巨桉人工纯林。两个模式的土壤过氧化物酶活性均以7月最高,3月最低;巨桉人工纯林模式下过氧化氢酶活性表现为3月最高,10月最低;但农林复合模式过氧化氢酶活性以3月最高,7月最低。
     4)相对于未炼山林地,炼山处理显著(P<0.01)降低了土壤pH,炼山之后的巨桉人工林土壤0~20cm和20~40cm土层的pH值分别降低了10.2%和6.8%。同时,炼山处理也显著降低了巨桉人工林0~20cm和20~40cm土壤有机碳和全氮含量,有机碳分别降低了19.11%和77.78%,全氮分别降低了27.51%和32.73%,但对全磷含量影响不显著。
     5)尽管炼山林地3个月后两个土层的土壤有效磷含量比未炼山林地低,但炼山后半年和一年的有效磷含量显著高于未炼山林地;炼山林地有效磷含量表现出逐渐增加的动态变化,而未炼山林地表现出先降低后增加的动态特征。同时,各土层的土壤铵态氮含量除炼山3个月后显著增加外,其余时期变化不明显;炼山林地和未炼山林地均表现出先降低后增加的动态变化。此外,炼山处理提高了各土层的土壤硝态氮含量,炼山和未炼山处理均表现出先降低后增加的动态变化。
     6)炼山3个月和半年后巨桉林地两个土层的土壤转化酶、脲酶和中性磷酸酶活性均比未炼山林地低,但炼山后一年后各酶活性显著高于未炼山林地;未炼山林地两个土层的转化酶活性表现出先增加后降低的动态变化,0~20cm土层的脲酶活性表现出逐渐降低的动态变化,20~40cm土层的脲酶活性则表现出先增加后降低的动态变化,炼山和未炼山林地各土层的中性磷酸酶活性表现出逐渐增加的动态变化。此外,各土层的土壤酸性磷酸酶活性受炼山处理显著降低,且均表现出先增加后降低的动态变化。
     7)炼山林地两个土层的土壤过氧化物酶活性均比未炼山林地低,并表现出逐渐降低的动态变化。炼山林地0~20cm土层的过氧化氢酶活性除在炼山3个月后比未炼山林地低外,其余时期均高于未炼山林地,且酶活性表现出逐渐增加的动态变化,而20~40cm土层的过氧化氢酶活性则仅在炼山后一年高于未炼山林地,并表现出先降低后增加的动态变化。
     综合分析,农林复合模式下脲酶、磷酸酶、过氧化物酶以及过氧化氢酶活性均高于巨桉人工纯林。这表明,农林复合模式可能具有相对较高的土壤质量和相对高效的物质循环能力。炼山处理显著降低了林地土壤pH和养分含量,降低了土壤各类酶活性,但炼山1年后土壤各类酶活性显著高于未炼山林地。这说明炼山处理一年内,因缺乏植被对土壤环境的保护作用,导致土壤养分和土壤酶活性的降低,但随着植被对地表的覆盖,土壤酶活性升高。这些结果为巨桉人工林合理模式的构建以及合理管理提供了一定的科学依据。
Agroforestry is a typical model in cooperative developing of forest and agriculture in the hill regions, but many problems such as land competition and low balances between forests and crops were always presented. Controlled burning is the traditional soil preparation before plantation, but it is questioned for the loss of soil, water and nutrients. These questionable issues could be mainly attributed to the unclear effects of agroforestry model and controlled burning on soil quality. Soil enzyme activity is the sensitive indicator in soil quality due to the relationships with material cycling and soil biological characters. However, little information has available on effects of agroforestry model and controlled burning on soil enzyme activity. Therefore, the Eucalyptus grandis plantation, which rapid developed and had the biggest area in Sichuan hilly regions, was selected. Soil enzyme activity and related nutrients was investigated in the growing season (July,2009), the end of growing season (October,2009) and spring (March,2010) under a representative agroforestry model and a plantation with controlled burning. The results indicated that,
     1) Lower soil bulk density and P content but higher content of available P, NH4-N and NO3-N were observed in the plantation of agroforestry model compared with pure E. grandis plantation. The content of available P and NO3-N displayed the lowest value in spring and the highest value in growing season, but the highest content of NH4-N was in spring and lowest in the end of growing season.
