以桔皮果胶为基质的脂肪替代品的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要通过流变学方法研究桔皮果胶凝胶性质和凝胶机理,并利用果胶为原料开发一种脂肪替代品PFM,考察PFM在不同食品体系如低脂涂抹食品,低脂乳制品和低脂焙烤食品中的应用效果。
     通过对不同酯化度、酰氨化度低酯桔皮果胶凝胶体系的流变学分析,对于低酯果胶,探讨果胶浓度及钙离子浓度对凝胶弹性模量、粘性模量、tanδ在降温过程中变化的影响。结果表明较低的酯化度对于形成更多的“蛋盒”结构起促进作用,酰氨基团可能促使果胶链之间通过氢键作用从而提高凝胶强度,但酰氨化度较高的果胶凝胶结构具有相对的不稳定性。
     对于高酯果胶,探讨了蔗糖与果胶浓度对高酯果胶凝胶性质的影响,酯化度不同的高酯果胶其凝胶的速度不同,酯化度越高,在同等条件下其凝胶强度越大,而且凝胶也较稳定。就同一种高酯果胶来讲,果胶浓度及蔗糖浓度与其网络结构的紧密程度和稳定性呈正相关。
     综合分析,酯化度为34-40%、酰氨化度为12-16%的桔皮果胶SF530较适合作为脂肪替代品的原料。因此就其凝胶进行了分形及动力学分析以期为进一步利用其凝胶性质提供理论支持。在研究范围内,SF530凝胶的分形维数介于1.48至1.97之间,其微观结构可以通过数学的方式表达出来。
     凝胶动力学分析表明,SF530果胶浓度对凝胶在冷却中的弹性模量及凝胶形成速度有很大影响,果胶浓度越大,凝胶的弹性模量曲线越高,凝胶形成的速度越快。高浓度的果胶与相应的钙离子形成了更多的缔合区从而使凝胶结构更坚实。pH同样对凝胶体系冷却过程中弹性模量及凝胶形成速度有很大影响,在pH值为3.0左右凝胶体系比较坚实,凝胶形成速度比较快。凝胶活化能的影响条件比较复杂,而且在凝胶形成前后有两个温度区域供分析。只有在果胶链比较丰富的前提下,果胶浓度才会对凝胶形成的能量壁垒产生显著的影响。在低钙离子浓度条件下,果胶浓度对于Mc的影响不明显,当钙离子浓度较高时,果胶浓度越大,Mc越小,形成的网络结构更趋于复杂。
     探讨了高酯果胶与SF530果胶交互作用形成热不可逆凝胶的机理。通过响应面分析,得到可以预测高酯与低酯果胶混合凝胶持水性、硬度、粘附性、胶着性和咀嚼度的数学模型,为后续研究及工业化生产提供理论支持。通过岭迹分析,得到有利于进行微粒化处理的混合果胶凝胶组成:低酯与高酯果胶浓度比为2:1的混合果胶浓度为1.95%,钙离子浓度为20mMol/L,GDL添加量为1%。
     选择CMC作为混合凝胶微粒的保护性外相,能显著提高产品的稳定性,缓解产品脱水现象。通过已经申请发明专利的加工工艺,制得由SF530为主要成分,配以高酯果胶和CMC的脂肪替代品—PFM。该产品的粒径范围为:d32,46.883μm;d43,74.236μm;d0.5,57.517μm;d0.9,133.135μm。用储存试验针对粒径和流变性变化进行了分析,结果表明,PFM具有良好的稳定性。
     流变学、显微分析、感观评定等方法研究结果表明,PFM在蛋黄酱中一方面提供了类似油脂的感观性质,另一方面与蛋黄酱样品中其他成分相互作用,影响体系的结构,随储存时间其流变性质有一些变化。总体来看,PFM在蛋黄酱类产品具有应用潜力。
     以微粒化果胶凝胶、果胶弱凝胶、微粒化果胶-乳清分离蛋白凝胶作为脂肪模拟品应用于低脂蛋黄酱,对比这三种脂肪替代品的应用效果。结果表明,三种脂肪模拟品均对低脂蛋黄酱的质构有改善作用,以果胶弱凝胶的作用最为明显。感观分析表明微粒化果胶凝胶对低脂蛋黄酱感观方面贡献最大。但后续研究表明,添加果胶弱凝胶的低脂蛋黄酱在储存一周后会逐渐形成凝胶,不具有塑性,涂抹性变差;而以微粒化果胶凝胶作为模拟品的蛋黄酱在储存三周后容器底部有明显的水沉淀下来,而且蛋黄酱的质构变得粗糙,可能是凝胶微粒不稳定,在储存期再次聚集。通过比较四种以果胶为原料的脂肪替代品应用效果可知,将微粒化果胶凝胶添加惰性外相,是制备稳定PFM的关键。
     PFM在低脂干酪中的应用研究表明,脂肪含量的降低和水分含量的增加导致低脂模拟干酪微观结构松散,替代脂肪含量50%的低脂干酪具有较低的硬度、胶着性、咀嚼度和黏附性。添加PFM做为脂肪替代品使低脂产品更接近于高脂产品。PFM的添加降低了产品的融化焓。
     PFM在低脂重油蛋糕中的应用研究表明,PFM能够替代重油蛋糕中的脂肪归功于其具有维持面团结构的功能和模拟脂肪口感的特点。从质构分析和感观分析发现,脂肪替代量40%以下低脂蛋糕与传统高脂对照差别不大。
     研究结果表明,本研究制备的脂肪替代品在低脂涂抹食品、低脂乳制品及焙烤制品具有很大的应用潜力。
Based on the studies of former researchers, the thesis discussed the properties and relative theories of pectin gelation process. Developing a new type fat replacer as pectin gel as the basic material, the author applied this fat replacer to reduce fat content of some food such as spreads, milk products and baking products to study the effects of it on the properties of such low fat food.
     Through study the rheological properties of different DM and DA citrus pectin gel. Discussing the effects of concentration of pectin and calcium ion on the elastic modulus and viscous modulus and tanδ.Concentration of sugar and pectin show little effects on the HM pectin. The SF530 showed the better gelation properties.
     Fractal analysis of the SF530 pectin gel showed that concentration of pectin acted improtant role during the gelation process. And the fractal dimension of different system were all lower than 2.0. The results should be understood better after more study.
     The results indicated that high concentration pectin promoted the formation of the pectin gel and increased the gelation speed of the pectin dispersions. The pectin concentration brought more effect to the gelation of the dispersion than the calcium ion.Only when pectin chain abundant, the difference of the structure of the pectin might effect the energy barrier in developing the pectin network. It was found that, at the fixed calcium ion content, the higher the pectin content, the lower the Mc in both two type pectin except when the calcium ion concentration was 6mMol/L.
     Through adding the calcium ion to the mixture of LM and HM pectin to induce heat irreversible gel. By study the WHC and texture of the mixture system of HM and LM pectin system based on the RSM analysis. Obained the regression model for forecasting some index of the gel. Select inertia polysaccharid as outer pahse to stabilize the PFM system. Optimized the process of preparation to get the appropriate product to imitate fat.
     Application of whey protein isolate and low-methoxy pectin based fat mimetics in mayonnaise was studied. Fat was partially substituted by different fat mimetics at levels of 50% respectively which the fat mimetics were referred to as PFM1 (mciropaticulate pectin gel), PFM2 (pectin weak-gel), and PFM3 (microparticulated combination of WPI and pectin). The full fat (Ff) (100% oil) mayonnaise without fat mimetic was used as a control experiment. Physicochemical, rheological, texture analysis, and sensory evaluation of the Ff and low fat (Lf) mayonnaises were performed. The results indicated that all Lf mayonnaises had significantly lower energy content, but higher water content than their Ff counterpart. In terms of texture, the formulation with pectin weak-gel as fat mimetic showed similar texture values as those of the Ff sample. Both Ff and Lf mayonnaises exhibited thixothopic shear thinning behaviour under steady shear tests and were rheologically classified as weak gels under small amplitude oscillatory shear tests. Sensory evaluation demonstrated that mayonnaises substituted with low methoxy pectin were acceptable. This study shows good potential for pectin weak-gel and microparticulated pectin gel to be used as a fat mimetic in mayonnaise. But the later study showed that the low fat mayonnaise with weak pectin gel as fat replacer became gel after one week storage. And there were water separated from the mayonnaise with microparticulated combination of WPI and pectin as fat replacer. The reason might be that the microparticle recongregate each other.
