光学超晶格中集成化纠缠源产生及应用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学超晶格又称为准相位匹配材料或非线性光子晶体,是一种重要的微结构功能材料,它已经被广泛应用于非线性光学如激光频率转换,目前人们正在探索它在量子光学领域的应用。微结构调制使得光学超晶格材料在量子光源研制等方面展示出很多新异功能,其内在的功能集成更是契合了当代实用化量子信息处理的要求。基于光学超晶格材料的有源光子芯片研究已经成为当前量子光学领域新的研究热点。本论文较系统地研究了一维、二维光学超晶格中不同的铁电畴调制结构对纠缠光子产生的集成调控作用。基于多重准相位匹配原理,在光学超晶格中通过多重自发参量下转换可以直接产生光子对的频率、偏振、路径纠缠等以及超纠缠态,我们分析了这些集成化光子纠缠源的纠缠特性及它们在量子信息处理中的应用。本论文主要包括以下几个方面内容:
     1.提出在二维光学超晶格上直接制备"beam-like"型双光子偏振纠缠态的理论方案。利用二维光学超晶格中一对镜面对称的非共线准相位匹配过程,经由外部的偏振分束器可以直接得到具有良好空间模式的简并或非简并的偏振纠缠光子对。我们进一步考虑飞秒脉冲光抽运的自发参量下转换过程,可以有效地产生多光子偏振纠缠GHZ态和cluster态。多重准相位匹配过程可以有效减少外部分立光学元件,使得光子偏振纠缠的产生变得高效、易于收集、集成、稳定、便携。
     2.利用多重准相位匹配技术,研究了基于光学超晶格制备“可预知”单光子多组份模式纠缠W态的理论方案。二维光学超晶格具有内在的相干分束功能,当多个准相位匹配过程的闲置光子共享同一个模式时,可以设计其对应的信号光子相干分布于不同的空间模式,触发闲置光子后就可以直接得到“可预知”的单光子多组份模式纠缠。采取多个畴结构的串联可以使得这种多模纠缠向更高维度扩展,产生单光子任意多模式的纠缠w态。我们计算了这类纠缠态的纠缠度并刻画了它们的纠缠特性,探讨了它们的可行性实验方案。虽然单光子多组份模式纠缠可以利用多个分束器等价实现,但是该集成化方案具有稳定、纠缠度高、小型化、可扩展等优势,将在量子信息处理中有重要应用,如实现量子网络中不同量子存储器之间的纠缠分布等。
     3.通过对光学超晶格畴结构的设计使自发参量下转换产生的光子对在不同自由度上同时纠缠,实现双光子的超纠缠源。我们设计了多通道双周期极化的光学超晶格来实现双光子在偏振和频率两个自由度上同时纠缠,每个通道产生非简并的偏振纠缠,通道之间由于周期差异产生的纠缠光子对的频率各不相同,形成双光子高维频率纠缠。我们分析了这种超纠缠态的温度调谐特性、光子对的产率、纠缠的度量等。我们还提出结合波导工艺来进一步优化该理论方案,产生高效、集成的超纠缠源。基于光学超晶格材料,利用多重准相位匹配技术是制备双光子超纠缠态的有效途径。
     4.将光学超晶格产生的新型纠缠态应用于量子信息领域。基于单光子模式纠缠态提出了量子辅助克隆方案。单光子多组份模式纠缠源可用于实现量子网络中不同量子存储器之间的纠缠分布。基于双光子超纠缠态提出了将其作为量子信道用于量子安全直接通信的两种方案,为实现更安全、更高效的量子保密通信提供了理论基础。无论是单光子多组份模式纠缠态还是双光子超纠缠态都能承载更多的量子信息,可以完成多光子纠缠在量子信息处理中的任务,在未来实用化量子信息处理和量子通信中会有所应用。
Optical superlattice (OSL) is an important functional micro-structure material, which is known as quasi-phase-matching material (QPM) or nonlinear photonic crystal (NPC). It has already been widely applied in the field of nonlinear optics such as the frequency conversion of the laser. Nowadays people turn to explore the applications of optical superlattice in the field of quantum optics. Via micro-structure modulation, OSLs exhibit multiple novel functions in the engineering of quantum light sources. The inherent integration function of OSL materials fit the requirements of the practical applications in quantum information processing. We can obtain entangled photons from an OSL quantum chip, which becomes a new hotspot in the field of quantum optics. In this thesis, we comprehensively studied the compact manipulation of entangled photons by different ferroelectric domain modulation structures in the one-dimensional (1D) and two-dimensional (2D) OSL materials. Based on the principle of multiple QPM, photonic frequency, polarization, path entanglement and even hyper-entanglement can be directly generated under multiple concurrent spontaneous parametric down-conversion (SPDC) processes in OSLs. We study the entanglement properties of the compact photon pairs generated from OSL and their applications in quantum information processing. The main contributions are listed as follows:
     1. We proposed a scheme for the preparation of an integrated "beam-like" polarization entangled two-photon state by using2D OSL materials. By using an external polarizing beam splitter, degenerate and non-degenerate polarization entangled photon pairs with well-defined spatial mode can be directly obtained by a pair of mirror-symmetrical non-collinear QPM SPDC processes from2D OSL. Furthermore, considering the SPDC processes pumped by ultra-short femtosecond pulse, we can effectively obtain multiphoton polarization-entangled GHZ state and cluster state. Such photonic polarization entangled states have many advantages such as high efficiency, easy to collect, integrated, stable and portable since multiple QPM processes can effectively reduce the external discrete optical elements.