     2) Compared with pure E. grandis plantation, agroforestry model showed lower soil intervase activity, but higher activity of urease and phosphatase. The investigated hydrolases activities did the similar seasonal patterns in both pure plantation and agroforestry model. Invertase activity showed highest value in July and lowest in October. The highest activity of soil acid phosphatase was detected in July and lowest value in March, but lowest neutral phosphatase activity was observed in October.
     3) Both soil peroxidase and catalase activities were higher in agroforestry model than that in pure E. grandis plantation. Both plantations displayed the highest value in July and lowest value in March. However, although the highest catalase activity was observed in March in both plantations, the lowest value was in October in pure E. grandis plantation, the lowest value was in July in agroforestry model.
     4) Controlled burning significantly decreased soil pH, the decreased percentages were 10.2% and 6.8% in the soil layer with 0-20 cm and 20-40 cm, respectively. Controlled burning also decreased the content of soil organic carbon and N, but had insignificant effects on P content.
     5) Although the plantation at 3 months after controlled burning showed lower soil available P content, but soil available P content was higher at 6 months and 1 year after controlled burning compared with the plantation with no-burning. Soil P content showed a continually increase tendency in controlled burning plantation, but which showed an obvious decrease and then increase tendency in no-burning plantation. Soil NH4-N content significantly increased at 3 months after controlled burning, but there were few changes during other period. In addition, controlled burning treatment increased soil NO3-N content.
     6) 3 months and 6 months after controlled burning, soil invertase, urease and neutral phosphatase activities were lower in the plantation with controlled burning compared with no-burning plantation. Soil invertase activity showed an increase and then decrease tendency in no-burning plantation. Soil urease activity displayed an increase tendency in 0~20 cm, although which showed an increase and decrease tendency in 20-40 cm. Controlled burning decreased the acid phosphatase activity, and showed a increase and decrease tendency.
     7) Soil peroxidase activity was lower in the plantation with controlled burning compared with no-burning plantation, which showed a gradual decrease tendency. Soil catalase activity was higher in 0~20 cm in the plantation with controlled burning compared with no-burning plantation except for at 3 months after controlled burning. However, soil catalase activity was higher in 20~40 cm in the plantation with controlled burning compared with no-burning plantation only at one year after controlled burning.
     In conclusion, soil invertase, urease, phosphatase, peroxidase and catalase activities were higher in agroforestry model compared with pure E. grandis plantation, although soil invertase activity was lower. This suggested that agroforestry model might have higher soil quality and more efficient material cycling. Furthermore, controlled burning significant decreased soil pH and nutrients content, and soil enzyme activities, but at one year after burning, soil enzyme activity was higher in the plantation with controlled burning compared with no-burning plantation. This implying that controlled burning could have a negative effect on soil nutrients and enzymes in the earlier period, but it could improve soil quality by increasing soil enzyme activity. The present results could provide scientific data in reasonable managing E. grandis plantation and constituting balanced E. grandis plantation.