     Add outer phase to the above mciropaticulate pectin gel,and as fat replacer applied to the mayonnaise. Through rheology, microsturcture, sensory analysis study, it was found that PFM had the fat like sensory properties and might interact with other ingredients for the rheological properties varied during storage. And the PFM act good roles as fat replacer.
     Fat reduction in semi-solid cheese analogues and the use of pectin gel affected low-fat samples in different ways. Fat reduction and moisture augment caused the microstructure of low-fat cheese analogues obviously more loose. The low-fat samples showed lower hardness, gumminess, chewiness and adhesiveness and low-fat samples with pectin gel addition were more similar to the full-fat cheese analogues. Pectin gel addition showed that it can decrease the melt enthalpy of the samples which may be due to the conformation or structural change of pectin or pectin interacted with fat or protein to decrease the Delta H. The low-fat cheese analogue made with pectin gel addition was well received by the sensory panel. The properties of the low-fat cheese with pectin gel such as texture, microstructure and rheology were midst full-fat and low-fat without pectin gel addition samples. The results suggest that pectin gel may play the role of fat mimetic when added to cheese analogues.
     Functionality of fat mimetic from pectin on the low-fat high-ratio cakes might due to its ability to maintain the structure of the batters just as fat. In the same time the micro particles of the fat mimetic had the similar sensory properties as fat granules in the cakes. From the texture and evaluation analysis, it was found that when fat was 20, 40% replaced, the low-fat cakes were similar as the control sample.
     In conclusion,the PFM had the potential to applied in the low fat spreads, low fat milk products and low fat baking products.
引文
1. R.Fennema.,王璋等译.,食品化学[M]. 2003,北京:中国加工业出版社.
    2.刘永,周家华.碳水化合物型脂肪替代品的研究进展[J].食品科技, 2002(2):40~43.
    3. Siebel, R., Sylvia, A.J., Handbook of fat replaceres.[M]. 1996, New York: CRC Press.
    4. Lundman, P.,Boquist, S.,Samnegard, A., et al. A high-fat meal is accompanied by increased plasma interleukin-6 concentrations[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2007, 17(3):195-202.
    5. Dr. Ada Journal, A. Position of the American Dietetic Association: Fat replacers[J]. Journal of the American Dietetic Association, 2005, 105(2):266-275.
    6. Neumark-Sztainer, D.,Kristal, A.R.,Thornquist, M.D., et al. Early Adopters of Olestra-Containing Foods: Who are They?[J]. Journal of the American Dietetic Association, 2000, 100(2):198-204.
    7. Galloway, S.,Jian, L.,Johnsen, R., et al. [beta]-Amyloid or its precursor protein is found in epithelial cells of the small intestine and is stimulated by high-fat feeding[J]. The Journal of Nutritional Biochemistry, 2007, 18(4):279-284.
    8. Demori, I.,Voci, A.,Fugassa, E., et al. Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver[J]. Alcohol, In Press, Corrected Proof:284.
    9. Howard, B.V. Dietary fat and cardiovascular disease: Putting the Women's Health Initiative in perspective[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2007, 17(3):171-174.
    10. He, K., Xu, Y.Van Horn, L. The Puzzle of Dietary Fat Intake and Risk of Ischemic Stroke: A Brief Review of Epidemiologic Data[J]. Journal of the American Dietetic Association, 2007, 107(2):287-295.
    11. Mundy, A.L.,Haas, E.,Bhattacharya, I., et al. Fat intake modifies vascular responsiveness and receptor expression of vasoconstrictors: Implications for diet-induced obesity[J]. Cardiovascular Research, 2007, 73(2):368-375.
    12. Sugano, M.,Yamato, H.,Hayashi, T., et al. High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: A new rat model of diabetic nephropathy[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2006, 16(7):477-484.
    13. Bowes, S.A., Fat substitutes[M]. Third ed. Food Focus. Vol. 16. 1993: Leatherhead Food Research Association.
    14. Anonymous. Oat components as fat replacers[J]. Trends in Food Science & Technology, 1997, 8(9):315-315.
    15. Tilmon, R.W.Romanchik-Cerpovicz, J.E. Feasibility of using okra exudate as a fat replacer in low fat chocolate dropped cookies[J]. Journal of the American Dietetic Association, 2001, 101(9, Supplement 1):A-23.
    16. Romanchik-Cerpovicz, J.E., Tilmon, R.W.Baldree, K.A. Moisture Retention and Consumer Acceptability of Chocolate Bar Cookies Prepared With Okra Gum as a Fat Ingredient Substitute[J]. Journal of the American Dietetic Association, 2002, 102(9):1301-1303.
    17. Wekwete, B.Navder, K.P. Effect of Avocado Puree as a Fat Replacer on the Physical, Textural and Sensory Properties of Oatmeal Cookies[J]. Journal of the American Dietetic Association, 2005, 105(8, Supplement 1):47-47.
    18. Kavas, G.,Oysun, G.,Kinik, O., et al. Effect of some fat replacers on chemical, physical and sensory attributes of low-fat white pickled cheese[J]. Food Chemistry, 2004, 88(3):381-388.
    19. Silva, V.D.M.Silvestre, M.P.C. Functional properties of bovine blood plasma intended for use as a functional ingredient in human food[J]. Lebensmittel-Wissenschaft und-Technologie, 2003, 36(7):709-718.
    20. Sipahioglu, O., Alvarez, V.B.Solano-Lopez, C. Structure, physico-chemical and sensory properties of feta cheese made with tapioca starch and lecithin as fat mimetics[J]. International Dairy Journal, 1999, 9(11):783-789.
    21. Zalazar, C.A.,Zalazar, C.S.,Bernal, S., et al. Effect of moisture level and fat replacer on physicochemical, rheological and sensory properties of low fat soft cheeses[J]. International Dairy Journal, 2002, 12(1):45-50.
    22. Koca, N.Metin, M. Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers[J]. International Dairy Journal, 2004, 14(4):365-373.
    23. Romeih, E.A.,Michaelidou, A.,Biliaderis, C.G., et al. Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: chemical, physical and sensory attributes[J]. International Dairy Journal, 2002, 12(6):525-540.
    24. Muir, D.D.,Tamime, A.Y.,Shenana, M.E., et al. Processed Cheese Analogues Incorporating Fat-Substitutes 1. Composition, Microbiological Quality and Flavour Changes During Storage at 5 [deg]C[J]. Lebensmittel-Wissenschaft und-Technologie, 1999, 32(1):41-49.
    25. Tamime, A.Y.,Muir, D.D.,Shenana, M.E., et al. Processed Cheese Analogues Incorporating Fat-Substitutes 2. Rheology, Sensory Perception of Texture and Microstructure[J]. Lebensmittel-Wissenschaft und-Technologie, 1999, 32(1):50-59.
    26. Konuklar, G.,Inglett, G.E.,Warner, K., et al. Use of a [beta]-glucan hydrocolloidal suspension in the manufacture of low-fat Cheddar cheeses: textural properties by instrumental methods and sensory panels[J]. Food Hydrocolloids, 2004, 18(4):535-545.
    27. Sampaio, G.R.,Castellucci, C.M.N.C.M.N.,Pinto e Silva, M.E.M., et al. Effect of fat replacers on the nutritive value and acceptability of beef frankfurters[J]. Journal of Food Composition and Analysis, 2004, 17(3-4):469-474.
    28. Crehan, C.M.,Hughes, E.,Troy, D.J., et al. Effects of fat level and maltodextrin on the functional properties of frankfurters formulated with 5, 12 and 30% fat[J]. Meat Science, 2000, 55(4):463-469.
