~(99m)TC-3P-RGD_2显像定量评价肿瘤整合素αvβ3表达及其应用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨~(99m)Tc-HYNIC-PEG4-E[PEG4-c(RGDfk)]2(简称~(99m)Tc-3P-RGD_2)整合素α_vβ_3受体靶向U-SPECT-II/CT显像定量肿瘤整合素α_vβ_3受体表达水平及早期探测肿瘤复发转移灶进行准确的分期、分级,为新生血管治疗适应症的筛选、个体化治疗疗效早期预测、实时监测提供科学依据。
     方法:本课题首先利用U-SPECT-II/CT考察了U-SPECT-CT融合显像对肿瘤体积(存活、坏死)及~(99m)Tc放射性活度精确定量的方法学,然后合成~(99m)Tc-3P-RGD_2,并以整合素α_vβ_3受体靶向的~(99m)Tc-3P-RGD_2在荷瘤鼠内生物学分布及免疫组化对肿瘤整合素α_vβ_3表达水平的定量数据为基础,构建裸鼠皮下移植瘤、肿瘤复发、肺及骨骼转移模型,探讨~(99m)Tc-3P-RGD_2肿瘤U-SPECT-II/CT显像定量肿瘤整合素α_vβ_3受体表达水平的可行性及对肿瘤复发、转移灶的早期探测,最后对整合素α_vβ_3高表达和低表达的肿瘤在抗新生血管治疗前及治疗过程中进行U-SPECT-CT显像,考察其对肿瘤抗血管疗效的治疗前预测和治疗过程中实时监测价值。
     结果:基于U-SPECT-II/CT的U-SPECT-CT融合显像,结合microCT和microSPECT信息进行肿瘤感兴趣区勾画精确定量肿瘤体积(包括存活和坏死组织的单独体积测定),且U-SPECT-CT融合显像可有效定量~(99m)Tc放射性活度(R~2=0.9997,y=1.0885x+0.0618),偏倚性小。~(99m)Tc-3P-RGD_2前体可制备试剂盒,标记简单、方便,且荷瘤鼠体内理化特性好,肿瘤放射性摄取高且能稳定滞留一定时间,血、肝、肾等清除快。~(99m)Tc-3P-RGD_2尾静脉注射通过生物学分布实验和U-SPECT-CT显像分别定量肿瘤放射性摄取(%ID和%ID/g),与肿瘤体积变化趋势相似,其中脑胶质瘤内~(99m)Tc-3P-RGD_2放射性摄取(%ID)逐渐增加,通过二次方程曲线拟合(R~2均大于0.95),而在肿瘤重量小于1.0g时,肿瘤放射性摄取(%ID)与肿瘤大小(g)呈直线相关(R~2分别为0.8963和0.8929)。而肿瘤%ID/g随着肿瘤大小的增加而增加,在0.15-0.25g时达到峰值,随后由于肿瘤组织坏死逐渐降低,与免疫组化所示整合素αVβ3表达水平呈线性相关(R~2=0.8117),即~(99m)Tc-3P-RGD_2在脑胶质瘤内分布可有效反应肿瘤整合素αVβ3表达水平。整合素α_vβ_3作为乳腺癌细胞等肿瘤细胞及其新生血管内皮细胞表面高表达的粘附因子,可早期(长径为1.0mm)发现乳腺癌术后复发灶和肺、淋巴结、骨骼等多发转移灶,有效评价乳腺癌等恶性肿瘤的分期、分级,尤其是肺癌等微小转移灶(大于1mm)方面具有显著优势。~(99m)Tc-3P-RGD_2U-SPECT-CT显像通过定量肿瘤~(99m)Tc-3P-RGD_2摄取、整合素受体表达水平、密度,抗新生血管治疗疗效监测明显早于肿瘤体积的变化,治疗后第5天即表现出~(99m)Tc-3P-RGD_2放射性摄取差异(P<0.05),是抗新生血管治疗方案病人治疗前适应症筛选、疗效预测及早期评价的显像手段。
     结论:U-SPECT-II/CT通过U-SPECT-CT融合显像可对肿瘤体积及~(99m)Tc放射性活度进行精确定量,~(99m)Tc-3P-RGD_2U-SPECT-CT显像可有效评价肿瘤整合素α_vβ_3受体表达水平,且通过对肿瘤复发、转移灶及时早期的探测和诊断,为肿瘤分期、分级及抗新生血管治疗适应症的筛选、个体化治疗剂量的确定、疗效早期预测、实时评价提供科学依据。
Aim To investigate the quantitive analysis of tumor integrinαvβ3expressionlevel by U-SPECT-CT imaging with integrinαvβ3targeting radiotracer~(99m)Tc-HYNIC-PEG4-E[PEG4-c(RGDfk)]2(~(99m)Tc-3P-RGD_2) and its potent use forearly detection of tumor regional recurrence, distant metastasis, grading. It may offergreat information for patient selection for anti-angiogensis therapy and therapeuticeffect monitoring. Methods U-SPECT-CT fusion imaging was used for exactdelineation of tumor volume, including functional and necrotic tissues, andquantification of~(99m)Tc radioactivity with the equipment of U-SPECT-II/CT. Weprepared the integrin αvβ3targeting radiotracer,~(99m)Tc-3P-RGD_2, and finishedSPECT-CT imaging and biodistribution studies at different time points aftersubcutaneous implantion of tumor cells in nude mice. And relationship wasestablished between tumor uptake(percentage of injected dose%ID and percentage ofinjected dose per gram,%ID/g) with tumor integrin αvβ3expression level. On thebasis of the establishment of the subcutaneous tumor xenograft model and tumorregional recurrence model and lung, bone metastasis model, we investigatedU-SPECT-II/CT imaging for the quantification of tumor integrin αvβ3expression leveland early detection of tumor recurrence and metastasis with radiotracer~(99m)Tc-3P-RGD_2. Different tumor models were established of different expressionlevel integrin αvβ3expression (U87MG glioma with high expression level anddifferentiated thyroid cancer low expression level of intergrinαvβ3).