     2. We proposed a scheme for the preparation of the heralded single-photon multipartite entangled W state by using multiple QPM based on OSLs. OSLs act like natural coherent beam-splitters. When multiple QPM processes share the same mode of idler photon, it is possible to design the corresponding signal photon to locate coherently in different spatial modes. By triggering idler photon, the single-photon multipartite entangled W state is heralded and directly obtained. The arbitrary N-mode entangled W state can be produced via arranging domain structures in series. We calculated the concurrence and theoretically characterized the single-photon entanglement. We also discussed the experimental feasibility for the preparation of the single-photon multipartite entangled W state. Although the single-photon multipartite entanglement can be generated equivalently by multiple beamsplitters, our integrated realization of single-photon multipartite entanglement has many advantages, such as stability, high degree of entanglement, miniaturization, scalability. It has many important applications in quantum information processing, such as realizing entanglement distribution among different quantum memories in the quantum internet.
     3. We designed OSLs to enable the photon pairs from SPDC processes to be entangled over several degrees of freedom, achieving the hyper-entanglement. We proposed a compact generation of polarization-frequency hyperentangled photon-pair source by engineering a multi-stripe dual-periodic poled OSL. Each stripe is designed for the generation of a non-degenerate cross-polarization entanglement. The frequency of photon pair from each stripe differs, thus resulting in a high dimensional frequency-entanglement. We analyzed the temperature detuning character, the generation rate and the entanglement degree of the hyper-entangled state. Furthermore, we proposed another feasible experimental realization of such hyper-entangled source based on guided-wave optics which improves the performance with high brightness, miniaturization and stabilization. It is a very effective method for integrated engineering of hyper-entanglement with QPM technique based on OSL.
     4. We adopt the new types of entangled photon sources generated from OSLs to be applied in the fields of quantum information. We proposed a scheme for quantum assisted cloning based on single-photon entangled states. We can realize entanglement distribution of the quantum memories by using the single-photon multipartite mode-entangled W state in quantum networks. We proposed two protocols about quantum secure direct communication based on three-dimensional hyper-entangled states, which provided as the theoretical basis for the realization of a more efficient and safer quantum cryptography communication. Both single-photon multipartite mode-entangled state and two-photon hyper-entangled state can carry more quantum information and complete the task of multi-photon entanglement in quantum information processing, which will find very important applications in the future practical quantum information processing and quantum communications.
引文
[1]P. A. M. Dirac, Proc. Roy. Soc. A,114,243 (1927).
    [2]R. Hanbury Brown, R. Q. Twiss, Nature,177,27 (1956).
    [3]R. J. Glauber, Phys. Rev.,130,2529 (1963).
    [4]U. M. Titulaer, R. J. Glauber, Phys. Rev. B,140,676 (1965).
    [5]赵建士,南京大学硕士论文(2010).
    [6]龙桂鲁,邓富国,曾谨言,量子力学新进展(第五辑),北京:清华大学出版社(2011).
    [7]N. Gisin and R. Thew, Nat. photonics,1 (3),165 (2007).
    [8]A. S. Clark, J. Fulconis, J. G. Rarity, W. J. Wadsworth, and J. L. O'Brien, Phys. Rev. A,79(3),030303 (2009).
    [9]J. C. F. Matthews, A. Politi, et al., Nat. photonics,3,346 (2009).
    [10]D. W. Berry and H. M. Wiseman, Nat. photonics,3,317 (2009).