    29. Serdaroglu, M.Degirmencioglu, O. Effects of fat level (5%, 10%, 20%) and corn flour (0%, 2%, 4%) on some properties of Turkish type meatballs (koefte)[J]. Meat Science, 2004, 68(2):291-296.
    30. Serdaroglu, M. Improving low fat meatball characteristics by adding whey powder[J]. Meat Science, 2006, 72(1):155-163.
    31. Morin, L.A., Temelli, F.McMullen, L. Interactions between meat proteins and barley (Hordeum spp.) [beta]-glucan within a reduced-fat breakfast sausage system[J]. Meat Science, 2004, 68(3):419-430.
    32. Viana, F.R.,Silva, V.D.M.,Delvivo, F.M., et al. Quality of ham pate containing bovine globin and plasma as fat replacers[J]. Meat Science, 2005, 70(1):153-160.
    33. Cengiz, E.Gokoglu, N. Changes in energy and cholesterol contents of frankfurter-type sausages with fat reduction and fat replacer addition[J]. Food Chemistry, 2005, 91(3):443-447.
    34. Caceres, E.,Garcia, M.L.,Toro, J., et al. The effect of fructooligosaccharides on the sensory characteristics of cooked sausages[J]. Meat Science, 2004, 68(1):87-96.
    35. Chronakis, I.S. Structural-Functional and Water-holding Studies of Biopolymers in Low Fat Content Spreads[J]. Lebensmittel-Wissenschaft und-Technologie, 1997, 30(1):36-44.
    36. Worrasinchai, S.,Suphantharika, M.,Pinjai, S., et al. [beta]-Glucan prepared from spent brewer's yeast as a fat replacer in mayonnaise[J]. Food Hydrocolloids, 2006, 20(1):68-78.
    37. Santipanichwong, R.Suphantharika, M. Carotenoids as colorants in reduced-fat mayonnaise containing spent brewer's yeast [beta]-glucan as a fat replacer[J]. Food Hydrocolloids, In Press, Corrected Proof.
    38. Razavi, S.M.A., Habibi Najafi, M.B.Alaee, Z. The time independent rheological properties of low fat sesame paste/date syrup blends as a function of fat substitutes and temperature[J]. Food Hydrocolloids, 2007, 21(2):198-202.
    39. Misenti, L., Tappero, T.Ganji, V. Lecithin, An Emulsifier, Replaces The Fat and Reduces Energy Content In Devil's Food Cake[J]. Journal of the American Dietetic Association, 1998, 98(9, Supplement 1):A102-A102.
    40. Zoulias, E.I., Oreopoulou, V.Tzia, C. Textural properties of low-fat cookies containing carbohydrate- or protein-based fat replacers[J]. Journal of Food Engineering, 2002, 55(4):337-342.
    41. O'Brien, C.M.,Mueller, A.,Scannell, A.G.M., et al. Evaluation of the effects of fat replacers on the quality of wheat bread[J]. Journal of Food Engineering, 2003, 56(2-3):265-267.
    42. Lobato-Calleros, C.,Martinez-Torrijos, O.,Sandoval-Castilla, O., et al. Flow and creep compliance properties of reduced-fat yoghurts containing protein-based fat replacers[J]. International Dairy Journal, 2004, 14(9):777-782.
    43. Yazici, F.Akgun, A. Effect of some protein based fat replacers on physical, chemical, textural, andsensory properties of strained yoghurt[J]. Journal of Food Engineering, 2004, 62(3):245-254.
    44. Sandoval-Castilla, O.,Lobato-Calleros, C.,Aguirre-Mandujano, E., et al. Microstructure and texture of yogurt as influenced by fat replacers[J]. International Dairy Journal, 2004, 14(2):151-159.
    45. Aime, D.B.,Arntfield, S.D.,Malcolmson, L.J., et al. Textural analysis of fat reduced vanilla ice cream products[J]. Food Research International, 2001, 34(2-3):237-246.
    46. Anonymous. Chewing gum containing salatrim fat replacer[J]. Trends in Food Science & Technology, 1997, 8(4):125-125.
    47.郝晓敏,谷长生,刘继伟,宋文东,马德运.淀粉基脂肪模拟物的性质及代脂研究[J].食品研究与开发, 2007(2):32-35.
    48.邬应龙,康珏,陈小欢.辛烯基琥珀酸马铃薯淀粉酯在冰淇淋中的应用研究[J].食品科技, 2006(10):228-231.
    49.陶荣,马春华,邱春.酶法制备脂肪替代物的研究[J].食品科技, 2006(8):77-79.
    50.杨玉玲,许时婴,唐玉玲,袁博,李敏.喷射液化法制备籼米为基质的脂肪替代品[J].中国粮油学报, 2005(6):8-11.
    51.杨玉玲,许时婴.利用籼米为基质的脂肪替代品制备低脂火腿肠[J].食品科学, 2006(8):162-166.
    52.杨玉玲,许时婴.低脂冰淇淋的性质研究[J].食品科学, 2005(9):87-92.
    53.朱仁宏,姚卫蓉,郑书铭,钱和.多孔淀粉在低脂贡丸中的代脂研究[J].中国食品添加剂, 2005(4):22-25.
    54. Anonymous.高品质脂肪替代品的技术开发与应用研究”通过成果鉴定[J].华南理工大学学报(自然科学版), 2004(12):10.
    55.卢蓉蓉,李玉美,高乾,许时婴.以乳清蛋白为基质的脂肪替代品的微粒化研究[J].食品与发酵工业, 2006(9).
    56.卢蓉蓉,李玉美,许时婴,杨瑞金.以酶法改性乳清蛋白为基质的脂肪替代品在冰淇淋中的应用[J].食品与机械, 2006(5):23-26.
    57.成坚,刘晓艳,王琴.脂肪替代品对脱脂搅拌型酸奶流变性的影响[J].食品科技, 2005(1):13-15.
    58.刘燕,裘爱泳.脱脂大豆粉-多糖接枝物脂肪替代品的研究[J].中国油脂, 2006(11):33-35.
    59.刘燕,裘爱泳.豆粕-多糖接枝物脂肪替代品的研究[J].中国食品添加剂, 2006(5):83-85.
    60.蔡华珍,刘纯利,徐慧星.脂肪蔗糖替代品在芦荟大豆冰淇淋中的应用研究[J].中国乳品工业, 2005(8):21-24.
    61. N, C.,江波K., R.菊粉对Labneh浓缩酸乳微观结构和质构的影响[J].食品与发酵工业, 2005(4):6-9.
    62.陈丽云.脂肪替代品-蔗糖聚酯的合成方法及分析研究[D].广州:暨南大学,2001
    63. Wang, X.S., Liu, L.Fang, J.N. Immunological activities and structure of pectin from Centella asiatica[J]. Carbohydrate Polymers, 2005, 60(1):95-101.
    64. Sriamornsak, P., Sungthongjeen, S.Puttipipatkhachorn, S. Use of pectin as a carrier for intragastric floating drug delivery: Carbonate salt contained beads[J]. Carbohydrate Polymers, In Press, Corrected Proof.
    65. Chang, K.L.B.Lin, J. Swelling behavior and the release of protein from chitosan-pectin composite particles[J]. Carbohydrate Polymers, 2000, 43(2):163-169.
    66. Gulfi, M., Arrigoni, E.Amado, R. Influence of structure on in vitro fermentability of commercial pectins and partially hydrolysed pectin preparations[J]. Carbohydrate Polymers, 2005, 59(2):247-255.
    67.孙元琳,汤坚.果胶类多糖的研究进展[J].食品与机械, 2004(6):60-63.
    68. Tsoga, A., Richardson, R.K.Morris, E.R. Role of cosolutes in gelation of high-methoxy pectin. Part 1. Comparison of sugars and polyols[J]. Food Hydrocolloids, 2004, 18(6):907-919.