引文
[1]丹尼尔T W,海勒姆斯J A,贝克F S.森林经营原理[M].赵克绳译.北京:中国林业出版社,1987
    [2]Evans J. Long-term productivity of forest plantation-status in 1990[C]. IUFRO 19th World Congress Proceedings [M]. Division I Volume 1,1990,165-180
    [3]陶胜坤.农林复合模式探讨[J].中国科技财富,2010,(3):236
    [4]夏青,何丙辉,谢洲,等.紫色土农林复合经营土壤理化性状研究[J].水土保持学报,2006,20(2):86-89
    [5]章铁,刘秀清,孙晓莉,等.栗茶间作模式对土壤酶活性和土壤养分的影响[J].中国农学通报,2008,24(4):265-268
    [6]余立华,刘桂华,陈四进.栗茶间作模式下茶树根系的基础特性[J].经济林研究,2006,24(3):6-10
    [7]刘桂华,李宏开.柏茶间作立体经营模式的生态学基础[J].安徽农业科学,1996,24(2):145-148
    [8]张洁,刘桂华.板栗茶树间作模式的生态学基础[J].经济林研究,2005,23(3):1-4
    [9]王兴祥,何园球,张桃林,等.低丘红壤区花生南酸枣间作系统研究Ⅲ·土壤水分[J].土壤,2003,35(3):232-235
    [10]须海丽,张爱民,陈栋安,等.辣椒叶浸提液对土壤微生物数量和土壤酶活性的影响[J].长江农业(学术版),2008,(6):52-54
    [11]张斌,张桃林.低丘红壤区农林间作系统的水分生态特征及生产力[J].生态学杂志,1997,16(4):1-5
    [12]梅立新,郭春慧,武占强,等.早梯田果园间作对土壤和果树的影响[J].干旱地区农业研究,1995,13(3):15-20
    [13]陈忠,火对森林主要生态系统过程的影响[J].应用生态学报,2006,17(9):1726-1732
    [14]周立波,徐仙桃.火对森林的影响[J].内蒙古林业调查设计,2007,30(6):63-64
    [15]舒立福,田晓瑞,吴鹏超,等.火干扰对森林水文的影响[J].土壤侵蚀与水土保持学报,1999,5(6):82-85,98
    [16]叶镜中,邵锦峰.炼山对土壤理化性质的影响[J].南京林业大学学报,1990,14(4):1-7
    [17]张鼎华.皆伐炼山对林地养分元素资源迁移影响的研究[J].自然资源学报,1997,12(4): 343-348
    [18]张鼎华.炼山对土壤化学性质的影响[J].林业科技通讯,1986(3):3-6
    [19]朱炜,邹军,李宝福,等.杉木人工林地力维持及更新技术研究[J].福建林业科技,2001,28(1):31-34
    [20]孙毓鑫,吴建平,周丽霞,等.广东鹤山火烧迹地植被恢复后土壤养分含量变化[J].应用生态学报,2009,20(3):513-517
    [21]Neary D G, Klopatek C C. DeBano LF, et al. Fire effects on belowground sustainability:A review and synthesis. Forest Ecology and Management,1999,122:51-57
    [22]Liu Juxiu, Zhou Guoyi, Chu Guowei, et al. Effects of soil acidity on the soil nutrients under Dinghushan monsoon evengreen broad-leaved forest [J]. Acta Pedologica Sinica,2003,40(5): 763-767
    [23]Veratraete W, Voets J P. Soil microbial and biochemical characteristics in relation to soil management and fertility [J]. Soil Biology & Biochemistry.1977,9:253-258
    [24]杨万勤,王开运,森林土壤酶的研究进展[J].林业科学,2004,40(2):152-159.
    [25]张健,杨万勤,著.短轮伐期巨桉人工林生态系统[M].成都:四川科学技术出版社.2008
    [26]袁渭阳.短轮伐期巨桉人工林土壤碳转移研究.[学位论文].雅安,四川农业大学,2008
    [27]关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社,1986
    [28]杨万勤,张健,等.土壤生态研究[M].成都:四川科学技术出版社,2008
    [29]杨万勤,钟章成,韩玉萍.缙云山森林土壤酶活性的分布特征、季节动态及其与四川大头茶的关系[J].西南师范大学学报,1999,24(3):318-324
    [30]何斌,温远光,梁宏温,等.英罗港红树植物群落不同演替阶段植物元素分布及其与土壤肥力的关系[J].植物生态学报.2002,26(5):518-524
    [31]杨玉盛,李政问,俞新妥,等.南平溪后杉木林取代杂木林后土壤肥力变化的研究[J].植物生态学报,1994,18(3):236-242
    [32]杨承栋,焦如珍.杉木人工林根际土壤性质变化的研究[J].林业科学,1999,35(6):2-9
    [33]Criguet S, Farnet A M, Tagger S, et al. Annual variations of phenoloxidase activities in an evergreen oak litter:influence of certain biotic and abiotic factors [J]. Soil Biology & Biochemistry,2000,32:1505-1513
