甜菜粕膳食纤维的提取、改性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜粕是甜菜制糖过程中的副产物,含有果胶、纤维素等功能性膳食纤维,这些膳食纤维被认为是维系人体健康、不能被其它物质所代替、具有特殊生理功能的营养素。目前甜菜粕资源尚未得到合理利用,本论文研究了甜菜粕膳食纤维的提取、脉冲电场改性、花生酸酐改性、离子液体为介质的物理和化学改性、结构鉴定及相关的作用机理。以期合理利用甜菜粕资源,促进我国制糖工业和相关产业健康可持续发展。
     分别采用有机酸法、超声波法和压力法提取甜菜粕果胶。研究发现采用柠檬酸、马来酸和乳酸作为提取剂的有机酸法得到的果胶品质不同,果胶得率和半乳糖醛酸(GalA)含量不仅受酸的强热性质影响,还受它们本身三元、二元、一元酸的特性影响,确定最佳条件为采用柠檬酸调pH至1.5,85oC提取2h,果胶得率和GalA含量分别为17.1%和78%。超声波法在单因素实验基础上采用Box-Behnken设计和响应面分析,确定最佳提取条件为超声功率900W,超声时间45min,pH1.5,果胶得率和GalA含量分别为6.3%和71%,经拟合得到果胶得率和GalA含量的两个二阶方程能很好的预测果胶的品质。压力法得到的最佳提取条件为在20Mpa,160oC下提取90min,果胶得率和GalA含量分别为22.5%和65%。
     探讨了三种方法制备的甜菜粕果胶在结构组成上的差异,并对甜菜果胶的流变学特性进行了深入研究。发现不同方法制备的果胶在得率、总糖含量、半乳糖醛酸含量和分子量方面均存在显著差异。其中,有机酸法得到较理想的得率,总糖含量和半乳糖醛酸含量最高,而分子量相对较低。超声波法和压力法制备果胶的酯化度没有显著差异,两者均比有机酸法制备果胶的酯化度高。流变学特性研究表明甜菜果胶的粘度随着果胶浓度的增加而增大,随着剪切速率的增加而减小。温度的升高、pH值和静置时间的增加都会降低果胶的粘度,而适当提高金属离子浓度和糖浓度可使果胶粘度显著增大。
     研究了脉冲电场对甜菜粕果胶的改性,试验条件主要包括电场强度18-30kV/cm和脉冲时间806-2418μs。用X-射线衍射、蒸发光散射和红外光谱等仪器技术评价改性果胶的物化特性,并用布金汉(Buckingham)定理推导脉冲电场降解甜菜果胶的过程仿真模型。结果表明,脉冲电场处理破坏了果胶的晶型,果胶的酯化度、分子量和平均粒径随着电场强度和脉冲时间的增加而减少。脉冲电场对果胶降解的过程仿真模型能很好的描述和评价降解过程。脉冲电场技术是降低果胶酯化度和分子量的极好方法,在食品工业有很好的应用前景。
     研究了无溶剂条件下甜菜果胶与花生酸酐之间的反应,探讨了反应温度(130-170oC)、反应时间(20-60min)、酸酐用量(0.5:1-2:1)、催化剂用量(0.05-0.15%)和电场强度(18-30kV/cm)对果胶衍生物产率的影响。结果表明,无溶剂介质条件下,花生酸酐可以直接和甜菜果胶发生酯化反应,将花生酸基团引入果胶中。脉冲电场预处理有利于果胶-花生酸酯的合成,果胶的花生酸化反应随着反应时间、花生酸酐用量、催化剂用量的增加而提高,增加反应温度能促进果胶的花生酸化反应,但当高于160oC,产物的得率降低。红外光谱、X-射线衍射和核磁共振光谱分析结果证实了花生酸酐和果胶的羟基部位发生了酯化反应。反应后,果胶衍生物的热稳定性升高。
     研究了在离子液体1-丁基-3-甲基咪唑氯酸盐中,超声波辅助甜菜粕纤维素的均相戊二酸化反应,探讨了超声时间,反应温度,戊二酸酐和纤维素中单位葡萄糖摩尔比和反应时间对纤维素取代度的影响,并通过红外光谱、固体核磁共振光谱和热稳定性分析对甜菜粕纤维素衍生物的性质进行表征。研究发现,不使用任何催化剂,甜菜粕纤维素和戊二酸酐可发生均相戊二酸化反应,得到不同取代度(0.74-1.44)的纤维素衍生物,其取代度随着超声时间(10-40min),反应时间(20-120min),反应温度(90-110oC)和酸酐用量(2:1-6:1)的增加而增加。与初始纤维素相比,改性过的纤维素的热稳定性降低。
     探讨了过氧化物酶对果胶和蛋白质形成的双层乳状液的稳定性影响。研究发现,过氧化物酶和过氧化氢的加入,实现了果胶分子之间的交联,其最佳条件为酶用量200U/g,过氧化氢浓度0.02%,反应温度40oC和反应时间120min。随着改性果胶浓度的增加,乳状液液滴的电荷绝对值增大,界面张力增大,乳状液稳定性增强。双层乳状液在中性pH稳定性最佳,在酸性pH稳定性较差。
Sugar beet pulp (SBP), a byproduct of sugar beet engineering, contains dietary fiber suchas pectin and cellulose, which is cosidered as irreplaceable beneficial nutrients with specicalphysiological functions. However, it is still underutilized today. In order to fully utilize SBPsource and promote healthy and sustainable development of China’s sugar engineering, themethods of extracting pectin from beet pulp, modification of pectin with pulsed electric fieldand arachidic anhydrate, homogeneous derivatization of cellulose in ionic liquids and itsrelated structure and mechanism analysis were studied in this thesis.
     The methods of organic acid, ultrasound and pressure were used to extract pectin fromSBP. The results indicated that the pectins obtained by citric acid, maleic acid and lactic acidwere different in yield and galacturonic acid (GalA) content, respectively. The discrepanciesof pectin yields and GalA content extracted with the methods were not only affected by theirorganic feature but also by their relatively strong or weak nature. The optimal yield (17.1%)and GalA content (78%) were obtained at pH1.5,85oC for2h with critic acid as extractant.Box-Behnken design and response surface analysis were applied in ultrasonic method basedon single factor experiment. Results indicated that the highest yield of6.3%and GalA contentof71%were obtained at pH1.5for45min with ultrasonic power of900W. Twosecond-order equations were caculated, which could be used for predicting the quality ofpectin. In additon, the optimal conditons of pressure method had also been studied. Themaximal yield and GalA content were22.5%and65%, respectively, with the optimalextraction conditions of20Mpa presusre for90min at160oC.
     The composition and rheological properties of SBP pectin extracted by three mehtodswere studied in this section. The results indicated that there were significantly difference inyield, carbohydrate content, GalA content and molecular weights of pectin. The pectinextracted from organic acid method has a better yield, and its carbohydrate content andgalacturonic acid were the highest, but its molecular weights were relatively low. There wereno significant difference in degree of esterification (DE) between ultrasonic method andpressure method, both of them had higher DE than organic method. The rheologicalproperties of pectin showed that the viscosity of pectin increased with increasing concentration, and decreased with increasing shear rate. The increase of temperature, pHvalue and standing time reduced the viscosity of the pectin, but an appropriate increase in ionconcentration and carbohydrate concentration would enable the viscosity significantlyincreased.