    69. Tsoga, A., Richardson, R.K.Morris, E.R. Role of cosolutes in gelation of high-methoxy pectin. Part 2. Anomalous behaviour of fructose: calorimetric evidence of site-binding[J]. Food Hydrocolloids, 2004, 18(6):921-932.
    70. Capel, F.,Nicolai, T.,Durand, D., et al. Calcium and acid induced gelation of (amidated) low methoxyl pectin[J]. Food Hydrocolloids, 2006, 20(6):901-907.
    71. Oosterveld, A.,Beldman, G.,Searle-van Leeuwen, M.J.F., et al. Effect of enzymatic deacetylation on gelation of sugar beet pectin in the presence of calcium[J]. Carbohydrate Polymers, 2000, 43(3):249-256.
    72. Schmelter, T., Vreeker, R.Klaffke, W. Characterisation of a novel gel system containing pectin, heat inactivated pectin methylesterase and NaCl[J]. Carbohydrate Polymers, 2001, 45(3):277-284.
    73. Norsker, M., Jensen, M.Adler-Nissen, J. Enzymatic gelation of sugar beet pectin in food products[J]. Food Hydrocolloids, 2000, 14(3):237-243.
    74. Kuuva, T.,Lantto, R.,Reinikainen, T., et al. Rheological properties of laccase-induced sugar beet pectin gels[J]. Food Hydrocolloids, 2003, 17(5):679-684.
    75. Picout, D.R.,Richardson, R.K.,Rolin, C., et al. Ca2+-induced gelation of low methoxy pectin in the presence of oxidised starch. Part 1. Collapse of network structure[J]. Carbohydrate Polymers, 2000, 43(2):113-122.
    76. Picout, D.R., Richardson, R.K.Morris, E.R. Ca2+-induced gelation of low-methoxy pectin in the presence of oxidised starch. Part 2. Quantitative analysis of moduli[J]. Carbohydrate Polymers, 2000, 43(2):123-131.
    77. Evageliou, V., Richardson, R.K.Morris, E.R. Co-gelation of high methoxy pectin with oxidised starch or potato maltodextrin[J]. Carbohydrate Polymers, 2000, 42(3):233-243.
    78. Nordmark, T.S.Ziegler, G.R. Quantitative assessment of phase composition and morphology of two-phase gelatin-pectin gels using fluorescence microscopy[J]. Food Hydrocolloids, 2000, 14(6):579-590.
    79. Evageliou, V., Richardson, R.K.Morris, E.R. Effect of pH, sugar type and thermal annealing on high-methoxy pectin gels[J]. Carbohydrate Polymers, 2000, 42(3):245-259.
    80. Michel, M.,Leser, M.E.,Syrbe, A., et al. Pressure Effects on Whey Protein-Pectin Mixtures[J]. Lebensmittel-Wissenschaft und-Technologie, 2001, 34(1):41-52.
    81. Walkenstrom, P.,Kidman, S.,Hermansson, A.-M., et al. Microstructure and rheological behaviour of alginate/pectin mixed gels[J]. Food Hydrocolloids, 2003, 17(5):593-603.
    82. Matia-Merino, L., Lau, K.Dickinson, E. Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels[J]. Food Hydrocolloids, 2004, 18(2):271-281.
    83. Beaulieu, M.,Corredig, M.,Turgeon, S.L., et al. The formation of heat-induced protein aggregates in whey protein/pectin mixtures studied by size exclusion chromatography coupled with multi-angle laser light scattering detection[J]. Food Hydrocolloids, 2005, 19(5):803-812.
    84. Lofgren, C.Hermansson, A.-M. Synergistic rheological behaviour of mixed HM/LM pectin gels[J]. Food Hydrocolloids, 2007, 21(3):480-486.
    85. Grosso, C.R.F., Bobbio, P.A.Airoldi, C. Effect of sugar and sorbitol on the formation of low methoxyl pectin gels[J]. Carbohydrate Polymers, 2000, 41(4):421-424.
    86. Fu, J.T.Rao, M.A. Rheology and structure development during gelation of low-methoxyl pectin gels: the effect of sucrose[J]. Food Hydrocolloids, 2001, 15(1):93-100.
    87.颜文斌,姚茂君,贾事栋,朱苗力.薜荔果胶提取工艺条件研究[J].食品与发酵工业, 2000(6):71-72.
    88.黄永春,马月飞,谢清若,何仁,班莉莉.超声波辅助提取西番莲果皮中果胶的研究[J].食品科学, 2006(10):341-344.
    89.戴玉锦,朱永梅,王桃云,王晓燕,黄跃.橙皮果胶和色素提取工艺研究[J].江苏农业科学, 2004(1):83-86.
    90.张鸿发,励建荣,周勤,徐善超.从柑桔皮中连续提取色素、果胶的工艺研究[J].食品科学, 2000(11):37-40.
    91.张鸿发,励建荣,周勤,徐善超.从柑桔皮中提取果胶的工艺研究[J].食品科技, 2000(6):67-69.
    92.刘步明,曹艳萍8.从海红果皮渣中提取果胶的工艺研究[J].食品科学, 2005(8):191-193.
    93.臧玉红.从苹果渣中提取果胶的工艺研究[J].食品科技, 2006(9).
    94.邓红,张宝善,李小平.从苹果渣中提取食用纤维和果胶的研究[J].食品科技, 2002(5):62-64.
    95.徐良栋.从向日葵盘中提取果胶类物质[J].食品工业科技, 2001(6):41-42.
    96.周艳红,金征宇.大豆皮果胶多糖的提取工艺研究[J].食品工业科技, 2004(3):76-78.
    97.张驰,吴永尧,彭振坤,陈建英,周大寨.豆腐柴中有效成分复合分离提取研究[J].食品科学, 2005(8):234-238.
    98.汪海波,汪芳安,潘从道.柑橘皮果胶的改进提取工艺研究[J].食品科学, 2007(2):136-141.
    99.陈发河,吴光斌,陈旭.琯溪蜜柚果皮中果胶提取工艺优化研究[J].食品科学, 2006(11).
    100.王鸿飞,李和生,谢果凰,傅书佳.桔皮中果胶提取技术的试验分析[J].农业机械学报, 2005(3).
    101.戴玉锦,张敏艳,徐珏.离子交换法提取橙皮果胶的研究[J].江苏农业科学, 2005(2):103-106.
    102.谢练武,周春山,周尽花.连续逆流萃取法从桔皮中提取果胶[J].食品工业科技, 2005(7):140-142.
    103.周仲实.膜分离技术在果胶提取中的应用[J].食品工业科技, 2003(2):51-53.
    104.强煦菁.南瓜粉中果胶的提取工艺[J].食品工业科技, 2002(3):15-17.
    105.邓红,李小平,史红兵.苹果渣提取果胶的沉淀条件研究[J].陕西师范大学学报(自然科学版), 2002(4):74-76.
    106.陈雪峰,詹雪英,杨大庆.苹果渣中提取果胶工艺研究[J].食品工业科技, 2000(3):19-21.
    107.张锐,孙美榕.十二烷基伯胺乙酸盐盐析法提取柚子皮果胶多糖的研究[J].食品工业科技, 2006(5):120-122.
    108.徐汶,王为国,张俊峰,吴元欣,王存文.树脂吸附法豆腐柴叶果胶提取液脱色的研究(Ⅰ) D3520树脂对色素的吸附性能[J].离子交换与吸附, 2005(4):323-326.
    109.徐汶,王为国,张俊峰,吴元欣,王存文.树脂吸附法豆腐柴叶果胶提取液脱色的研究(II)动态法脱色的适宜条件[J].离子交换与吸附, 2005(5):461-467.
    110.夏红,杜泉红,李红芹.酸解条件对香蕉皮中果胶提取率的影响[J].食品科学, 2005(9):269-271.
    111.张庆轩,杨普江,杨国华.酸提取大豆种皮果胶的工艺研究[J].化学研究与应用, 2005(5):689-690.
    112.张庆轩,杨普江,杨国华.酸提取大豆种皮果胶的工艺优化[J].食品科学, 2005(12):22-25.