~(99m)Tc-3P-RGD_2U-SPECT-CT imaging was used to monitor the therapeutic effect of antiangiogenesis of tumors with different expression level of integrinα_vβ_3. Results: With anatomicaland function information, U-SPECT-CT fuion images was better for the delineationof tumor volume including functional and necrotic tissues. It was also found thatquantification of~(99m)Tc radioactivity could be done based on U-SPECT-CT imagingwith little bias. Linear relationship was found between radiocounts on U-SPECT-CTand its real radioactivity with R~2being0.9997. We prepared the kit for simple andconvenient radiolabeling of~(99m)Tc-3P-RGD_2. Biodistribution studies of~(99m)Tc-3P-RGD_2demonstrated that it was perfect with high tumor uptake and longretention time and rapid clearance for normal organs such as blood, liver and lung.Relationship between the tumor size (in cm3) and the tumor uptake (%/ID for totalradioactivity, and%ID/cm3for radioactivity density) determined by SPECT-CT andbiodistribution studies were established. They were similar to a great degree. Therelationship between the tumor volume and%ID of~(99m)Tc-3P-RGD_2was modeled asquadratic polynomial fitting curve (R~2>0.95for both SPECT-CT biodistributionstudies for tumors of0.01–2.0cm3. Linear relationship (R~2=0.8954forSPECT-CT data and0.8929for biodistribution data) between the tumor size and%IDof~(99m)Tc-3P-RGD_2when tumors were <1.0g or cm3. Tumor uptake (%ID/g) peakedwhen tumor size was0.15-0.25g or0.15-0.25cm3and decreased as tumor grewbecause of internal tumor necrosis. Linear relationship (R~2=0.8117)was foundbetween tumor uptake (%ID/g) and integrinα_vβ_3expression level determined byimmunostaining studies. In recurrent and metastatic tumor models,~(99m)Tc-3P-RGD_2U-SPECT-CT was definitely effective for early detection of tumor recurrence,micrometastasis in lung, bone and lymph nodes (with long diameter of1.0mm).Therapeutic effect of anti-angiogensis was better in tumors of high tumor uptake of~(99m)Tc-3P-RGD_2,in other words, high level integrin α_vβ_3expression, than tumor of lowlevel of uptake of~(99m)Tc-3P-RGD_2. And tumor uptake decrease was obvious on day5 after anti-angiogenesis, much earlier than tumor volume changes.
     Conclusions: U-SPECT-CT fusion images can quantitively determine tumor volumeand tumor uptake of~(99m)Tc-3P-RGD_2with equipment of U-SPECT-II/CT. It caneffectively reflect tumor integrin α_vβ_3expression level and early detect tumorrecurrence and micrometastasis. Based on this,~(99m)Tc-3P-RGD_2U-SPECT-CTimaging was useful for tumor staging and grading and patient selection andtherapeutic effect prediction, dynamic monitoring of anti-angiogesis treatment。
引文
1.Ahmedin Jemal, DVM, Freddie Bray, Melissa M, center, et al. Global cancerstastistis.Ca Cancer J cun,2011,61:69-90.