     The modification of pectin induced by pulsed electric field (PEF) was studied in thissection. Experimental parameters including electric field intensity (18-30kV/cm) and pulsetime (806-2418μs) were used, and the physicochemical properties of PEF-treated pecitn wereevaluated by various instrumental techniques such as, X-ray diffraction patterns, Dynamiclight scattering spectra and FT-IR spectra. The process of pectin degradation was deduced byBuckingham theorem. The results showed that crystalline regions of pectin were destroyedafter being treated with PEF, and the DE, molecular weight and particle size of pectindecreased with the increase of electric field intensity and pulse time. The process of pectindegradation could be evaluated by two obtained simulation models. Results revealed that PEFtechnology is an effective method to obtain the pectins with different molecular-weights andDEs, and get a desired production in food application.
     The solvent-free modification of SBP pectin with arachidic anhydride were studied inthis section. The parameters included reaction temperature (130-170oC), reaction time (20-60min)、anhydride usage (0.5:1-2:1)、catalysis usage (0.05-0.15%) and electric intensity (18-30kV/cm). The results showed that pectin-arachates were prepared in one-step solvent-freemodification. The PEF pretreatment had a favourable effect on this reaction, and the weightpercent gain (WI) of pectin derivatives increased with increasing temperature, reaction time,anhydride usage and catalysis usage. However, the WI decreased when temperaute was over160oC. Evidence of pectin modification was provided by FT-IR spectra, X-ray diffractionpatterns and1H Nuclear magnetic resonance (NMR) spectra. Thermal gravimetric analysis(TGA) of modified pectin indicated a higher thermal stability than untreated pectin.
     Cellulose glutarates were synthesized from beet pulp cellulose and glutaric anhydride inionic liquid (IL)1-butyl-3-methylimidazolium chloride assisted by ultrasound. Parametersinvestigated included ultrasound time, temperature, the molar ratio of glutaricanhydride/anhydroglucose units in cellulose (MRO), and reaction time. The cellulose derivatives were characterized by FT-IR spectra, solid-state CP/MAS13C NMR spectra andTGA. The results showed that the synergy of the combined use of ultrasound and IL hadsuccessfully enhanced the degree of substitution of cellulose glutarates under theexperimental conditions of the present study, and its DS increased with the increment ofultrasond time (from10to40min), temperature (from90to110oC), the MRO in a range from2:1to6:1and reaction time (from20to120min). Besides, the modified cellulose showedlower thermal stability than native cellulose.
     The stability of a double emulsion made from SBP pectin and Bovine Serum Albuminwas evaluated in the present research. The results showed that the cross-linked stucture wasformed between pectin molecules after peroxidase and hydrogen peroxide added. The optimalconditions of pectin modification were enzyme dosage of200U/g, concentration of hydrogenperoxide0.02%, reaction temperature of40oC and the reaction time of120min. With theconcentration of modified pectin increased, the charge absolute value, interfacial tension andof double emulsion increased, indicating the stability of double emulsion increased. Thedouble emulsion made from modified pectin and protein had a better stability in neutral pHwhile relative unstable in acid pH conditions.
引文
[1] Freire J. P. B., Guerreiro A. J. G., Cunha L. F., et al. Effect of dietary fibre source on totaltract digestibility, caecum volatile fatty acids and digestive transit time in the weanedpiglet [J]. Animal Feed Science and Technology,2000,87(1-2):71-83.
    [2] Gonzalez Alvarado J. M., Jimenez-Moreno E., Gonzalez-Sanchez D., et al. Effect ofinclusion of oat hulls and sugar beet pulp in the diet on productive performance anddigestive traits of broilers from1to42days of age [J]. Animal Feed Science andTechnology,2010,162(1-2):37-46.
    [3] Mateos G. G., Martin F., Latorre M. A., et al. Inclusion of oat hulls in diets for youngpigs based on cooked maize or cooked rice [J]. Animal Science,2006,82:57-63.
    [4] Rouilly A., Geneau-Sbartai C., Rigal, L. Thermo-mechanical processing of sugar beetpulp. III. Study of extruded films improvement with various plasticizers and cross-linkers[J]. Bioresource Technology,2009,100(12):3076-3081.
    [5] Pasquini D., Teixeira E. D., Curvelo A. A. D., et al. Extraction of cellulose whiskers fromcassava bagasse and their applications as reinforcing agent in natural rubber [J]. IndustrialCrops and Products,2010,32(3):486-490.
    [6] Mo H. Z., Zhang H., Nan H. J. Bioconversion of cellulose to bioalcohol [J]. Advances inBiomedical Engineering,2011,254-257.
    [7] Gnanakaran S., Bellesia G., Asztalos A., Shen T. Y., et al. In silico studies of crystallinecellulose and its degradation by enzymes [J]. Acta Crystallographica SectionD-Biological Crystallography,2010,66:1184-1188.
    [8] He J. X., Zhou W. T., Du S., Cui S. Z., et al. Electrospun Silk Fibroin/Cellulose AcetateBlend Nanofibres: Structure and Properties [J]. Iranian Polymer Journal2011,20(5):389-397.
    [9] Fishman Marshall L., Cooke Peter H., Hotchkiss Arland T. Extraction andCharacterization of Sugar Beet Polysaccharides [J]. In Green Polymer Chemistry:Biocatalysis and Biomaterials, American Chemical Society,2010,1043:71-86.
    [10] Alonso J. L., Martinez M., Gullon B., et al. Assessment of the Production of OligomericCompounds from Sugar Beet Pulp [J]. Industrial&Engineering Chemistry Research,2009,48(10):4681-4687.
    [11] Elleuch M., Bedigian D., Roiseux O., et al. Dietary fibre and fibre-rich by-products offood processing: Characterisation, technological functionality and commercialapplications: A review [J]. Food Chemistry,2011,124(2):411-421.
    [12] Slavin J. L., Dietary fiber and body weight [J]. Nutrition,2005,21(3):411-418.
    [13] Kenny K. A., Skelly J. M., Dietary fiber for constipation in older adults: a systematicreview [J]. Clinical Effectiveness in Nursing,2001,5(3):120-128.
    [14] Casterline J. L., Oles C. J., Ku Y. O., Measurement of sugars and starches in foods by amodification of the AOAC total dietary fiber method [J]. Journal of Aoac International,1999,82(3):759-765.
    [15] Ramulu P., Udayasekhara Rao P.. Total, insoluble and soluble dietary fiber contents ofIndian fruits [J]. Journal of Food Composition and Analysis,2003,16(6),677-685.
    [16] Tada S., Innami S. A simplified modification of the AOAC official method fordetermination of total dietary fiber using newly developed enzymes [J]. Journal of AoacInternational,2007,90(1):217-224.
    [17] Brennan C. S., Tudorica C. M., Carbohydrate-based fat replacers in the modification ofthe rheological, textural and sensory quality of yoghurt: comparative study of theutilisation of barley beta-glucan, guar gum and inulin [J]. International Journal of FoodScience Technology,2008,43(5):824-833.
    [18] Ramulu P., Udayasekhararao P. Total insoluble and soluble dietary fiber contents ofroots, tubers, vegetables, oilseeds, spices and condiments [J]. Journal of Food Scienceand Technology-Mysore,2006,43(4):399-403.