    113.孔臻,刘钟栋,陈肇锬.微波法从苹果渣中提取果胶的研究[J].郑州粮食学院学报, 2000(2).
    114.赵华,陈晓媛.仙人掌果胶提取工艺的研究[J].食品工业科技, 2006(3).
    115.梁宁,陈庆安.向日葵盘、杆提取低酯果胶工艺和条件研究[J].食品与发酵工业, 2001(8).
    116.邓红,宋纪蓉,史红兵.盐析法从苹果渣中提取果胶的工艺条件研究[J].食品科学, 2002(3):87-90.
    117.任吉君,王艳,孙秀华,周荣,陈秀琼.盐析法提取红秋葵果胶的研究[J].食品科学, 2006(12):3-8.
    118.张明,吴煜,朱文明.用柚子皮提取果胶的工艺优化研究[J].食品研究与开发, 2006(6):19-23.
    119.周尽花,周春山,吴宇雄,汪璠,沈志强,常文彬.柚皮果胶的提取方法比较及其粘流性能研究[J].食品科学, 2006(5).
    120.张晨,刘志伟.柚皮提取果胶沉淀条件的研究[J].食品工业科技, 2000(6):27-28.
    121.潘雪峰,杨明非,赵长全.柚皮提取膳食纤维[J].东北林业大学学报, 2005(2):234-236.
    122.梁琪,蒋玉梅,毕阳.籽瓜瓜皮中果胶的提取及脱色研究[J].食品工业科技, 2002(10).
    123.朱文,郑荣珍,肖开恩,黎国勇.以西番莲果皮为原料制备LM-果胶[J].食品与发酵工业, 2001(5):20-22.
    124.周先玉,陈渭萍.火棘果实中油、色素及果胶的联产工艺研究[J].食品科学, 2004(2):211-213.
    125.周尽花,周春山.大孔吸附树脂法柚皮果胶脱色工艺研究[J]. 2005, 6:543-550.
    126.贾艳萍,何爱民.微波法萃取橘皮中果胶的研究[J].中国酿造, 2006(3):48-51.
    127.何晋浙,汪钊,李刚.柚皮中黄酮和果胶联产工艺的研究[J].食品科技, 2004(7):96-98.
    128.侯春友,刘钟栋,陈肇锬.微波条件下提取果胶的研究[J].郑州粮食学院学报, 1999(2):17-19.
    129.张晨,刘志伟,梁世中.柚皮提取果胶水解条件的研究[J].现代化工, 1999(10):32-36.
    130.李文德,张礼星,徐柔,章克昌.纤维素酶提取甜菜果胶的工艺条件[J].无锡轻工大学学报, 1999(4):42-45.
    131.陈改荣,郑洪和,张庆芝.盐沉淀法从马铃薯渣中提取果胶的工艺[J].食品科学, 1999(7):36-38.
    132.汪海波.低酯果胶的凝胶质构性能研究[J].食品科学, 2006(12):123-129.
    133.马利华,周惠欣.果胶在低糖条件下凝胶的初探[J].食品工业科技, 2004(9):116-117.
    134.徐伟,马力,袁永俊,熊华,朱秀灵,焦云鹏.低甲氧基果胶的胶凝机理及防止预凝胶形成的措施[J].食品与发酵工业, 2004(3):90-93.
    135.周爱梅,刘欣,李立虹,林洁,陈永泉.海藻酸钠-高甲氧基果胶复合体系凝胶特性的研究——蔗糖、Ca(2+)、葡萄糖酸-δ-内酯对复合体系凝胶特性的影响[J].食品科技, 2003(8):66-69.
    136.周爱梅,郝淑贤,刘欣,曾庆孝,李立虹,林洁.海藻酸钠高甲氧基果胶复合体系凝胶特性的研究[J].华南农业大学学报, (4):75-78.
    137. Candogan, K.Kolsarici, N. The effects of carrageenan and pectin on some quality characteristics of low-fat beef frankfurters[J]. Meat Science, 2003, 64(2):199-206.
    138. Khalil, A.H. Quality of french fried potatoes as influenced by coating with hydrocolloids[J]. Food Chemistry, 1999, 66(2):201-208.
    139. Albert, S.Mittal, G.S. Comparative evaluation of edible coatings to reduce fat uptake in a deep-fried cereal product[J]. Food Research International, 2002, 35(5):445-458.
    140. Hoefler, A.C., Warwick, N.Y., Sleap; Julia, A., Middletown, N.Y.,Trudso.,Jens E.Fat substitute[P].United States.020431.1993
    1. Ikeda, S., Foegeding, E. A., & Hagiwara, T. . Rheological study on the fractal nature of the protein gel structure[J]. 1999(15):8584-8589.
    2.周爱梅,刘欣,李立虹等.海藻酸钠-高甲氧基果胶复合体系凝胶特性的研究——蔗糖、Ca(2+)、葡萄糖酸-δ-内酯对复合体系凝胶特性的影响[J].食品科技, 2003(8):66-69.
    3.汪海波.低酯果胶的凝胶质构性能研究[J].食品科学, 2006(12):123-129.
    4. Zhang, T., Jiang, B.Wang, Z. Gelation properties of chickpea protein isolates[J]. Food Hydrocolloids, 2007, 21(2):280-286.
    5. Raikos, V., Campbell, L.Euston, S.R. Rheology and texture of hen's egg protein heat-set gels as affected by pH and the addition of sugar and/or salt[J]. Food Hydrocolloids, 2007, 21(2):237-244.
    6. Lofgren, C.Hermansson, A.-M. Synergistic rheological behaviour of mixed HM/LM pectin gels[J]. Food Hydrocolloids, 2007, 21(3):480-486.
    7. Bertrand, M.-E.Turgeon, S.L. Improved gelling properties of whey protein isolate by addition of xanthan gum[J]. Food Hydrocolloids, 2007, 21(2):159-166.
    8. Ahmed, J.Ramaswamy, H.S. Dynamic rheology and thermal transitions in meat-based strained baby foods[J]. Journal of Food Engineering, 2007, 78(4):1274-1284.
    9. Willats, W.G.T., Knox, J.P.Mikkelsen, J.D. Pectin: new insights into an old polymer are starting to gel[J]. Trends in Food Science & Technology, 2006, 17(3):97-104.
    10. Nataliya M. P., I.A.D. Pumpkin pectin: gel formation at unusually low concentration[J]. Carbohydrate Polymers, 1994(23):265-273.
    11. EI-Nawawi, S.A., Heikel, Y.A. Factors affecting gelation of high-ester citrus pectin[J]. Process Biochemistry, 1996, 32(5):381-385.
    12. Al-Ruqaie, I.M., Kasapis, S.Abeysekera, R. Structural properties of pectin-gelatin gels. Part II: effect of sucrose/glucose syrup[J]. Carbohydrate Polymers, 1997, 34(4):309-321.
    13. Sharma, S.K., Liptay, A.Le Maguer, M. Molecular characterization, physico-chemical and functional properties of tomato fruit pectin[J]. Food Research International, 1997, 30(7):543-547.
    14. Bogatyrev, V.A.,Shchyogolev, S.Y.,Dykman, L.A., et al. Supramolecular structure of gel-forming systems of pectins of different origin[J]. Food Hydrocolloids, 1998, 12(3):309-312.
    15. Grosso, C.R.F.Rao, M.A. Dynamic rheology of structure development in low-methoxyl pectin+Ca2++sugar gels[J]. Food Hydrocolloids, 1998, 12(3):357-363.
    16. Williams, M.A.K., Keenan, R.D.Halstead, T.K. A 2H NMR lineshape study of-CH3 group dynamics in pectin gels[J]. Food Hydrocolloids, 1998, 12(1):89-94.
    17. Fu, J.T.Rao, M.A. Rheology and structure development during gelation of low-methoxyl pectin gels: the effect of sucrose[J]. Food Hydrocolloids, 2001, 15(1):93-100.