    [34]Diamantidis G, Effosse A, Potier P, et al. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum[J]. Soil Biology & Biochemistry, 2000,32:919-927
    [35]Taylor J P, Willson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques[J]. Soil Biology & Biochemistry,20002, 34:387-401
    [36]Moorhead DL, Linkins AE. Elevated CO2 alters belowground exoenzyme activities in tussock tundra. Plant and Soil,1997,189(2):321-329
    [37]Shackle VJ, Freeman C, Reynolds B. Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biology & Biochemistry,2000,32 (11):1935-1940
    [38]Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America Journal,1997,61(2):475-481
    [39]Tscherko D, Kandeler E, Jones TH. Effect of temperature on belowground N-dynamics in a weedy model ecosystem at ambient and elevated atmospheric CO2 levels. Soil Biology & Biochemistry,2001,33(4/5):491-501
    [40]Waldrop M P, Firestone M K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry,2004,67 (2): 235-248
    [41]Bardgett RD, Kandeler E, Tscherko D, Hobbs PJ, Bezemer TM, Jones TH, Thompson LJ. Below-ground microbial community development in a high temperature world. Oikos,1999,85 (2):193-203
    [42]Yang Ruyi, Tang Jianjun, Chen xin, et al. Effects of coexisting plant species on soil microboes and soil enzymes in metal lead contaminated soils[J]. Applied Soil Ecology,2007,37:240-246
    [43]Li Yongtao, Corrine Rouland, Marc Benedetti, et al. Microbial biomass, enzyme and mineralization activity in relation to soil organic C,N and P turnover influenced by acid metal stress. Soil Biology & Biochemistry,2009,41(5):969-977
    [44]Margesin R. and Schinner F.. Phosphomonoesterase, phosphodiesterase, phosphotriesterase, and inorganic pyrophosphatase activities in forest soils in an alpine area:effect of pH on enzyme activity and extractability [J]. Biology and Fertility of Soils,1994,18(4):320-326
    [45]Rastin N, Rosenplanter K, Huttermann A., et al. Seasonal variation of enzyme activity and their dependence on certain soil factors in a beech forest soil[J]. Soil Biology & Biochemistry,1988, 20(5):637-642
    [46]Singh K. P., Mandal T. N., Tripathi S. K.. Patterns of restoration of soil physciochemical properties and microbial biomass in different landslide sites in the Sal forest ecosystem of Nepal Himalaya. Ecological Engineering,2001,17(4):385-401
    [47]Degens, B.P., Schipper, L.A., Sparling, GP., et al. Decreases inorganic C reserves in soils can reduce the catabolic diversity of soil microbial communities [J]. Soil Biology and Biochemistry, 2000,32:189-196
    [48]Roldan A., Salinas-Garcia J.R., Alguacil M.M., et al. Caravaca. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions [J]. Geoderma,2005, (129):178-185