    [19] Chawla R., Patil G. R. Soluble Dietary Fiber [J]. Comprehensive Reviews in FoodScience and Food Safety,2010,9(2):178-196.
    [20] Fiserova M., Gigac J., Butas R. Influence of sugar beet pulp on bond strength andstructure of paper [J].. Wood Research,2007,52(3):59-74.
    [21] Baciu I. E., Jordening H. J. Kinetics of galacturonic acid release from sugar-beet pulp[J].. Enzyme and Microbial Technology,2004,34(5):505-512.
    [22] Rehinan Z., Rashid M., Shah W. H. Insoluble dietary fibre components of food legumesas affected by soaking and cooking processes [J]. Food Chemistry,2004,85(2):245-249.
    [23] Persson S., Endler A. Cellulose Synthases and Synthesis in Arabidopsis [J]. MolecularPlant,2011,4(2):199-211.
    [24] Pingali S. V., Urban V. S., Heller W. T., et al. SANS study of cellulose extracted fromswitchgrass [J]. Acta Crystallographica Section D-Biological Crystallography,2010,66:1189-1193.
    [25] Renteria-Flores J. A., Johnston L. J., Shurson G. C., et al. Effect of soluble and insolubledietary fiber on embryo survival and sow performance [J]. Journal of Animal Science,2008,86(10):2576-2584.
    [26] Papadomichelakis G., Karagiannidou A., Anastasopoulos V., et al. Effect of high dietarydigestible fibre content on the fatty acid composition of two muscles in fattening rabbits[J]. Livestock Science,2010,129(1-3):159-165.
    [27] Schwesinger W. H., Kurtin W. E., Page C. P., et al. Soluble dietary fiber protects againstcholesterol gallstone formation[J]. American Journal of Surgery,1999,177(4):307-310.
    [28] Phillips G. O., Cui S. W.. An introduction: Evolution and finalisation of the regulatorydefinition of dietary fibre [J]. Food Hydrocolloids,2011,25(2),139-143.
    [29] Bazzano L. A. Effects of Soluble Dietary Fiber on Low-Density Lipoprotein Cholesteroland Coronary Heart Disease Risk [J]. Current Atherosclerosis Reports,2008,10(6):473-477.
    [30] Kimmel S. E., Michel K. E., Hess R. S., Et al. Effects of insoluble and soluble dietaryfiber on glycemic control in dogs with naturally occurring insulin-dependent diabetesmellitus [J]. Journal of the American Veterinary Medical Association,2000,216(7):1076-1081.
    [31] Burke V., Hodgson J. M., Beilin L. J., et al. Dietary protein and soluble fiber reduceambulatory blood pressure in treated hypertensives [J]. Hypertension,2001,38(4):821-826.
    [32] Aksu Z., Isoglu I. A. Removal of copper(II) ions from aqueous solution by biosorptiononto agricultural waste sugar beet pulp [J]. Process Biochemistry2005,40(9):3031-3044.
    [33] Serena A., Hedemann M. S., Knudsen K. E. B. Influence of dietary fiber on luminalenvironment and morphology in the small and large intestine of sows [J]. Journal ofAnimal Science,2008,86(9):2217-2227.
    [34] Hermes R. G., Molist F., Ywazaki M., et al. Effect of dietary level of protein and fiberon the productive performance and health status of piglets [J]. Journal of Animal Science,2009,87(11):3569-3577.
    [35] Li C. Y., Liu J. X., Wang Y. Z., Wu Y. M., et al. Influence of differing carbohydratesources on L-tryptophan metabolism by porcine fecal microbiota studied in vitro [J].Livestock Science,2009,120(1-2):43-50.
    [36] O'Shea C. J., Lynch M. B., Sweeney T., et al. Comparison of a wheat-based dietsupplemented with purified beta-glucans, with an oat-based diet on nutrient digestibility,nitrogen utilization, distal gastrointestinal tract composition, and manure odor andammonia emissions from finishing pigs [J]. Journal of Animal Science,2011,89(2):438-447.
    [37] Guillon F., Champ M., Structural and physical properties of dietary fibres, andconsequences of processing on human physiology [J]. Food Research International,2000,33(3-4):233-245.
    [38] Nakao M., Ogura Y., Satake S., et al. Usefulness of soluble dietary fiber for thetreatment of diarrhea during enteral nutrition in elderly patients [J]. Nutrition2002,18(1):35-39.
    [39] Monfregola L., Leone M., Vittoria V., et al. Chemical modification of pectin:environmental friendly process for new potential material development [J]. PolymerChemistry,2011,2(4):800-804.
    [40] Sehiebera A., Hilt P., Streker P., et al. A new proeess for the combined recovery ofpectin and phenolic compounds from apple pomace [J]. Innovative Food Science andEmergingTechnologies,2003,4(1):99-107.
    [41] Voragen A. G. J., Coenen G. J., Verhoef R. P., et al. Pectin, a versatile polysaccharidepresent in plant cell walls [J]. Structural Chemistry,2009,20(2):263-275.
    [42] McKenna B. A., Nicholson T. M., Wehr J. B., et al. Effects of Ca, Cu, Al and La onpectin gel strength: implications for plant cell walls [J]. Carbohydrate Research,2010,345(9):1174-1179.
    [43] Kim Y., Kim Y. S., Yoo S. H., et al. Molecular differences of low methoxy pectinsinduced by pectin methyl esterase I: Effects on texture, release and perception of aromain gel systems [J]. Food Chemistry,2010,123(2):451-455.
    [44] Yoo Y. H., Lee S., Kim Y., et al. Functional characterization of the gels prepared withpectin methylesterase (PME)-treated pectins [J]. International Journal of BiologicalMacromolecules,2009,45(3):226-230.
    [45] Yoo S. H., Lee, B. H., Savary, B. J., et al. Characteristics of enzymatically-deesterifiedpectin gels produced in the presence of monovalent ionic salts [J]. Food Hydrocolloids,2009,23(7):1926-1929.
    [46] Mata Y. N., Blazquez M. L., Ballester, A., et al. Sugar-beet pulp pectin gels asbiosorbent for heavy metals: Preparation and determination of biosorption and desorptioncharacteristics [J]. Chemical Engineering Journal,2009,150(2-3):289-301.
    [47] Ovodov Y. S. Current views on pectin substances [J]. Russian Journal of BioorganicChemistry,2009,35(3):269-284.
    [48] Kumar A., Chauhan, G. S. Extraction and characterization of pectin from apple pomaceand its evaluation as lipase (steapsin) inhibitor [J]. Carbohydrate Polymers,2010,82(2):454-459.
    [49] Murata Y., Miyashita M., Kofuji K., et al. Drug release properties of a gel bead preparedwith pectin and hydrolysate [J]. Journal of Controlled Release,2004,95(1):61-66.
    [50] Yadav S., Yadav P. K., Yadav D., et al. Pectin lyase: A review [J]. ProcessBiochemistry2009,44(1):1-10.
    [51] Yu C. Y., Cao H. Zhang X. C., et al. Hybrid Nanospheres and Vesicles Based on Pectinas Drug Carriers [J]. Langmuir,2009,25(19):11720-11726.
    [52] Yapo B. M., Robert C., Etienne I., et al. Effect of extraction conditions on the yield,purity and surface properties of sugar beet pulp pectin extracts [J]. Food Chemistry,2007,100(4):1356-1364.