    18.黄龙.果胶理化特性研究的最新进展及其对产品功能的影响[J].中国食品学报, 2005(增刊):454-461.
    19. Gilsenan, P.M., Richardson, R.K.Morris, E.R. Thermally reversible acid-induced gelation of low-methoxy pectin[J]. Carbohydrate Polymers, 2000, 41(4):339-349.
    20. Grosso, C.R.F., Bobbio, P.A.Airoldi, C. Effect of sugar and sorbitol on the formation of low methoxyl pectin gels[J]. Carbohydrate Polymers, 2000, 41(4):421-424.
    21. Lootens, D.,Capel, F.,Durand, D., et al. Influence of pH, Ca concentration, temperature and amidation on the gelation of low methoxyl pectin[J]. Food Hydrocolloids, 2003, 17(3):237-244.
    22. Tho, I., Sande, S.A.Kleinebudde, P. Cross-linking of amidated low-methoxylated pectin with calcium during extrusion/spheronisation: Effect on particle size and shape[J]. Chemical Engineering Science, 2005(60):3899-3907.
    23. Grant, G.T., Morris, E. R., Rees, D. A., Smith, P. J. C., & Thom, D. . Biological interactions between polysaccharides and divalent cations: the egg-box model.[J]. FEBS Letters, 1973(32):195-198.
    24. Seshadri, R.,Weiss, J.,Hulbert, G.J., et al. Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions[J]. Food Hydrocolloids, 2003, 17(2):191-197.
    25. Evageliou, V., Richardson, R.K.Morris, E.R. Effect of pH, sugar type and thermal annealing on high-methoxy pectin gels[J]. Carbohydrate Polymers, 2000, 42(3):245-259.
    26. Pongsawatmanit, R., Ikeda, S., & Miyawaki. Effect of sucrose on physical properties of alginate dispersed aqueous systems[J]. Food Science and Technology Research, 1999(5):183-187.
    27. Ferry, J., Viscoelastic Properties of Polymers[M]. 3rd ed. 1980, New York: Wiley Interscience.
    28. Picout, D.R.,Richardson, R.K.,Rolin, C., et al. Ca2+-induced gelation of low methoxy pectin in the presence of oxidised starch. Part 1. Collapse of network structure[J]. Carbohydrate Polymers, 2000, 43(2):113-122.
    29. Capel, F.,Nicolai, T.,Durand, D., et al. Calcium and acid induced gelation of (amidated) low methoxyl pectin[J]. Food Hydrocolloids, 2006, 20(6):901-907.
    30. Evageliou, V., Richardson, R.K.Morris, E.R. Co-gelation of high methoxy pectin with oxidised starch or potato maltodextrin[J]. Carbohydrate Polymers, 2000, 42(3):233-243.
    31. Ross-Murphy, S.B. Incipient behaviour of gelatin gels[J]. Rheologica Acta, 1991(30):401- 411.
    32. Funami, T.Nishinari, K. Gelling characteristics of curdlan aqueous dispersions in the presence of salts[J]. Food Hydrocolloids, 2007, 21(1):59-65.
    33. Ould Eleya, M.M., Ko, S.Gunasekaran, S. Scaling and fractal analysis of viscoelastic properties of heat-induced protein gels[J]. Food Hydrocolloids, 2004, 18(2):315-323.
    34. Bremer, L.G.B., Bijsterbosch, B. H., Schrijvers, R., & van Vliet, T. . On the fractal nature of the structure of casein gels[J]. Colloid and Surfaces, 1990(51):159-170.
    35. Mellema, M., van Vliet, T., & van Opheudsen, J. H. J. . Categorization of rheological scaling models for particle gels applied to casein gels[J]. Journal of Rheology, 2002(46):11-29.
    36. Shih, W.-H., Shih, W. Y., Kim, S. I., Liu, J., & Aksay, I. A. . Scaling behavior of the elastic properties of colloidal gels[J]. Physics Review A, 1990(42):4772-4779.
    37. Wu, H., & Morbidelli, M. A model relating structure of colloidal gels to their elastic properties[J]. Langmuir, 2001(17):1030-1036.
    38. Meakin, P., & Jullien, R. The effects of restructuring on the geometry of clusters formed by diffusion-limited, ballistic, and reaction-limited cluster-cluster aggregation [J]. Journal of Chemical Physics, 1988(89):246-250.
    39. Rhim, J.W., Nunes, R. V., Jones, V. A., & Swartzel, K. R. Determination of kinetic parameters using linear increasing temperature[J]. J Food Sci, 1989(54):446-450.
    40. Swartzel, K.R., Non-isothermal kinetic data generation for food constituents[M]. The physics of rubber elasticity, ed. R. P. Treloar, L.R.G. 1989, OxfordEngland: Clarendon Press.
    41. Ross-Murphy, S.B. Incipient behaviour of gelatin gels[J]. Rheologica Acta, 1991(30): 401- 411.
    42. Ross-Murphy, S.B. The estimation of junction zone size from geltine measurements[J]. Carbohydrate Polymers, 1991(14):281-294.
    43. Lopes da Silva, J.A.L., Gonc?alves, M. P., & Rao, M. A. Kinetics and thermal behaviour of the structure formation process in HMP/ sucrose gelation[J]. Int. J. Biol. Macromol, 1995(17):25-32.
    44. Treloar, L.R.G., The physics of rubber elasticity[M], Oxford: Clarendon Press.
    1. Singer, N.S.Carbohydrate cream substitute[P].United States.956788.1992
    2. Bateman, K.Fat substitute for one-to-one replacement[P].United States.516868.1995
    3. J, Y.T.Fat substituted and its preparation [P].U.S.757689.1996
    4. Baensch, J., ,Gumy. Didier ., Sievert, Dietmar., Wursch, Pierre.Food texture agent comprising particles of high-amylose starch and method of making same[P].714169.1996
    5. Hammond, N.A.Rice-flour hydrolysates fat substitute[P].U.S.977106.2001
    6. Camin, H.J.,Johnson, L.G.,Norton, R.C., et al.Starchy food-based fine particle fat substitute [P].419314.1999
    7. Hoefler, A.C.,Warwick, N.Y.,Sleap, et al.Fat substitute[P].United States.020431.1993
    8. Nataliya M. P., I.A.D. Pumpkin pectin: gel formation at unusually low concentration[J]. Carbohydrate Polymers, 1994(23):265-273.
    9. Michel, M.,Leser, M.E.,Syrbe, A., et al. Pressure Effects on Whey Protein-Pectin Mixtures[J]. Lebensmittel-Wissenschaft und-Technologie, 2001, 34(1):41-52.
    10. Mao, R., Tang, J.Swanson, B.G. Water holding capacity and microstructure of gellan gels[J]. Carbohydrate Polymers, 2001, 46(4):365-371.
    11. Beaulieu, M., Turgeon, S.L.Doublier, J.-L. Rheology, texture and microstructure of whey proteins/low methoxyl pectins mixed gels with added calcium[J]. International Dairy Journal, 2001, 11(11-12):961-967.
    12. Fu, J.T.Rao, M.A. Rheology and structure development during gelation of low-methoxyl pectin gels: the effect of sucrose[J]. Food Hydrocolloids, 2001, 15(1):93-100.
    13. DeMars, L.L.Ziegler, G.R. Texture and structure of gelatin/pectin-based gummy confections[J]. Food Hydrocolloids, 2001, 15(4-6):643-653.
    14. Chantrapornchai, W.McClements, D.J. Influence of NaCl on optical properties, large-strain rheology and water holding capacity of heat-induced whey protein isolate gels[J]. Food Hydrocolloids, 2002, 16(5):467-476.
    15. Worrasinchai, S.,Suphantharika, M.,Pinjai, S., et al. [beta]-Glucan prepared from spent brewer's yeast as a fat replacer in mayonnaise[J]. Food Hydrocolloids, 2006, 20(1):68-78.
    16. Nijenhuis, K.t. Thermoreversible networks. Viscoelastic properties and structure of gels[J]. Adv Polym Sci, 1997, 130:1–193.