    [49]黄永杰,杨集辉,杨红飞,等.铜胁迫对水花生生长和土壤酶活性的影响[J].土壤学报,2009,46(3):494-500
    [50]杨娟娟,魏成熙,健伟,等.铅污染土壤有机肥对土壤酶活性的影响[J].贵州农业科学,2009,37(5):99-101
    [51]刘敬武,单爱琴,揣小明,等.重金属离子Cd2+、pb2+污染对土壤酶活性的影响[J].污染防治技术,2008,21(1):19-22
    [52]曹志洪.解译土壤质量演变规律确保土壤资源持续利用[J].世界科技研究与发展,2001,23(3):28-32
    [53]巩杰,黄高宝,陈利顶,等.旱作麦田秸秆覆盖的生态综合效应研究[J].干旱地区农业研究,2003,21(3):69-73
    [54]俞新妥.杉木的混农林业[J].生态学杂志,1991,10(2):25-28
    [55]王广钦,樊巍.农田林网内土壤水分变化动态的研究[J].河南农业大学学报,1988,22(3):285-293
    [56]Hatermink A E, Buresh R J, Jama B, et al. Soil nitrate and water dynamics in sesbania fallows, weed fallows and maise[J]. Soil society of America Journal,1996,60:568-574
    [57]Wan F X, Chen P. Soil enzyme activities under agroforestry systems in Northern Jiangsu province [J]. Forestry Studies in China,2004,6(2):21-26
    [58]Wang H, Huang Y, Huang H, et al. Soil properties under young Chinese fir-based agroforestry system in mid-subtropical China [J]. Agroforestry System,2005,64:131-141
    [59]贺明荣,冷寿慈.桃林间作多土壤养分状况及土壤微生物活性的影响[J].土壤通报,1994, 25(4):188-189
    [60]George T S, Gregory P J, Wood M, et al. Phosphatase activity and organic acids in rhizosphere of potential agroforestry species and maize [J]. Soil Biology & Biochemistry,2002,34: 1487-1494
    [61]孔垂华,徐涛,胡飞,等.环境胁迫下植物化感作用及其诱导机制[J].生态学报,2000,20(5):849-854
    [62]徐涛,孔垂华,胡飞.胜红蓟化感作用研究Ⅲ,挥发油对不同营养水平下植物的化感作用[J].应用生态学报,1999,10(6):748-750
    [63]Bruce Williamson G., Elizabeth M. Obee, Jenffrey D Weidenhamer. Inhibition of Poaceae by the allelochemical hydrocinnamic acid[J]. Journal of Chemical Ecology,1992,18(11):2095-2105
    [64]陈秋波,王真辉,刘国道,等.刚果12号桉叶片水抽提物对4种植物幼苗生长的影响[J].热带作物学报,2002,23(4):47-51
    [65]范海兰,洪滔,洪伟,等.炼山对南酸枣人工林林下植物物种组成结构的影响[J].福建林业科技,2005,32(4):44-48
    [66]潘辉.不同林地清理方式对巨尾桉林地生产力的影响究[J].福建林学院学报,2003,23(4):312-316
    [67]陈忠.火对森林主要生态系统过程的影响[J].应用生态学报,2006,17(9):1726-1732
    [68]周立波.火对森林的影响[J].内蒙古林业调查设计,2007,30(6):63-64
    [69]吴彩莲,查轩.炼山开垦过程对土壤侵蚀特征影响研究[J].福建商业高等专科学校学报,2007,(8):122-124
    [70]苏英吾.论炼山对森林土壤生态系统的影响[J].中南林业调查规划.1998,17(1):9-12.
    [71]杨玉盛,何宗明,马祥庆,等.论炼山对杉木人工林生态系统影响的利弊及对策[J].自然资源学报,1997,12(2):153-159
    [72]刘爱琴,俞新妥,何智英,等.不同林地清理方式土壤酶活性动态[J].福建林学院学报,1993,13(2):147-153.
    [73]吴蔚东,刘开树.炼山造林对不同母质土壤影响研究初报[J].江西林业科技.1991,(4):6-9.
    [74]鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999
    [75]Luo S M, Li H S. Agroecosystem models to prevent land degradation and to improve land productivity in the Jian River Wa-tershed, China[J]. Jourmal of Asian Farming Systems Association,1993,1(3):479-493
    [76]彭少麟.热带亚热带退化生态系统恢复与农林复合系统[J].应用生态学报,1998,9(6):587-591
    [77]黄文丁,章熙谷,唐荣南.中国复合农业[M].南京:江苏科学技术出版社,1993:182-183.