    [53] Nakauma M., Funami T., Noda S., et al. Comparison of sugar beet pectin, soybeansoluble polysaccharide, and gum arabic as food emulsifiers. Effect of concentration, pH,and salts on the emulsifying properties [J]. Food Hydrocolloids,2008,22(7):1254-1267.
    [54]韦诗琪,郭璇华.菠萝蜜丝果胶提取工艺优化食品研究与开发[J].食品研究与开发,2011,33(6):61-64.
    [55]刘义武,王碧.柠檬皮中果胶提取工艺研究内江师范学院学报[J].内江师范大学学报,2011,10,14-17.
    [56] Fishman M. L., Chau H. K., Cooke P. H., et al. Global structure of microwave-assistedflash-extracted sugar beet pectin [J]. Journal of Agricultural and Food Chemistry,2008,56(4):1471-1478.
    [57]孙德武,王德成,林险峰,等.微波辐射萃取法提取桔皮中的果胶[J].吉林师范大学学报(自然科学版),2008,29(3):113-114.
    [58]梁志鸿,刘晓红,李建敏.从桔皮中微波提取果胶及分离[J].南昌大学学报(理科版),2011,6,550-554.
    [59] Zhao W. J., Sun X. K., Deng X. N., et al. Cloud point extraction coupled withultrasonic-assisted back-extraction for the determination of organophosphorus pesticidesin concentrated fruit juice by gas chromatography with flame photometric detection [J].Food Chemistry,2011,127(2):683-688.
    [60]黄永春,马月飞,谢清若,等.超声波辅助提取西番莲果皮中果胶的研究[J].食品科学,2006,10(27):341-344.
    [61]韩冬梅,廖小军,李淑燕,等.酶法制取橙皮果胶的研究[J].食品工业科技,2011,2,183-186.
    [62]苏东林,李高阳,陈亮,等.橘皮果胶生产工艺优化及品质分析[J].食品科学,2011,32(18):95-101.
    [63] Alexander T. W., Reuter T., McAllister T. A. Qualitative and Quantitative PolymeraseChain Reaction Assays for an Alfalfa (Medicago sativa)-Specific Reference Gene To Usein Monitoring Transgenic Cultivars [J]. Journal of Agricultural and Food Chemistry,2007,55(8):2918-2922.
    [64] Sorensen O. S., Pauly M., Bush M., et al. Pectin engineering: Modification of potatopectin by in vivo expression of an endo-1,4-β-d-galactanase [J]. Proceedings of theNational Academy of Sciences,2000,97(13):7639-7644.
    [65] Hotchkiss A. T., Savary B. J., Cameron R. G., et al. Enzymatic modification of pectin toincrease its calcium sensitivity while preserving its molecular weight [J]. Journal ofAgricultural and Food Chemistry,2002,50(10):2931-2937.
    [66] Fishman M. L., Coffin D. R., Onwulata C. I., et al. Two stage extrusion of plasticizedpectin/poly(vinyl alcohol) blends [J]. Carbohydrate Polymers,2006,65(4):421-429.
    [67] Ghaffari A., Navaee K., Oskoui M., et al. Preparation and characterization of freemixed-film of pectin/chitosan/Eudragit intended for sigmoidal drug delivery [J].European Journal of Pharmaceutics and Biopharmaceutics,2007,67(1):175-186.
    [68] Coffin D. R., Fishman M. L. Physical and mechanical properties of highly plasticizedpectin/starch films [J]. Journal of Applied Polymer Science,1994,54(9):1311-1320.
    [69] Wang N., Ding E. Y., Cheng R. S., et al. The surface modification of nanocrystallinecellulose [J]. Acta Polymerica Sinica,2006,8,982-987.
    [70] Xie J. B., Hsieh Y. L. Modification of cellulose solids by enzyme-catalyzedtransesterification with vinyl esters in anhydrous organic solvents [J]. Biocatalysis inPolymer Science,2003,840,217-230.
    [71] Mikhailov Y. M., Aleshin V. V. Ruzanov S. N. High-rate combustion of cellulosenitrate in filled polymer systems [J]. Russian Journal of Physical Chemistry B,2011,5(3):499-501.
    [72] Olaru N. On structural modification of cellulose in carboxymethylation process [J].Advances in Lignocellulosics Chemistry for Ecologically Friendly Pulping and BleachingTechnologies,1998,259-262.
    [73] Seppala J., Pahimanolis N., Hippi U., et al. Surface functionalization of nanofibrillatedcellulose using click-chemistry approach in aqueous media [J]. Cellulose,2011,18(5):1201-1212.
    [74] Da Roz A. L., Leite F. L., Pereiro L. V., et al. Adsorption of chitosan on spin-coatedcellulose films. Carbohydrate Polymers,2010,80(1):65-70.
    [75] Beattie D. A., Mierczynska-Vasilev A. Adsorption of tailored carboxymethyl cellulosepolymers on talc and chalcopyrite: Correlation between coverage, wettability, andflotation [J]. Minerals Engineering,2010,23(11-13):985-993.
    [76] Cao Y., Tan H. M. Effects of cellulase on the modification of cellulose [J].Carbohydrate Research,2002,337(14):1291-1296.
    [77] Liu Y. S., Luo Y. H., Baker J. O. A single molecule study of cellulase hydrolysis ofcrystalline cellulose [J]. Single Molecule Spectroscopy and Imaging Iii,2010,75,71.
    [78] Shoemaker S. P., Vlasenko E., Gusakov A., et al. Enzyme-directed modification ofcellulose fibers. Abstracts of Papers of the American Chemical Society,1997,213,74.
    [79] Wilson D. I., Mascia S. Seiler C. Extrusion-spheronisation of microcrystalline cellulosepastes using a non-aqueous liquid binder [J]. International Journal of Pharmaceutics,2010,389(1-2):1-9.
    [80] Tang X. G., Hou M. Zou J. Poly(vinylidene fluoride)/Microcrystalline CelluloseNanocomposites with Enhanced Compatibility and Properties [J]. Composite Science andTechnology, Pts1and2,2011,471-472,355-360.
    [81] Suzuki T., Nakagami H. Effect of crystallinity of microcrystalline cellulose on thecompactability and dissolution of tablets [J]. European Journal of Pharmaceutics andBiopharmaceutics,1999,47(3):225-230.
    [82] Clark J. P. Pulsed electric field processing [J]. Food Technology,2006,60(1):66-67.
    [83] Perez O. E., PIlosof A. M. R. Influence of pulsed electric field processing on thestructure and gelation of egg white [J]. Food Colloids, Biopolymers and Materials,2003,284,119-132.
    [84] Guderjan M., Topfl S., Angersbach A., et al. Impact of pulsed electric field treatment onthe recovery and quality of plant oils [J]. Journal of Food Engineering,2005,67(3):281-287.
    [85] Ade-Omowaye B. I. O., Angersbach A., Eshtiaghi M. N.et al. Impact of high intensityelectric field pulses on cell permeabilisation and as pre-processing step in coconutpressing [J]. Innovative Food Science and Emerging Technologies,2001,1(2):203–209.
    [86] Fincan M., Dejmek P. Effect of osmotic pretreatment and pulsed electric field on theviscoleastic properties of potato tissue [J]. Journal of Food Engineering,2003,59(2-3):169–175.