    [11]A. Politi, M. J. Cryan, J.G. Rarity, S. Yu, and J. L. O'Brien, Science,320,646 (2008).
    [12]J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph & D. Branning, Nature, 426,264 (2003).
    [13]J. C. F. Matthews, A. Politi, A. Stefanov & J. L. O'Brien, Nat. Photonics,3, 346 (2009).
    [14]A. Politi, J. C. F. Matthews, J. L. O'Brien, Science,325,1221 (2009).
    [15]A. Peruzzo, M. Lobino, J. C. F. Matthews, et al., Science,329,1500 (2010).
    [16]曾贵华,量子密码学,北京:科学出版社(2006).
    [17]龙桂鲁,裴寿镛,曾谨言,量子力学新进展(第四辑),北京:清华大学出版社(2007).
    [18]J. L. O'Brien, A. Furusawa and J. Vuckovic, Nat. photonics,3,687 (2009).
    [19]P. Kok, W. J. Munro, et al., Rev. Mod.Phys.,79(1),145 (2007).
    [20]N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys.,74(1),145 (2002).
    [21]E. Knill, R. Laflamme, and G. J. Milburn, Nature (London),409,46 (2001).
    [22]C. H. Bennett, G. Brassard, et.al., Phys. Rev. Lett.,70,1895 (1993).
    [23]X. M. Jin, J. G. Ren, et al., Nat. photonics,4,376 (2010).
    [24]J. Yin, J. G. Ren, et al., Nature,488,185 (2012).
    [25]X. S. Ma, T. Herbst, et al., Nature,489,269 (2012).
    [26]M. Zukowski, A. Zeilinger, M. A. Home, A. K. Ekert, Phys. Rev. Lett.,71, 4287 (1993).
    [27]陈汉武,量子信息与量子计算简明教程,南京:东南大学出版社(2006).
    [28]W. K. Wootters and W. H. Zurek, Nature (London),299,802 (1982).
    [29]D. Bru β, and C. Macchiavello, Journal of Physics A,34,6815 (2001).
    [30]V. Buzek, and M. Hillery, Phys. Rev. A,54,1844 (1996).
    [31]L. M. Duan and G. C. Guo, Phys. Rev. Lett.,80,4999 (1998).
    [32]N. Gisin and S. Massar, Phys. Rev. Lett.,79,2153 (1997).
    [33]M. Hillery and V. Buzek, Phys. Rev. A,56,1212(1997).
    [34]A. K. Pati, Phys. Rev. A,61,022308 (2000).
    [35]A. K. Pati, Phys. Rev. A,63,014302 (2001).
    [36]H. J. Kimble, Nature,453,1023 (2008).
    [37]C. H. Bennett, and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, (IEEE, New York),175 (1984).
    [38]C. H. Bennett, Phys. Rev. Lett.,68,3121 (1992).
    [39]A. K. Ekert, Phys. Rev. Lett.,67,661 (1991).
    [40]M. Christophe, P. D. Townsend., Opt. Lett.,20,1695 (1995).
    [41]A. Muller, J. Berguet, N. Gisin., Euro. Lett.,23,383 (1993).
    [42]A. Muller, T. Herzog, et al., Appl. Phys. Lett.,70,793 (1997).
    [43]P. Jouguet, S. Kunz-Jacques, et al., Nat. Photonics,7,378 (2013).
    [44]J. Y. Wang, B. Yang, et al., Nat. Photonics,7,387 (2013).
    [45]H. J. Briegel, W. Duer, J. I. Cirac, P. Zoller, Phys. Rev. Lett.,81,5932 (1998).
    [46]L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature,414,413 (2001).
    [47]A. Beige, B. G. Englert, et al., Acta Phys. Pol. A,101(6),357 (2002).
    [48]K. Bostrom, and T. Felbinger, Phys. Rev. Lett.,89,187902 (2002).
    [49]F. G. Deng, G.L. Long, and X. S. Liu, Phys. Rev. A,68,042317 (2003).
    [50]M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev. A,59,1829 (1999).
    [51]A. Einstein, N. Rosen and B. Podolsky, Phys. Rev.47,777 (1935).
    [52]E. Schrodinger, Naturwissenschaften,23,807 (1935).
    [53]张永德,量子信息物理原理,北京:科学出版社(2005).
    [54]J. S. Bell, Physics (Long Island City, N.Y.) 1,195 (1964).
    [55]W. Diir, G. Vidal, and J. I. Cirac, Phys. Rev. A,62(6),062314 (2000).