    [78]Carlos G. T, Frank M. H, Same F, et al. Agroforestry system effects on soil characteristics of the Sarapiqui region of Costa Rica[J]. Agric-ecosyst-environ,1999,73:19-28
    [79]Fisher R. E. Amelioration of degraded rain forest soils by plantation of native trees[J]. Soil Science.,1995,58:1639-1645
    [80]Panlagua A, Kammerbauer J, Avedilio M, et al. Relationship of soil characteristics to vegetation successions on a sequence of degraded and rehabilitated soils in Honduras[J]. Agric-ecosyst-environ,1999,72:215-225
    [81]黎华寿,骆世明.高州市典型坡地不同利用方式对土壤理化性状的影响[J].华南农业大学学报,2001,22(2):1-4
    [82]许蜂,蔡强国,等.坡地农林复合系统土壤养分时间过程初步研究[J].水土保持学报,2000,14(3):46-51
    [83]梁嘉陵,黄艳胜,等.低山丘陵区果农复合生态经营模式[J].东北林业大学学报,1999,27(4):63-66
    [84]孙辉,唐亚,何永华,等.等高固氮植物篱模式对坡耕地土壤养分的影响[J].中国生态农业学报,2002,10(2):79-82
    [85]林华.固氮植物对竹林土壤条件的改善作用[J].林业科技开发,2002,16(6):17-19
    [86]Makumba W, Janssen B, Oenema O, et al. The long-term effects of a gliricidia-maize intercropping system in Southern Malawi, on gliricidia and maize yields, and soil properties[J]. Agriculture Ecosystems and Environment,2006,116:85-92
    [87]Zhou W J, Wang K R, Zhang Y Z, et al. Phosphorus transfer and distribution in a So ybean-citrus inter-cropping system [J]. Pedosphere,2006,16(4):435-443
    [88]闫德仁,冯立岭,吴艳辉,等.农林复合经营土壤养分变异的研究[J].内蒙古林业科技,2000(3):15-18
    [89]Badiane N N Y, Chotte J L, Pate E, et al. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Applied Soil Ecology,2001,18(3): 229-238
    [90]Acosta-Martinez V, Zobeck T. M., Gill T E, et al. Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertility of Soils,2003,3:216-227
    [91]和文祥,朱铭莪.陕西土壤脲酶活性与土壤肥力关系分析[J].土壤学报,1997,34(4):3972-3981
    [92]刘广深,徐冬梅,许中坚.用通径分析法研究土壤水解酶活与土壤性质的关系[J].土壤学报,2003,40(5):756-762
    [93]张成娥,陈小利.林地砍伐开垦对土壤酶活性及养分的影响[J].生态学杂志,1998,17(6):18-21
    [94]姜岳忠,刘盛芳,马履一,等.毛白杨幼林间作效应研究[J].北京林业大学学报,2006,28(3):81-85
    [95]孟平,宋兆民,张劲松,等.农林复合系统水分效应研究[J].林业科学研究,1996,9(5):443-448
    [96]文化一,康珉.红壤农林间作的土壤水分动态变化研究[J].西南农业大学学报,1990,12(1):42-45
    [97]杨万勤,王开运.土壤养分库动态.见:王开运等编著,川西亚高山森林群落生态系统过程.成都:四川科学技术出版社,2004,200-285
    [98]邓明华,文锦芬,邹学校,等.辣椒植株水浸提液对生菜和大白菜化感作用的初步研究[J].云南农业大学学报:自然科学版,2007,22(3):452-455
    [99]程智慧,耿广东,张素勤,等.辣椒对莴苣的化感作用及其成分分析[J].园艺学报,2005,32(1):100
    [100]侯永侠,周宝利,吴晓玲,等.辣椒秸秆腐解物化感作用的研究[J].应用生态学报,2006,17(4):699-702
    [101]李春龙,贺阳东,陈华,等.辣椒叶浸提液对辣椒幼苗土壤酶活性及土壤养分影响[J].长江农业(学术版),2008,(12):18-20
    [102]Monleon V. J., Cromack K, Jr., Landsberg J. D.. Short- and long-term effects of prescribed underburning on nitrogen availability in ponderosa pine stands in central Oregon[J]. Canadian Journal of Forest Research,1997,27:369-378
    [103]Guo L B., Gifford R M. Soil carbon storks and land use change:a meta analysis[J]. Global Change Biology,2002,8(4):345-360
    [104]薛立,向文静,何跃军,等.不同领地清理方式对杉木林土壤肥力的影响[J].应用生态学报,2005,16(8):1417-1421
    [105]万淑婉.双季稻高产田的土壤微生物及土壤生物学指标[J].江西农业大学学报,1993,15(4):351-355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700