    [87] Janositz A. Auswirkung von Hochspannungsimpulsen auf das Schnittverhalten vonKartoffeln. Diploma thesis, University of Technology,2005, Berlin.
    [88] Ostman E.M., Frid A.H., Groop L.C., er al. A dietary exchange of common bread fortailored bread of low glycaemic index and rich in dietary fibre improved insulin economyin young women with impaired glucose tolerance, European Journal of Clinical Nutrition,2006,60(3):334-341.
    [89] Zhao H., Jones C. L., Baker G. A., et al. Regenerating cellulose from ionic liquids for anaccelerated enzymatic hydrolysis [J]. Journal of Biotechnology,2009,139(1):47-54.
    [90] Laurikainen T., Harkonen H., Autio K., et al. Effects of enzymes in fibre-enrichedbaking [J]. Journal of the Science and Food Agriculture,1998,76(2):239-249.
    [91] Swatloski R. P., Spear S.K., Holbrey J.D., et al. Dissolution of cellose with ionic liquids[J]. Journal of the American Chemical Society.2002,124(18):4974-4975.
    [92] Rogers R. D., Holbrey J. D., Spear S.K., et al. Ionic liquids as green solvents:Engineering bioactive cellulose materials [J]. Abstracts of Papers of the AmericanChemical Society,2004,227: U310-U310.
    [93] Fukaya Y, Sugimoto A, OhnoH. Superior solubility of polysaccharides in low Viscosity,polar, and halogen-free1,3-dialkylimidazolium formats. Biomacromolecules,2006,7(12):3295-3297.
    [94] R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers. Dissolution of cellulosewith ionic liquids [J]. Journal of the American Chemical Society,2002,124(18):4974-4975.
    [95]段衍鹏,史铁钧,郭立颖,等.三种离子液体的合成及其对棉纤维素溶解性能的比较研究[J].化学学报,2009,67(10):1116-1122.
    [96] Feng L., Chen Z. I. Research progress on dissolution and functional modification ofcellulose in ionic liquids [J]. Journal of Molecular Liquids,2008,142(1-3):1-5.
    [97] Marsh K. N. Pinkert A. Pang S. S. Reflections on the Solubility of Cellulose [J].Industrial&Engineering Chemistry Research2010,49(22):11121-11130.
    [98] Remsing R. C., Liu Z., Sergeyev I., et al. Solvation and aggregation of N,N’-Dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy and moleculardynamics simulation study [J]. The journal of Physical Chemistry B,2008,112(25):7363-7369.
    [99] Zhang J., Zhang H., Wu J.,et al. NMR spectroscopic studies of cellobiose solvation inEminAc aimed to understand the dissolution mechanism of cellulose in ionic liquids [J].Physical Chemistry Chemical Physics,2010,12(8):1941-1947.
    [100] Ferreira P., Diez N., Faulds C. B., et al. Release of ferulic acid and feruloylatedoligosaccharides from sugar beet pulp by Streptomyces tendae [J]. BioresourceTechnology,2007,98(8):1522-1528.
    [101] Kirby A. R., MacDougall A. J., Morris V. J. Sugar beet pectin-protein complexes [J].Food Biophysics2006,1(1):51-56.
    [102] Spagnuolo M., Crecchio C., Pizzigallo M. D. R. Ruggiero, P., Fractionation of sugarbeet pulp into pectin, cellulose, and arabinose by arabinases combined with ultrafiltration[J]. Biotechnology and Bioengineering,1999,64(6):685-691.
    [103] Michel F., Thibault J. F., Mercier C., Heitz F., et al. Extraction and characterization ofpectins from sugar beet pulp [J]. Journal of Food Science,1985,50(5):1499–1500.
    [104] Leroux J., Langendorff V., Schick G., et al. Emulsion stabilizing properties of pectin[J]. Food Hydrocolloids,2003,17(4):455–462.
    [105] Holck J., Lorentzen A., Vigsnaes L. K., et al. Feruloylated and NonferuloylatedArabino-oligosaccharides from Sugar Beet Pectin Selectively Stimulate the Growth ofBifidobacterium spp. in Human Fecal in Vitro Fermentations [J]. Journal of Agriculturaland Food Chemistry,2011,59(12):6511-6519.
    [106] Gromer A., Kirby A. R., Gunning A. P., et al. Interfacial Structure of Sugar BeetPectin Studied by Atomic Force Microscopy [J]. Langmuir,2009,25(14):8012-8018.
    [107] Muglali O. H., Salman M. The Use of Sugar Beet Pulp As Silo Cover; SuluovaExperience [J]. Kafkas Universitesi Veteriner Fakultesi Dergisi,2010,16(2):351-352.
    [108] Vriesmann L. C., Teofilo R. F., Petkowicz C. L. D. Optimization of nitricacid-mediated extraction of pectin from cacao pod husks (Theobroma cacao L.) usingresponse surface methodology [J]. Carbohydrate Polymers,2011,84(4):1230-1236.
    [109] Fuentes-Alventosa J. M., Rodríguez-Gutiérrez G., Jaramillo-Carmona S., et al. Effectof extraction method on chemical composition and functional characteristics of highdietary fibre powders obtained from asparagus by-products [J]. Food Chemistry,2009,113(2):665-671.
    [110] Thakur B. R., Singh R. K., Handa A. K. Chemistry and uses of pectin-A review [J].Critical Reviews in Food Science and Nutrition,1997,37,(1):47-73.
    [111] Weibel M.K., Myers C.D. Use of parenchymal cell cellulose toimprove comestibles.U.S. Pat.,1990,4,923981.
    [112] Vriesmann L. C., Teofilo R. F., Petkowicz C. L. D. Optimization of nitricacid-mediated extraction of pectin from cacao pod husks (Theobroma cacao L.) usingresponse surface methodology [J]. Carbohydrate Polymer,2011,84(4):1230-1236.
    [113] Norziah M. H., Fang E. O., Abd Karim A. Extraction and characterisation of pectinfrom pomelo fruit peels [J]. Gums and Stabilisers for the Food Industry,2000,25(1):27-36.
    [114] Fertonani H. C. R., Scabio A., Carneiro E. B. B., et al. Extraction Model Of LowMethoxyl Pectin from Apple Pomace Effects of acid concentration and time on theprocess and the product [J]. Brazilian Archives of Biology and Technology,2009,52(1):177-185.
    [115] Vriesmann L. C., Teofilo R. F., Petkowicz C. L. D. Optimization of nitricacid-mediated extraction of pectin from cacao pod husks (Theobroma cacao L.) usingresponse surface methodology [J]. Carbohydrate Polymers,2011,84(4):1230-1236.
    [116] Canteri M. H. G., Scheer A. P., Wosiacki G., et al.A Comparative Study of PectinExtracted from Passion Fruit Rind Flours. Journal of Polymers and the Environment,2010,18,(4):593-599.
    [117] Pan Y., Hao Y., Chu T. W., et al. Ultrasonic-assisted extraction, chemicalcharacterization of polysaccharides from Yunzhi mushroom and its effect on osteoblastcells [J]. Carbohydrate Polymer,2010,80(3):922-926.