    [56]Y. H. Shih, and C. O. Alley, Phys. Rev. Lett.,61,2921 (1988).
    [57]J. D. Franson, Phys. Rev. Lett.,62,2205 (1989).
    [58]G. Lima, G. Vallone, et al., Phys. Rev. A,81,040101(R) (2010).
    [59]J. G. Rarity, P. R. Tapster, Phys. Rev. Lett.,64,2495 (1990).
    [60]A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Nature (London),412,313 (2001).
    [61]N. K. Langford, R. B. Dalton, et al., Phys. Rev. Lett.,93,053601 (2004).
    [62]P. G. Kwiat, Journal of Modern Optics,44,2173 (1997).
    [63]S. Hill and W. K. Wootters, Phys. Rev. Lett.,78(26),5022 (1997).
    [64]W. K. Wootters, Phys. Rev. Lett.,80,2245 (1998).
    [65]P. Rungta, V. Buzek, C. M. Caves, et al., Phys. Rev. A,64,042315 (2001).
    [66]V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A,61,052306 (2000).
    [67]J. F.Clauser, M. A. Home, et al., Phys. Rev. Lett.,23(15),880 (1969).
    [68]J. F. Clauser, and M. A. Home., Phys. Rev. D,10(2),526 (1974).
    [69]H. F. Hofmann, S. Takeuchi, Phys. Rev. A,68,032103 (2003).
    [70]L.M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.,84,2722 (2000).
    [71]J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, Phys. Rev. Lett., 92,210403(2004).
    [72]M. Bourennane, M. Eibl, et al., Phys. Rev. Lett.,92,087902 (2004).
    [73]P. Krammer, H. Kampermann, et al., Phys. Rev. Lett.,103,100502 (2009).
    [74]O. Giihne and G. Toth, Phys. Rep.474,1 (2009).
    [75]G.Vallone, R. Ceccarelli, et al., Phys. Rev. A,78(6),062305 (2008).
    [76]M. Berta, M. Christandl, et al., Nat. Phys.,1734,659 (2010).
    [77]C. F. Li, J. S. Xu, X.Y. Xu, K. Li and G. C. Guo, Nat. Phys.,7,752 (2011).
    [78]R. Prevedel, D. R. Hamel, et al., Nat. Phys.,7(10),757 (2011).
    [79]Y. H. Shih, Rep. Prog. Phys.66,1009 (2003).
    [80]D. N. Klyshko, Zh. Eksp. Teor. Fiz.,55,1006 (1968).
    [81]D. C. Burnham, and D. L. Weinberg, Phys. Rev. Lett.,25,84 (1970).
    [82]M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, Phys. Rev. A, 50,5122(1994).
    [83]徐平,南京大学博士论文(2007).
    [84]喻小强,南京大学博士论文(2008).
    [85]P.G. Kwiat, K. Mattle, et al., Phys. Rev. Lett.,75,4337 (1995).
    [86]T. E. Kiess, Y. H. Shih, A. V. Sergienko and C. O. Alley, Phys. Rev. Lett.,71, 3829(1993).
    [87]A. C. Valencia Gonzalez, High-accurate Nonlocal Timing and Positioning Using Entangled Photon Pairs, Univ. of Maryland, Baltimore County (2005).
    [88]W. G. Spitzer, and D. A. Kleinman, Phys. Rev.,121,1324 (1961).
    [89]J. A. Armstrong, N. Bloembergen, et al., Phys Rev,127(6),1918 (1962).
    [90]P. A. Franken, J. F. Ward, Rev. Mod. Phys.,35,23 (1963).
    [91]V. Berger, Phys. Rev. Lett.,81,4136 (1998).
    [92]H. G. Chatellus, A. V. Sergienko, et al., Opt. Express,14(21),10060 (2006).
    [93]Crystal Technology Inc.; URL:http://www.crystaltechnology.com /docs/LNopt.pdf(2006).
    [1]龚彦晓,中国科技大学博士论文(2009).
    [2]J. Bell, Physics 1,195(1964).
    [3]W. Dur, G. Vidal, and J. I. Cirac, Phys. Rev. A 62(6),062314 (2000).
    [4]J. W. Pan et al., Nature,403,515 (2000).
    [5]Z. B. Chen, J. W. Pan, et al., Phys. Rev. Lett.,90,160408 (2003).
    [6]M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A,69,062311 (2004).
    [7]R. Raussendorf, D. E. Browne, and H. J. Briegel, Phys. Rev. A,68,022312, (2003).