    17. Gilsenan, P.M., Richardson, R.K.Morris, E.R. Thermally reversible acid-induced gelation of low-methoxy pectin[J]. Carbohydrate Polymers, 2000, 41(4):339-349.
    18.黄龙.果胶理化特性研究的最新进展及其对产品功能的影响[J].中国食品学报, 2005(增刊):454-461.
    19. Lofgren, C.Hermansson, A.-M. Synergistic rheological behaviour of mixed HM/LM pectin gels[J]. Food Hydrocolloids, 2007, 21(3):480-486.
    20. Evageliou, V., Richardson, R.K.Morris, E.R. Co-gelation of high methoxy pectin with oxidised starch or potato maltodextrin[J]. Carbohydrate Polymers, 2000, 42(3):233-243.
    21. Sato, Y.,Kawabuchi, S.,Irimoto, Y., et al. Effect of water activity and solvent-ordering on intermolecular interaction of high-methoxyl pectins in various sugar solutions[J]. Food Hydrocolloids, 2004, 18(4):527-534.
    22.蔡志宁,赵谋明,杨晓泉. CMC对花生蛋白奶乳浊稳定性影响的研究[J].食品科学, 2005, 26(6):74-77.
    23.曹卫春,夏文水.黄原胶对酸性乳饮料稳定性影响的研究[J].食品科技, 2006(6):87-91.
    1. Depree, J.A.Savage, G.P. Physical and flavour stability of mayonnaise[J]. Trends in Food Science & Technology, 2001, 12(5-6):157-163.
    2. Harrison, L.J.Cunningham, F.E. Factors influencing the quality of mayonnaise.[J]. Journal of Food Quality, 1985(8):1-20.
    3. Murphy, P. Low fat developments with speciality starches[J]. Food Technology International, 1999(22):24.
    4. James, S.M.Method for producing fat-free and low-fat viscous dressings using inulin[P].United States.5721004.1998
    5. Pedersen, A.Christian, H. No and low fat mayonnaise compositions[P].United States.5641533.1997
    6. Chouard, G. 00% indulgence 0% guilt - be in phase, bring connectivity to your low- fat mayonnaise[J]. Innovations in Food Technology, 2005(29):98-100.
    7. Grodzka, K., Maciejec, A.Krygier, K. Attempts to apply microcrystalline cellulose as a fat replacer in low fat mayonnaise emulsions.[J]. Zywnosc, 2005(12):52-61.
    8. Trueck, H.U.A mayonnaise-like product[P].European Patent 0768042A1.1997
    9. Wendin, K. Low-fat mayonnaise: influences of fat content, aroma compounds and thickeners[J]. Food Hydrocolloids, 1997(11):87-99.
    10. Xiong, R., Xie, G.Edmondson, A.S. Modelling the pH of mayonnaise by the ratio of egg to vinegar[J]. Food Control, 2000, 11(1):49-56.
    11. Worrasinchai, S.,Suphantharika, M.,Pinjai, S., et al. [beta]-Glucan prepared from spent brewer's yeast as a fat replacer in mayonnaise[J]. Food Hydrocolloids, 2006, 20(1):68-78.
    12.许安邦,林维宣,佟绍芳,食品分析[M]. 2005,北京:中国轻工业出版社.
    13. Batista, A.P.,Raymundo, A.,Sousa, I., et al. Rheological characterization of coloured oil-in-water food emulsions with lutein and phycocyanin added to the oil and aqueous phases[J]. Food Hydrocolloids, 2006, 20(1):44-52.
    14. Guilmineau, F.Kulozik, U. Impact of a thermal treatment on the emulsifying properties of egg yolk. Part 1: Effect of the heating time[J]. Food Hydrocolloids, 2006, 20(8):1105-1113.
    15. Guilmineau, F.Kulozik, U. Impact of a thermal treatment on the emulsifying properties of egg yolk. Part 2: Effect of the environmental conditions[J]. Food Hydrocolloids, 2006, 20(8):1114-1123.
    16. Guilmineau, F.Kulozik, U. Influence of a thermal treatment on the functionality of hen's egg yolk in mayonnaise[J]. Journal of Food Engineering, 2007, 78(2):648-654.
    17. Peressini, D., Sensidoni, A.de Cindio, B. Rheological characterization of traditional and light mayonnaises[J]. Journal of Food Engineering, 1998, 35(4):409-417.
    18. Langton, M.,Jordansson, E.,Altskar, A., et al. Microstructure and image analysis of mayonnaises[J]. Food Hydrocolloids, 1999, 13(2):113-125.
    19. Yazici, F.Dervisoglu, M. Effect of pH adjustment on some chemical, biochemical, and sensory properties of Civil cheese during storage[J]. Journal of Food Engineering, 2003, 56(4):361-369.
    20. Jacobsen, C.Green, E. II-24. Sensory evaluation of mayonnaise with fish oil[J]. Food Quality and Preference, 1996, 7(3-4):342-342.
    21. Richardson, R.K., Morris, E.R.Ross-Murphy, S.B. Characterisation of the perceived texture of the thickened systems by dynamic viscosity measurements[J]. Food Hydrocolloids, 1989(3):175-191.
    22. Aluko, R.E.McIntosh, T. Limited enzymatic proteolysis increases the level of incorporation of canola proteins into mayonnaise[J]. Innovative Food Science & Emerging Technologies, 2005, 6(2):195-202.
    23. Loren, N., Langton, M.Hermansson, A.M. Confocal laser scanning microscopy and image analysis of kinetically trapped phase-separated gelatin/maltodextrin gels[J]. Food Hydrocolloids, 1999, 13(2):185-198.
    24.孙哲浩.蛋白质与多糖类在水相介质中交互作用机理的研究[D].广州:华南理工大学,2001
    25. Diftis, N.G., Biliaderis, C.G.Kiosseoglou, V.D. Rheological properties and stability of model salad dressing emulsions prepared with a dry-heated soybean protein isolate-dextran mixture[J]. Food Hydrocolloids, 2005, 19(6):1025-1031.
    26. Siebel, R., Sylvia, A.J., Handbook of fat replaceres.[M]. 1996, New York: CRC Press.
    27. McClements, D.J., Food emulsions; principles, practice, and techniques[M]. 1999, Boca Raton: CRC Press.
    28. ?tern, P., Valentová, H.Pokorni, J. Rheological properties and sensory texture of mayonnaise[J]. European Journal of Lipid Science and Technology, 2001(103):23-28.
    29. Abu-Jdayil, B. Modelling the time dependant rheological behaviour of semi-solid foodstuffs[J]. Journal of Food Engineering, 2003(57):97-102.
    30. Peressini, D.S., A.Cindio, B.d. Rheological Characterization of Traditional and Light Mayonnaises[J]. Journal of Food Engineering, 1998(35):409-417.
    31. Chronakis, I.S. Structural-Functional and Water-holding Studies of Biopolymers in Low Fat Content Spreads[J]. Lebensmittel-Wissenschaft und-Technologie, 1997, 30(1):36-44.
    32. ancini, F.,Montanari, L.,Peressini, D., et al. Influence of alginate concentration and molecular weight on functional properties of mayonnaise[J]. Lebensmittel-Wissenschaft Und-Technologie, 2002(35):517-525.
    33. Ma, L.Barbosa-Cánovas, G.V. Rheological characterization of mayonnaise. Part II: Flow and viscoelastic properties at different oil and xanthan gum concentrations[J]. Journal of Food Engineering, 1995(25):409-425.
    1. Romeih, E.A.,Michaelidou, A.,Biliaderis, C.G., et al. Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: chemical, physical and sensory attributes[J]. International Dairy Journal, 2002, 12(6):525-540.
    2. Drake, M.A.,Boylston, T.D.,Spence, K.D., et al. Chemical and sensory effects of a Lactobacillus adjunct in Cheddar cheese[J]. Food Research International, 1996, 29(3-4):381-387.