    [118] Gancz K., Alexander M., Corredig M. In situ study of flocculation of wheyprotein-stabilized emulsions caused by addition of high methoxyl pectin. FoodHydrocolloids2006,20(2-3):293-298.
    [119] Bagherian H., Ashtiani F. Z., Fouladitajar A., et al. Comparisons betweenconventional, microwave-and ultrasound-assisted methods for extraction of pectin fromgrapefruit. Chemical Engineering and Processing2011,50(11-12):1237-1243.
    [120] De Roeck A., Duvetter T., Fraeye I., et al. Effect of high-pressure/high-temperatureprocessing on chemical pectin conversions in relation to fruit and vegetable texture. FoodChemistry,2009,115(1):207-213.
    [121] Duvetter T., Fraeye I., Sila D. N., et al. Effect of temperature and high pressure on theactivity and mode of action of fungal pectin methyl esterase. Biotechnology Progress,2006,22(5):1313-1320.
    [122] Dubios M., Gilles K. A., Hamilton J. K., et al. Colorimetric Method for Determinationof Sugars and Related Substances [J]. Analytical Chemistry,1956,28(3):350-356.
    [123] Yapo B. M. Biochemical Characteristics and Gelling Capacity of Pectin from YellowPassion Fruit Rind as Affected by Acid Extractant Nature [J]. Journal of Agricultural andFood Chemistry,2009,57(4):1572-1578.
    [124] Voragen A. G. J., Coenen G. J., Verhoef R. P., et al. Pectin, a versatile polysaccharidepresent in plant cell walls [J]. Structural Chemistry,2009,20(2):263-275.
    [125] Fraeye I., Colle I., Vandevenne E., et al. Influence of pectin structure on texture ofpectin-calcium gels [J]. Innovative Food Science&Emerging Technologies,2010,11(2):401-409.
    [126] Fujino T., Itoh T. Changes in pectin structure during epidermal cell elongation in pea(Pisum sativum) and its implications for cell wall architecture [J]. Plant and CellPhysiology,1998,39(12):1315-1323.
    [127] Li D. Q., Jia X., Wei Z., et al. Box-Behnken experimental design for investigation ofmicrowave-assisted extracted sugar beet pulp pectin [J]. Carbohydrate Polymers2012,88(1):342-346.
    [128] Berardini N., Knodler M., Schieber A., et al. Utilization of mango peels as a source ofpectin and polyphenolics [J]. Innovative Food Science&Emerging Technologies2005,6(4):442-452.
    [129] Mukhiddinov Z. K., Khalikov D. K., Abdusamiev F. T., et al. Isolation and structuralcharacterization of a pectin homo and ramnogalacturonan [J]. Talanta,2000,53(1):171-176.
    [130] Kumar A., Chauhan G. S. Extraction and characterization of pectin from applepomace and its evaluation as lipase (steapsin) inhibitor [J]. Carbohydrate Polymers,2010,82(2):454-459.
    [131] Akhtar M., Dickinson E., Mazoyer J., et al. Emulsion stabilizing properties ofdepolymerized pectin [J]. Food Hydrocolloids,2002,16(3):249-256.
    [132] Nakauma M., Funami T., Noda S., et al. Comparison of sugar beet pectin, soybeansoluble polysaccharide, and gum arabic as food emulsifiers.1. Effect of concentration,pH, and salts on the emulsifying properties [J]. Food Hydrocolloids,2008,22(7):1254-1267.
    [133] Leroux J., Langendorff V., Schick G., et al. Emulsion stabilizing properties of pectin[J]. Food Hydrocolloids,2003,17(4):455-462.
    [134] Oosterveld A., Beldman G., Voragen A. G. J. Enzymatic modification of pecticpolysaccharides obtained from sugar beet pulp [J]. Carbohydrate Polymers,2002,48(1):73-81.
    [135] Oosterveld A., Pol I. E., Beldman G., et al. Isolation of feruloylated arabinans andrhamnogalacturonans from sugar beet pulp and their gel forming ability by oxidativecross-linking [J]. Carbohydrate Polymers,2001,44(1):9-17.
    [136] Arslan N., Kar F. Filtration of sugar-beet pulp pectin extract and flow properties ofpectin solutions [J]. Journal of Food Engineering,1998,36(1):113-122.
    [137] Masuelli M. A. Viscometric study of pectin. Effect of temperature on thehydrodynamic properties [J]. International Journal of Biological Macromolecules,2011,48(2):286-291.
    [138] Morris G. A., Castile J., Smith A., et al. The effect of different storage temperatureson the physical properties of pectin solutions and gels [J]. Polymer Degradation andStability,2010,95(12):2670-2673.
    [139] Jensen S., Rolin C., Ipsen R. Stabilisation of acidified skimmed milk with HM pectin[J]. Food Hydrocolloids,2010,24(4):291-299.
    [140] Munhoz C. L., Sanjinez-Argandona E. J., Soares M. S. Extraction of pectin fromdehydrated guava [J]. Ciencia E Tecnologia De Alimentos,2010,30(1):119-125.
    [141]张维杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社,2003,12-13.
    [142]凌关庭等.食品添加剂手册(第三版)[M].化学工业出版社,2003.
    [143] Schultz T. H. Methods in Carbohydrate Chemistry [M]. New York, Academic Press,1965.
    [144] Anger H. Berth G. Gel Permeation Chromatography and the Mark-HouwinkRelation for Pectins with Different Degrees of Esterification [J]. Carbohydrate Polymers,1986,6(3):193-202.
    [145] Dalev P. G., Simeonova L. S. Emulsifying properties of protein–pectin complexes andtheir use in oil-containing foodstuffs. Journal of the Science of Food and Agriculture,1995,68(2):203-206.
    [146] Michel F., Thibault J. F., Heitz F., et al. Extraction and Charcterization ofPectins from Sugar Beet Pulp. Journal of food science,1985,50(5):1499-1502.
    [147] Lewandowska K., Dabrowska A., Kaczmarek H. Rheological properties of pectin,poly(vinyl alcohol) and their blends in aqueous solutions [J]. E-Polymers,2012,68(1):44-46.
    [148] Ercelebi E. A., Ibanoglu E. Effects of pectin and guar gum on creaming stability,microstructure and rheology of egg yolk plasma-stabilized emulsions [J]. European FoodResearch and Technology,2010,231(2):297-302.
    [149] Arslan N., Kar F. Filtration of sugar-beet pulp pectin extract and flow properties ofpectin solutions [J]. Journal of Food Engineering,1998,36(1):113-122.
    [150] Masuelli M. A. Viscometric study of pectin. Effect of temperature on thehydrodynamic properties [J]. International Journal of Biological Macromolecules,2011,48(2):286-291.
    [151] Morris G. A., Castile J., Smith A., et al. The effect of different storage temperatureson the physical properties of pectin solutions and gels [J]. Polymer Degradation andStability,2010,95(12):2670-2673.
    [152] Han Z, Zeng X. A., Zhang B. S., et al. Effects of pulsed electric fields (PEF) treatmenton the properties of corn starch [J]. Journal of Food Engeering,2009,93(3):318-323.
    [153] Luo W. B., Han Z., Zeng X. A., et al. Study on the degradation of chitosan by pulsedelectric fields treatment [J]. Innovative Food Science and Emerging technologies,2010,11(1):587-591.