    [8]R. H. Dicke, Phys. Rev.,93,99 (1954).
    [9]C. Schmid, N. Kiesel, et al., IOS Press,113 (2007).
    [10]C. H. Bennett, and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, (IEEE, New York), pp.175-179 (1984).
    [11]A. K. Ekert, Phys. Rev. Lett.,67,661 (1991).
    [12]C. H. Bennett, and S. J. Wiesner, Phys. Rev. Lett.,69,2881 (1992).
    [13]K. Mattle, et al., Phys. Rev. Lett.,76,4656 (1996).
    [14]J. W. Pan, D. Bouwmeester, M. Daniell, H. Wienfurter, and A. Zellinger, Nature 403,515(2000).
    [15]D. Bouwmeester, J. W. Pan,et. al., Nature,390,575 (1997).
    [16]P. Scherpelz, R. Resch, D. Berryrieser, and T. W. Lynn, Phys. Rev. A,84, 032303(2011).
    [17]W. T. Liu, W. Wu, et. al., Phys. Rev. A,76,022308 (2007).
    [18]N. Matsuda, H. L. Jeannic, et al., Sci. Rep.,2,817 (2012).
    [19]S. V. Zhukovsky, L. G. Helt, et al., Phys. Rev. A,85,013838 (2012).
    [20]A. Orieux, A. Eckstein, et al., Phys. Rev. Lett.,110,160502 (2013).
    [21]L. Sansoni, F. Sciarrino, et al., Phys. Rev. Lett.,105,200503 (2010).
    [22]S. V. Zhukovsky, D. Kang, Opt. Lett.,36(18),3548 (2011).
    [23]R. T. Horn, P. Kolenderski, et al., http://arxiv.org/abs/1304.4944 (2013).
    [24]Y. H. Shih, and C. O. Alley, Phys. Rev. Lett.,61,2921 (1988).
    [25]P. G. Kwiat, K. Mattle, et al., Phys. Rev. Lett.,75,4337 (1995).
    [26]P. G. Kwiat, E. Waks, et al., Phys. Rev. A,60,773 (1999).
    [27]X. L. Niu, Y. F. Huang, et al., Opt. Lett.,33,968 (2008).
    [28]谢臻达,南京大学博士论文(2011).
    [29]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev., 127,1918(1962).
    [30]C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. A 69,013807 (2004).
    [31]E. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, Opt. Lett.,27,2115 (2002).
    [32]T. Kim, M. Fiorentino, and F. N. C.Wong, Phys. Rev. A,73,012316 (2006).
    [33]Y. X. Gong, Z. D. Xie, P. Xu, et al., Phys. Rev. A,84,053825 (2011).
    [34]M. Fiorentino, G. Messin, et al., Phys. Rev. A,69,041801(R) (2004).
    [35]Z. H. Levine, J. Fan, J. Chen, A. L. Migdall, Opt. Express,19,6724 (2011).
    [36]T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, IEEE Photon. Technol. Lett.21,1096(2009).
    [37]W. Ueno, F. Kaneda, H. Suzuki, et al., Opt. Express,20,5508 (2012).
    [38]V. Berger, Phys. Rev. Lett.,81,4136 (1998).
    [39]P. Xu, Phys. Rev. Lett.,93,133904 (2004).
    [40]徐平,南京大学博士论文(2007).
    [41]Y. X. Gong, P. Xu, J. Shi, et al., Opt Lett.,37(21),4374 (2012).
    [42]I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito, J. Opt. Soc. Am. B,14, 2268 (1997).
    [43]K. Gallo, M. Levenius, F. Laurell, and V. Pasiskevicius, Appl. Phys. Lett.,98, 161113(2011).
    [44]M. Levenius, V. Pasiskevicius, and K. Gallo, Appl. Phys. Lett.,101,121114 (2012).
    [45]崔建民,冯立辉,吕敏等,光学技术,33(1),92(2007).
    [46]F. Shafiei, P. Srinivasan, and Z. Y. Ou, Phys. Rev. A,70,043803 (2004).
    [47]B. Liu, and Z. Y. Ou, Phys. Rev. A,74,035802 (2006).
    [48]Y.X. Gong, P. Xu, Y. F. Bai, et al., Phys. Rev. A,86,023835 (2012).
    [49]X. B. Zou and W. Mathis, Phys. Rev. A,71,032308 (2005).
    [50]B. S. Shi, A. Tomita, Journal of Modern Optics,53(7),1003 (2006).