    3. Mistry, V.V. Low fat cheese technology[J]. International Dairy Journal, 2001, 11(4-7):413-422.
    4. Kebary, K.M.K.,Khader, A.E.,Zedan, A.N., et al. Accelerated ripening of low fat Ras cheese by attenuated lactobacilli cells[J]. Food Research International, 1996, 29(8):705-713.
    5. Crites, S.G., Drake, M.A.Swanson, B.G. Microstructure of Low-fat Cheddar Cheese Containing Varying Concentrations of Sucrose Polyesters[J]. Lebensmittel-Wissenschaft und-Technologie, 1997, 30(7):762-766.
    6. Zalazar, C.A.,Zalazar, C.S.,Bernal, S., et al. Effect of moisture level and fat replacer on physicochemical, rheological and sensory properties of low fat soft cheeses[J]. International Dairy Journal, 2002, 12(1):45-50.
    7. Koca, N.Metin, M. Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers[J]. International Dairy Journal, 2004, 14(4):365-373.
    8. Bachmann, H.-P. Cheese analogues: a review[J]. International Dairy Journal, 2001, 11(4-7):505-515.
    9. Muir, D.D.,Tamime, A.Y.,Shenana, M.E., et al. Processed Cheese Analogues Incorporating Fat-Substitutes 1. Composition, Microbiological Quality and Flavour Changes During Storage at 5 [deg]C[J]. Lebensmittel-Wissenschaft und-Technologie, 1999, 32(1):41-49.
    10. Tamime, A.Y.,Muir, D.D.,Shenana, M.E., et al. Processed Cheese Analogues Incorporating Fat-Substitutes 2. Rheology, Sensory Perception of Texture and Microstructure[J]. Lebensmittel-Wissenschaft und-Technologie, 1999, 32(1):50-59.
    11.许安邦,林维宣,佟绍芳,食品分析[M]. 2005,北京:中国轻工业出版社.
    12. Katsiari, M.C., Voutsinas, L.P.Kondyli, E. Improvement of sensory quality of low-fat Kefalograviera-type cheese with commercial adjunct cultures[J]. International DairyJournal, 2002, 12(9):757-764.
    13. Lee, S.K.,Buwalda, R.J.,Euston, S.R., et al. Changes in the rheology and microstructure of processed cheese during cooking[J]. Lebensmittel-Wissenschaft und-Technologie, 2003, 36(3):339-345.
    14. Lucey, J.A.,Mishra, R.,Hassan, A., et al. Rheological and calcium equilibrium changes during the ripening of Cheddar cheese[J]. International Dairy Journal, 2005, 15(6-9):645-653.
    15. Rochdi, A., Foucat, L.Renou, J.-P. NMR and DSC studies during thermal denaturation of collagen[J]. Food Chemistry, 2000, 69(3):295-299.
    16. Zimeri, J.E.Kokini, J.L. Phase transitions of inulin-waxy maize starch systems in limited moisture environments[J]. Carbohydrate Polymers, 2003, 51(2):183-190.
    17. Berodier, F., Stevenot, C.Schlich, P. Description of the Flavour of Comte Cheese[J]. Lebensmittel-Wissenschaft und-Technologie, 1997, 30(3):298-304.
    18. Sipahioglu, O., Alvarez, V.B.Solano-Lopez, C. Structure, physico-chemical and sensory properties of feta cheese made with tapioca starch and lecithin as fat mimetics[J]. International Dairy Journal, 1999, 9(11):783-789.
    19. Hort, J.Le Grys, G. Developments in the textural and rheological properties of UK Cheddar cheese during ripening[J]. International Dairy Journal, 2001, 11(4-7):475-481.
    20. Konstance, R.P., Holsinger, V. H. Development of rheological test methods for cheese[J]. Journal of Food Technology, 1992, 46(1):105–109.
    21. Lobato-Calleros, C.,Rodriguez, E.,Sandoval-Castilla, O., et al. Reduced-fat white fresh cheese-like products obtained from W1/O/W2 multiple emulsions: Viscoelastic and high-resolution image analyses[J]. Food Research International, 2006, 39(6):678-685.
    22. Lobato-Calleros, C.,Velazquez-Varela, J.,Sanchez-Garcia, J., et al. Dynamic rheology of Mexican Manchego cheese-like products containing canola oil and emulsifier blends[J]. Food Research International, 2003, 36(1):81-90.
    23. Tunick, M.H. Rheology of dairy foods that gel, stretch, and fracture[J]. Journal of Dairy Science, 2000, 83(8):1892-1898.
    24. Lazaridou, A.Biliaderis, C.G. Cryogelation of cereal [beta]-glucans: structure and molecular size effects[J]. Food Hydrocolloids, 2004, 18(6):933-947.
    25. Normand, V.,Aymard, P.,Lootens, D.L., et al. Effect of sucrose on agarose gels mechanical behaviour[J]. Carbohydrate Polymers, 2003, 54(1):83-95.
    26. Deszczynski, M.,Kasapis, S.,MacNaughton, W., et al. Effect of sugars on the mechanical and thermal properties of agarose gels[J]. Food Hydrocolloids, 2003, 17(6):793-799.
    27. Kohyama, K.,Matsuki, J.,Yasui, T., et al. A differential thermal analysis of the gelatinization and retrogradation of wheat starches with different amylopectin chain lengths[J]. Carbohydrate Polymers, 2004, 58(1):71-77.
    28. Kohyama, K.Sasaki, T. Differential scanning calorimetry and a model calculation of starches annealed at 20 and 50 [deg]C[J]. Carbohydrate Polymers, 2006, 63(1):82-88.
    29. Medina-Torres, L.,Brito-De La Fuente, E.,Gomez-Aldapa, C.A., et al. Structural characteristics of gels formed by mixtures of carrageenan and mucilage gum from Opuntia ficus indica[J]. Carbohydrate Polymers, 2006, 63(3):299-309.
    1. Brooker, B.E. The stabilization of air in cake batters- the role of fat[J]. Food Structure, 1993(12):285-296.
    2. Brooker, B.E. The stabilization of air in foods containing fat– a review[J]. Food Structure, 1993(12):115-122.
    3. Kocer, D.,Hicsasmaz, Z.,Bayindirli, A., et al. Bubble and pore formation of the high-ratio cake formulation with polydextrose as a sugar- and fat-replacer[J]. Journal of Food Engineering, 2007, 78(3):953-964.
    4. Campbell, A.D.Bell, L.N. Acceptability of Low-Fat, Sugar-free Cakes: Effect of Providing Compositional Information During Taste-Testing[J]. Journal of the American Dietetic Association, 2001, 101(3):354-356.
    5. Gomez, M.,Ronda, F.,Caballero, P.A., et al. Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes[J]. Food Hydrocolloids, 2007, 21(2):167-173.
    6. Hoefler, A.C.,Warwick, N.Y.,Sleap, et al.Fat substitute[P].United States.020431.1993
    7. Ghaddar, S., Sim, J.Josef, S. The Effects on the Appearance, Texture, and Flavor of Banana CakeMade with all-purpose Flour, Soy Flour and Whole Wheat Flour[J]. Journal of the American Dietetic Association, 1997, 97(9, Supplement 1):A83-A83.
    8. Ronda, F.,Gomez, M.,Blanco, C.A., et al. Effects of polyols and nondigestible oligosaccharides on the quality of sugar-free sponge cakes[J]. Food Chemistry, 2005, 90(4):549-555.
    9. Baeva, M.Panchev, I. Investigation of the retaining effect of a pectin-containing edible film upon the crumb ageing of dietetic sucrose-free sponge cake[J]. Food Chemistry, 2005, 92(2):343-348.
    10. Ramachandran, S.,Patel, A.K.,Nampoothiri, K.M., et al. Coconut oil cake--a potential raw material for the production of [alpha]-amylase[J]. Bioresource Technology, 2004, 93(2):169-174.
    11. Kablan, M.M.Alkhamis, T.M. An experimental study for a combined system of tar sand, oil shale, and olive cake as a potential energy source in Jordan[J]. Biomass and Bioenergy, 1999, 17(6):507-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700