    [154] Jensen S., Rolin C., Ipsen R. Stabilisation of acidified skimmed milk with HM pectin[J]. Food Hydrocolloids,2010,24(4):291-299.
    [155] Pelletier S., Van Orden J., Wolf S., et al. A role for pectin de-methylesterification in adevelopmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls.New Phytologist,2010,188(3):726-739.
    [156] Galanakis C. M., Tornberg E., Gekas V. The effect of heat processing on thefunctional properties of pectin contained in olive mill wastewater [J]. Lwt-Food Scienceand Technology,2010,43(7):1001-1008.
    [157] Thirawong N., Kennedy R. A., Sriamornsak P. Viscometric study of pectin-mucininteraction and its mucoadhesive bond strength [J]. Carbohydrate Polymers,2008,71(2):170-179.
    [158] Vriesmann L. C., Teofilo R. F., Petkowicz C. L. D. Optimization of nitricacid-mediated extraction of pectin from cacao pod husks (Theobroma cacao L.) usingresponse surface methodology [J]. Carbohydrate Polymers,2011,84(4):1230-1236.
    [159] Hafren, J.; Daniel, G.; Westermark, U., The distribution of acidic and esterified pectinin cambium, developing xylem and mature xylem of Pinus sylvestris [J]. Iawa Journal,2000,21,(2):157-168.
    [160] Abram F., Smelt J. P. P. M., Bos R., et al. Modelling and optimization of inactivationof Lactobacillus plantarum by pulsed electric field treatment [J]. Journal of AppliedMicrobiology,2003,94(4):571-579.
    [161] Unal R., Yousef A. E., Dunne C. P. Spectrofuorimetric assessment of bacterial cellmembrane damage by pulsed electric feld [J]. Innovative Food Science and EmergingTechnologies,2002,3(3):247–254.
    [162]夏泰淳主编,工程流体力学,上海交通大学出版社,2006,2,第1版
    [163] Malicki A., Oziemblowski M., Molenda J., et al. Effect of pulsed electric field (PEF)on Escherichia coli within the liquid whole egg [J]. Bulletin of the Veterinary Institute inPulawy,2004,48(4):371-373.
    [164] Pataro G., Senatore B., Donsi G., et al. Effect of electric and flow parameters on PEFtreatment efficiency [J]. Journal of Food Engineering,2011,105(1):79-88.
    [165] Zhang Y., Sun J. X., Hu X. S., et al. Spectral alteration and degradation ofcyanidin-3-glucoside exposed to pulsed electric field. Journal of food chemistry,2000,58,3524-3531.
    [166] Chaudhuri B., Bhattacharjee S. A kinetic study of the oxidation of phenol,o-chlorophenol and catechol by hydrogen peroxide between298K and333K: the effectof pH, temperature and ratio of oxidant to substrate [J]. Journal of Chemical Technology&Biotechnology,1999,74(2):162-168.
    [167] Sato M., Ohshima T. Applications of high-voltage pulsed electric field in bioprocesses[J]. Progress of Green Oxidation/Reduction Technologies,2006,522-526.
    [168] Wang J. F., Mi Y., Yao C. G., et al. A Review on Molecular Dynamics Simulation forBiological Effects of Pulsed Electric Field. Ichve2008:2008International Conference onHigh Voltage Engineering and Application,763-766.
    [169] Sun J. X., Bai W. B., Zhang Y., et al. Effects of electrode materials on the degradation,spectral characteristics, visual colour, and antioxidant capacity of cyanidin-3-glucosideand cyanidin-3-sophoroside during pulsed electric field (PEF) treatment [J]. FoodChemistry,2010,128(3):742-747.
    [170] Greenwood C. T., Milne E. A. Starch degrading and synthesizing enzymes: adiscussion of their properties and action pattern [J]. Advances in Carbohydrate Chemistryand Biochemistry,1986,23,282–366.
    [171] Jiang Y., Du Y. X., Zhu X. M., et al. Physicochemical and comparative properties ofpectins extracted from Akebiatrifoliata var. australis peel [J]. Carbohyrate Polymers,2012,87(2):1663-1669.
    [172] Mishra R., Datt M., Banthia A. Synthesis and Characterization of Pectin/PVPHydrogel Membranes for Drug Delivery System [J]. Aaps Pharmscitech,2008,9(2):395-403.
    [173] Gnanasambandam R., Proctor A. Determination of pectin degree of esterifcation bydiffuse refectance Fourier transform infrared spectroscopy [J]. Food Chemistry,2000,68(3):327–332.
    [174] Singthong J., Cui S. W., Ningsanond S., et al. Structural characterization, degree ofesterifcation and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin[J]. Carbohydrate Polymers,2004,58(3):391–400.
    [175] Yang C. Q., Chen D. Z., Guan J. P., et al. Cross-Linking Cotton Cellulose by theCombination of Maleic Acid and Sodium Hypophosphite.1. Fabric Wrinkle Resistance[J]. Industrial&Engineering Chemistry Research,2010,49(18):8325-8332.
    [176] Barud H. S., Souza J. L., Santos D. B., et al. Bacterialcellulose/poly(3-hydroxybutyrate) composite membranes [J]. Carbohydrate Polymers,2011,83,(3):1279-1284.
    [177] Tingaut P., Zimmermann T., Lopez-Suevos F. Synthesis and Characterization ofBionanocomposites with Tunable Properties from Poly(lactic acid) and AcetylatedMicrofibrillated Cellulose [J]. Biomacromolecules,2010,11(2):454-464.
    [178] Garcia C. V., Borredon M. E. Solvent-free fatty acylation of cellulose andlignocellulosic wastes. Part2: reactions with fatty acids [J]. Bioresource Technology,1999,70(2):135-142.
    [179] Aburto J., Alric I., Borredon E. Organic solvent-free transesterification of variousstarches with lauric acid methyl ester and triacyl glycerides [J]. Starch,2005,57,145–152.
    [180] Ruenroengklin N., Yang B., Lin H., et al. Degradation of anthocyanin from litchi fruitpericarp by H2O2and hydroxyl radical [J]. Food Chemistry,2009,116(4):995-998.
    [181] Nishino T., Kotera M., Suetsugu M., et al. Acetylation of plant cellulose fiber insupercritical carbon dioxide [J]. Polymer,2011,52(3):830-836.
    [182] Liu C. F., Zhang A. P., Li W. Y., et al. Succinoylation of cellulose catalyzed withiodine in ionic liquid [J]. Industrial Crops and Product,2010,31(2):363-369.
    [183] Keilich G., Bittiger H. Optical rotatory dispersion and circular dichroism of benzoylpolysaccharides [J]. Biopolymers,1972,11(10):1997-2013.
    [184] Eiji Y. Polysaccharide-based chiral stationary phases for high-performance liquidchromatographic enantioseparation [J]. Journal of Chromatography A,2001,906(1-2):105-125.
    [185] Toga Y., Hioki K., Namikoshi H., et al. Dependence of chiral recognition on thedegree of substitution of cellulose benzoate [J]. Cellulose,2004,11(7):65-71.
    [186] Philipp B., Nehls I., Wagenknecht W., et al.13C-N.M.R. spectroscopic study of thehomogeneous sulphation of cellulose and xylan in the N2O4-DMF system [J].Carbohydrate Research,1987,164,107-116.