    [51]C. P. Yang, Phys. Rev. A,83,062302 (2011).
    [52]R. Sweke, I. Sinayskiy, F. Petruccione, Phys. Rev. A,87,042323 (2013).
    [53]D. Bouwmeester et al., Phys. Rev. Lett.,82,1345 (1999).
    [54]P. Walther, J. W. Pan, M. Aspelmeyer, et al., Nature 429,158 (2004).
    [55]C. Y. Lu, X. Q. Zhou, O. Giihne, et al., Nat. Phys.,3,91 (2007).
    [56]H. Weinfurter and M. Zukowski, Phys. Rev. A,64,010102(R) (2001).
    [57]N. Kiesel, C. Schmid, et al., Phys. Rev. Lett.,063604, (2007).
    [58]W. Wieczorek, R. Krischek, et al., Phys. Rev. Lett.,103,020504 (2009).
    [59]N. Kiesel, C. Schmid, U. Weber, et. al., Phys. Rev. Lett.,95,210502 (2005).
    [60]E. Megidish, A. Halevy, et al., Opt. Express,21(6),6689, (2013).
    [61]H. Jin, P. Xu, et al., http://arxiv.org/abs/1302.0162 (2013).
    [1]S. Barz, G. Cronenberg, A. Zeilinger and P. Walther, Nat. Photonics 4,553 (2010).
    [2]S. J. van Enk, Phys. Rev. A,72(6),064306 (2005).
    [3]S. M. Tan, D. F. Walls, and M. J. Collett, Phys. Rev. Lett.,66(3),252 (1991).
    [4]L. Hardy, Phys. Rev. Lett.,73(17),2279 (1994).
    [5]D. Salart, O. Landry, N. Sangouard, et al., Phys. Rev. Lett.,104(18),180504 (2010).
    [6]E. Lombardi, F. Sciarrino, S. Popescu, and F. De Martini, Phys. Rev. Lett., 88(7),070402 (2002).
    [7]G. Bjork, A. Laghaout, and U. L. Andersen, Phys. Rev. A,85(2),022316 (2012).
    [8]S. A. Babichev, B. Brezger, and A. I. Lvovsky, Phys. Rev. Lett.,92(4), 047903 (2004).
    [9]I. Usmani, C. Clausen, F. Bussieres, et al., Nat. Photonics,6(4),234 (2012).
    [10]W. Dur, G. Vidal, and J. I. Cirac, Phys. Rev. A 62(6),062314 (2000).
    [11]J. Shi, P. Xu, M. L. Zhong, et al., Opt. Express,21(7),7875 (2013).
    [12]Y. X. Gong, P. Xu, Y. F. Bai, et al., Phys. Rev. A,86(2),023835 (2012).
    [13]H. Y. Leng, X. Q. Yu, Y. X. Gong, et al., Nat. Commun.,2,429 (2011).
    [14]J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, Phys. Rev. Lett.,78,3221 (1997).
    [15]C. W. Chou, et al., Nature,438,828 (2005).
    [16]C. W. Chou, J. Laurat, et al., Science,316(5829),1316 (2007).
    [17]J. Laurat, K. S.Choi, H. Deng, C. W.Chou, H. J. Kimble, Phys. Rev. Lett.,99, 180504(2007).
    [18]H. J. Kimble, Nature,453,1023 (2008).
    [19]J. Laurat, et al., New J. Phys.,9,207 (2007).
    [20]L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature,414,413 (2001).
    [21]N. Sangouard, C. Simon, T. Coudreau, and N. Gisin, Phys. Rev. A,78(5), 050301(R) (2008).
    [22]S. L. Zhang, S. Yang, X. B. Zou, B. S. Shi, and G. C. Guo, Phys. Rev. A, 86(3),034302(2012).
    [23]Y. B. Sheng, F. G. Deng, H. Y. Zhou, Quantum Information and Computation, 10,272(2010).
    [24]龙桂鲁,邓国富,曾谨言,量子力学新进展,清华大学出版社,231(2011).
    [25]R. Werner, Phys. Rev. A,40,4277 (1989).
    [26]H. F. Hofmann, S. Takeuchi, Phys. Rev. A,68,032103 (2003).
    [27]S. Hill and W. K. Wootters, Phys. Rev. Lett.,78(26),5022(1997).
    [28]W. K. Wootters, Phys. Rev. Lett.,80,2245 (1998).
    [29]P. Rungta, V. Buzek, C. M. Caves, et al., Phys. Rev. A,64,042315 (2001).
    [30]V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A,61,052306 (2000).