    [187] Ass B. A. P., Ciacco G. T., Frollini E. Cellulose acetates from linters and sisal:Correlation between synthesis conditions in DMAc/LiCl and product properties [J].Bioresource Technology,2006,97(14):1696-1702.
    [188] Feng L., Chen Z. L. Research progress on dissolution and functional modification ofcellulose in ionic liquids [J]. Journal of Polymer Research,2008,142(1-3):1-5.
    [189] Wang Z. M., Li L., Xiao K. J., et al. Homogeneous sulfation of bagasse cellulose in anionic liquid and anticoagulation activity [J]. Bioresource Technology,2009,100(4):1687-1690.
    [190] Cao Y., Zhang J., He J., et al. Homogeneous Acetylation of Cellulose at RelativelyHigh Concentrations in an Ionic Liquid [J]. Chinese Journal of Chemistry Engneering,2010,18(3):515-522.
    [191] Yang F., Li L., Li Q., et al. M. Enhancement of enzymatic in situ saccharification ofcellulose in aqueous-ionic liquid media by ultrasonic intensification [J]. CarbohydratePolymers,2010,81(2):311-316.
    [192] Zhu Y., Li H., Zhou H., et al. Cellulose and cellodextrin utilization by the cellulolyticbacterium Cytophaga hutchisonii [J]. Bioresource Technology,2010,101(16):6432-6437.
    [193] Liu C. F., Sun R. C., Zhang A. P., et al. Homogeneous modification of sugarcanebagasse cellulose with succinic anhydride using a ionic liquid as reaction medium [J].Carbohydrate Research,2009,342(7):919-926.
    [194] Ma S., Xue X. L., Yu S. J., et al. High-intensity ultrasound irradiated modification ofsugarcane bagasse cellulose in an ionic liquid [J]. Indutrial Crops and Product,2012,35(1):135-139.
    [195] Evans R., Wallis A.F.A.. Cellulose molecular-weights determined by viscometry [J].Journal of Applied Polymer Science,1989,37(8):2331-2340.
    [196] Jeon Y. S., Lowell A.V., Gross R. A. Studies of Starch Esterification: Reactions withAlkenylsuccinates in Aqueous Slurry Systems [J]. Starch–St rke,1999,51(4):90-93.
    [197] Sun J. X., Xu F., Geng Z. C., et al. Comparative study of cellulose isolated by totallychlorine-free method from wood and cereal straw [J]. Journal of Applied PolymerScience,2005,97,322-335.
    [198] Martins M. A., Forato L. A., Mattoso L. H. C., et al. A solid state13C high resolutionNMR study of raw and chemically treated sisal fibers [J]. Carbohydrate Polymers,2006,64(1):127-133.
    [199] Dickinson E. Protein at interface and in emulsions [J]. Journal of the Chemical Society,Faraday Transactions,1998,94(12):1657-1669.
    [200] Damodaran S. Protein stabilization of emulsions and foams [J]. Journal of FoodScience,2005,70(3):54-66.
    [201] Yoshida C. M. P., Antunes A. J. Characterization of whey protein emulsion films [J].Brazilian Journal of Chemical Engineering,2004,21(2):247-252.
    [202] Dong X. H., Zhao M. M., Yang B., et al. Effect of High-Pressure Homogenization onthe Functional Property of Peanut Protein [J]. Journal of Food Process Engineering,2011,34,(6):2191-2204.
    [203] Hayakawa S., Ohnishi K., Tsuru K., et al. Selective protein adsorption property andstructure of nano-crystalline hydroxy-carbonate apatite [J]. Bioceramics,18, Pts1and22006,309-311,503-506.
    [204] Zhang J. X., Chen D., Wang S. J., et al. Optimizing double emulsion process todecrease the burst release of protein from biodegradable polymer microspheres [J].Journal of Microencapsulation,2005,22(4):413-422.
    [205] Wu M. G., Xiong Y. L., Chen J., et al. Rheological and Microstructural Properties ofPorcine Myofibrillar Protein-Lipid Emulsion Composite Gels [J]. Journal of FoodScience,2009,74(4):207-217.
    [206] Song Y. H.; Zheng, Q., Rheological behavior of wheat protein and structure-propertyrelation of protein bioplastics [J]. Acta Polymerica Sinica2007,(10):931-936.
    [207] Wang R. W., Zhang Y., Ma G. H., et al. Modification of poly(glycidylmethacrylate-divinylbenzene) porous microspheres with polyethylene glycol and theiradsorption property of protein [J]. Colloids and Surfaces B-Biointerfaces,2006,51(1):93-99.
    [208] Wang Y. Q., Wang T.;, Su Y. L., et al. Protein-adsorption-resistance and permeationproperty of polyethersulfone and soybean phosphatidylcholine blend ultrafiltrationmembranes [J]. Journal of Membrane Science,2006,270(1-2):108-114.
    [209] Neirynck N., Dierckx S., Gorbe S. B., et al. Emulsion-stabilizing properties of wheyprotein-pectin conjugates [J]. Gums and Stabilizers for the Food Industry,2004,294(12):405-414.
    [210] Adav M. P., Parris N., Johnston D. B., et al. Corn fiber gum and milk proteinconjugates with improved emulsion stability [J]. Carbohydrate Polymers,2010,81(2):476-483.
    [211] Raikos V. Effect of heat treatment on milk protein functionality at emulsion interfaces.A review [J]. Food Hydrocolloids,2010,24(4):259-265.
    [212] Dickinson E. Emulsion gels: The structuring of soft solids with protein-stabilized oildroplets [J]. Food Hydrocolloids,2012,28(1):224-241.
    [213] Ralet M. C. Pectic Oligosaccharides [J]. Gums and Stabilisers for the Food Industry,2010,15,3-12.
    [214] Combo A. M. M., Aguedo M., Paquot M. Pectic oligosaccharides: production andpotential applications [J]. Biotechnologie Agronomie Societe Et Environnement,2011,15(1):153-164.
    [215] Littoz F., McClements D. J. Bio-mimetic approach to improving emulsion stability:Cross-linking adsorbed beet pectin layers using laccase [J]. Food Hydrocolloids,2008,22(7):1203-1211.
    [216] Norsker M., Jensen M., Adler-Nissen J. Enzymatic gelation of sugar beet pectin infood products. Food Hydrocolloids,2000,14(3):237-243.
    [217] Zeeb B., Fischer L., Weiss J. Cross-Linking of Interfacial Layers Affects the Salt andTemperature Stability of Multilayered Emulsions Consisting of Fish Gelatin and SugarBeet Pectin [J]. Journal of Agricultural and Food Chemistry,2011,59(19):10546-10555.
    [218] Synytsya A., Copikova J., Jankovska P., et al. Spectroscopic estimation of feruloylgroups in sugar beet pulp and pectin [J]. International Sugar Journal,2003,105(1258):481-488.
    [219] Abdel-Massih R. M., Baydoun E. A. H., Waldron K. W., et al. Effects of partialenzymic degradation of sugar beet pectin on oxidative coupling of pectin-linked ferulatesin vitro [J]. Phytochemistry2007,68(13):1785-1790.
    [220] Wi S. G., Singh A. P., Lee K. H., et al. The pattern of distribution of pectin,peroxidase and lignin in the middle lamella of secondary xylem fibres in alfalfa(Medicago sativa)[J]. Annals of Botany,2005,95(5):863-868

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700