    [31]S. B. Papp, K. S. Choi, H. Deng, et al., Science,324(5928),764 (2009).
    [32]P. Lougovski, S. J. van Enk, K. S. Choi, et al., New J. Phys.,11(6),063029 (2009).
    [33]Crystal Technology Inc., URL:http://www.crystaltechnology.com /docs/LNopt.pdf(2006).
    [34]M. Zukowski, A. Zeilinger, and M. A. Home, Phys. Rev. A,55(4),2564 (1997).
    [35]W. K. Wootters and W. H. Zurek, Nature (London),299,802 (1982).
    [36]A. K. Pati, Phys. Rev. A,61,022308 (2000).
    [37]C. H. Bennett, G. Brassard, et al., Phys. Rev. Lett.,70(13),1895 (1993).
    [38]A. K. Pati., Phys.Rev.A,63,014302 (2001).
    [39]S. Olmschenk, Nat. Photonics,6(4),221 (2012).
    [40]O.Morin, J. D. Bancal, M. Ho, et al., Phys. Rev. Lett.,110,130401 (2013).
    [41]A. Perez-Leija, J. C. Hernandez-Herrejon, et al., Phys. Rev. A,87,013842 (2013).
    [1]Z. S.Yuan, X. H. Bao, C. Y. Lu, et al., Phys. Rep.,497,1 (2010).
    [2]J. W. Pan, Z. B. Chen, C. Y. Lu, et al., Rev. Mod. Phys.,84,777 (2012).
    [3]Y. H. Shih, C. O. Alley, Phys. Rev. Lett.,61,2921 (1988).
    [4]Z. Y. Ou, L. Mandel, Phys. Rev. Lett.,61,50 (1988).
    [5]P. G. Kwiat, E. Waks, A. G. White, et al., Phys. Rev. A,60,773(R) (1999).
    [6]S. E. Harris, Phys. Rev. Lett.,98,063602 (2007).
    [7]S. M. Gao, C. X. Yang, Opt. Lett.,32,2653 (2007).
    [8]H. C. Lim, A. Yoshizawa, H. Tsuchida, K. Kikuchi, Opt. Express,16,16052 (2008).
    [9]X. Q. Yu, P. Xu, Z. D. Xie, et al., Phys. Rev. Lett.,101,233601 (2008).
    [10]P. Xu, S. N. Zhu, AIP Advances,2,041401 (2012).
    [11]E. Bimbard, N. Jain, A. MacRae and A. I. Lvovsky, Nat. Photonics,4,243 (2010).
    [12]P. G. Kwiat, Journal of Modern Optics,44,2173 (1997).
    [13]J. T. Barreiro, T. C. Wei, P. G. Kwiat, Nat. Phys.,4,282 (2008).
    [14]S. P. Walborn, Nat. Phys.,4,268 (2008).
    [15]Z. B. Chen, J. W. Pan, Y. D. Zhang, C. Brukner, A. Zeilinger, Phys. Rev. Lett., 90,160408(2003).
    [16]C. Cinelli, M. Barbieri, R. Perris, P. Mataloni, F. De Martini, Phys. Rev. Lett., 95,240405 (2005).
    [17]M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, Phys. Rev. A,72,052110 (2005).
    [18]J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, Phys. Rev. Lett.,95, 260501 (2005).
    [19]G. Vallone, R. Ceccarelli, F. De Martini, P. Mataloni, Phys. Rev. A,79, 030301 (R) (2009).
    [20]A. Chiuri, G. Vallone, et al., Phys. Rev. Lett.,105,250501 (2010).
    [21]W B. Gao, C. Y. Lu, X. C. Yao, et al., Nat. Phys.,6,331 (2010).
    [22]G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, Phys. Rev. Lett.,98,180502(2007).
    [23]G. Vallone, G. Donati, R. Ceccarelli, P. Mataloni, Phys. Rev. A,81,052301 (2010).
    [24]B. C. dos Santos, K. Dechoum, and A. Z. Khoury, Phys. Rev. Lett.,103, 230503 (2009).
    [25]P. G. Kwiat and H. Weinfurter, Phys. Rev. A,58, R2623 (1998).
    [26]S. P. Walborn, S. Padua, C. H. Monken, Phys. Rev. A,68,042313 (2003).
    [27]C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, Phys. Rev. Lett.,96, 190501 (2006).
    [28]T. C. Wei, J. T. Barreiro, P. G Kwiat, Phys. Rev. A,75,060305(R) (2007).
    [29]Y. B. Sheng, F. G. Deng, G. L. Long, Phys. Rev. A,82,032318 (2010).
    [30]J. T. Barreiro, T. C. Wei, P. G. Kwiat, Phys. Rev. Lett.,105,030407 (2010).
    [31]A. Cabello, Phys. Rev. Lett.,97,140406 (2006).
    [32]M. Barbieri, F. De Martini, P. Mataloni, G. Vallone, and A. Cabello, Phys. Rev. Lett,97,140407 (2006).
    [33]R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, Phys. Rev. Lett.,103,160401 (2009).
    [34]A. Chiuri, C. Greganti, M. Paternostro, G. Vallone, P. Mataloni, Phys. Rev. Lett.,109,173604(2012).
    [35]X. F. Xu, X. H. Bao, J. W. Pan, Phys. Rev. A,86,050304(R) (2012).
    [36]G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, Phys. Rev. Lett.,100, 160502(2008).
    [37]G. Vallone, G. Donati, N. Bruno, A. Chiuri, P. Mataloni, Phys. Rev. A,81, 050302 (2010).
    [38]J. Shi, S. J. Yun, Y. F. Bai, P. Xu, S. N. Zhu, Opt. Commun.,285,5549 (2012).
    [39]N. V. Bloch, K. Shemer, A. Shapira, et al., Phys. Rev. Lett.,108,233902 (2012).
    [40]H. Y. Leng, X. Q. Yu, Y. X. Gong, et al., Nat. Commun.,2,249 (2011).
    [41]Y. X. Gong, P. Xu, J. Shi, et al., Opt. Lett.,37,4374 (2012).
    [42]Y. X. Gong, P. Xu, Y. F. Bai, et al., Phys. Rev. A,86,023835 (2012).
    [43]H. Hubel, D. R. Hamel, A. Fedrizzi, et al., Nature 466,601 (2010).
    [44]E. Megidish, A. Halevy, et al., Opt. Express,21,6689 (2013).
    [45]V. Berger, Phys. Rev. Lett.,81,4136 (1998).
    [46]S. N. Zhu, Y. Y. Zhu, N. B. Ming, Science,278,843 (1997).
    [47]R. Lifshitz, A. Arie, A. Bahabad, Phys. Rev. Lett.,95,133901 (2005).
    [48]M. L. Bortz, M. Fujimura, and M. M. Fejer, Elec.Lett.30,34 (1994).
    [49]M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, Opt. Lett.24, 1157(1999).
    [50]Z.W. Liu, Y. Du, et al., J. Opt. Soc. Am. B,19,1676 (2002).
    [51]Crystal Technology Inc., URL:http://www.crystaltechnology.com /docs/LNopt.pdf(2006).
    [52]K. Thyagarajan, J. Lugani, et al., Phys. Rev. A,80,052321 (2009).
    [53]J. Lugani, S. Ghosh, K. Thyagarajan, Phys. Rev. A,83,062333 (2011).
    [54]G. D. Xu, Y. H. Wang, Y. Y. Zhu, S. N. Zhu, N. B. Ming, J. Opt. Soc. Am. B, 21,568(2004).
    [55]S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, J. Lightwave Technol.,5,700(1987).
    [56]L. Olislager, J. Cussey, et al., Phys. Rev. A,82,013804 (2010).
    [57]L. Olislager, I. Mbodji, et al., arxiv:1107.5519v1(2011).
    [58]M. Shtaif, C. Antonelli, M. Brodsky, arxiv:1012.2013v1 (2010).
    [59]S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, A. Zeilinger, Phys. Rev. Lett.,103,253601 (2009).
    [60]Y. J. Lu, R. L. Campbell, Z. Y. Ou, Phys. Rev. Lett.,91,163602 (2003).
    [61]Y. F. Bai, P. Xu, Z. D. Xie, et al., Phys. Rev. A,85,053807 (2012).
    [62]S.V. Zhukovsky, D. Kang, et al., Opt. Lett.,36,3548 (2011).
    [63]A. Politi, J.C.F. Matthews, M.G. Thompson, J.L. O'Brien, IEEE Journal of Selected Topics in Quantum Electronics 15,1673 (2009).
    [64]S. Tanzilli, A. Martin, et al., Laser Photonics Review,1 (2011).
    [65]H. Bechmann-Pasquinucci and A. Peres, Phys. Rev. Lett.,85,3313 (2000).
    [66]N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys.,74,145 (2002).
    [67]F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, Phys. Rev. A,72,044302 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700