    2. Folkman J. Tumor angiogenesis: therapeutic implications[J]. NewEng JMed,1971,285:1182-1186
    3. FolkmanJ. Angiogenesis in cancer, vascular, rheumatoidandoth-er disease. NatMed,1995,1(1):27-31
    4. KhosraviP. Angiogenesis and neoplasias. AnMed Interna,2006,23:355-356.
    5. BanerjeeS, DowsettM, Ashworth A, et a.l Mechanisms ofdis-ease: angiogenesisandthemanagement ofbreastcancer. Nat Clin PractOnco,l2007,4:536-550.
    6.刘秀峰,秦叔逵.重组人血管内皮抑素临床应用和研究的新进展[J].临床肿瘤学杂志,2009,14(10):951-957.
    7.KerbelRS. Antiangiogenic therapy: auniversal chemosensitiza-tion strategy forcancer[J]. Science,2006,312:1171-1175
    8.Browd er T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling ofchemotherapy improves efficacy against experimental drug-resistant can cer[J].Cancer Res,2000,60(7):1878-1886
    9.KerbelRS. Improvingconventionalor low dosemetronomicchem-otherapywithtargeted antiangiogenic drugs[J]. Cancer Res Treat,2007,39(4):150-159.
    10.KerbelRS, Kamen BA. The ant-iangiogenicbasis ofmetronomic chemotherapy[J].NatRevCancer,2004,4(6):423-436]
    11.Kabbinavar F,Huruitz H I, Fehrenbacher L, et al. Phase Ⅱ, randomized t rialcomparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) wit h FU/LValone in patient s wit h metastatic colorectal cancer [J]. J Clin Oncol,2003,21(1):60265.
    12.Prasad SR, Saini S, Sumner JE, et al. Radiological measurement of breast cancermetastases to lung and liver: comparison be-tween WHO (bodimensional) andRECIST (unidimensional) guidelines. J Comput Assist Tomogr,2003,27(3):380-384.
    13.Raatschen HJ, FuY, BraschRC, et al. Invivomonitoringof an-giogenesis inhibitorytreatment effects by dynamic contrast-en-hanced computedtomographyinaxenograft tumor model. Invest Radiol,2009,44(5):265-270
    14.Gossmann A, Helbich TH, Kuriyama N, et al. Dynamiccon-trast-enhancedmagneticresonanceimaging as asurrogatemarker of tumorresponsetoant-iangiogenictherapy inaxenograft model of glioblastoma multiforme.J Magn Reson Imaging,2002,15(3):233-240.
    15.罗红缨,李徽,谢艳霞.能量多普勒检测膀胱癌血流相对灌注率及其与MVD、VEGF表达的相关性.中国医学影像技术,2009,25(7):1232-1234.
    16.Haubner R, Wester HJ, Reuning U, et al. Radiolabeled alpha(v) beta3integrinantagonists: a new class of tracers for tumor targeting. J Nucl Med.1999,40:1061–1071.
    17.Shi J, Zhou Y, Chakraborty S, et al. Evaluation of In-Labeled Cyclic RGDPeptides: Effects of Peptide and Linker Multiplicity on Their Tumor Uptake,Excretion Kinetics and Metabolic Stability. Theranostics.2011,1:322-40.
    18. Zhou Y, Kim YS, Chakraborty S, et al.99mTc-labeled cyclic RGD peptides fornoninvasive monitoring of tumor integrin αVβ3expression. Mol Imaging.2011,10(5):386-97.
    19. Dijkgraaf I, Yim CB, Franssen GM, et al. PET imaging of αvβ integrinexpression in tumours with68Ga-labelled mono-, di-and tetrameric RGD peptides.Eur J Nucl Med, Mol Imaging.2011,38(1):128-37.
    20. Janssen ML, Oyen WJ, Dijkgraaf I, et al. Tumor targeting with radiolabeledalpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res.2002,62:6146.
    21. Zhang X, Xiong Z, Wu Y, et al. Quantitative PET imaging of tumor integrinalphavbeta3expression with18F-FRGD2. J Nucl Med.2006,47:113.
    22. Haubner R, Weber WA, Beer AJ, Vabuliene E, et al. Noninvasive visualization ofthe activiatedαvβ integrin in cancer patients by positron emission tomographyand [18F]Galacto-RGD. PLoS Med2005;2:e70.
    23. Beer AJ, Niemeyer M, Carlsen J, Sarbia M, et al. Patterns of αvβ expression inprimary and metastatic human breast cancer as shown by18F-Galacto-RGD PET.J Nucl Med2008;49:255–9.
    24. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol,2002,29(6Suppl16):15–18.
    25. S Sengupta S, Chattopadhyay N, Mitra A, Ray S, Dasgupta S, Chatterjee A..Role of avb3integrin receptors in breast tumor. J Exp Clin Cancer Res,2001,20(4):585–90.
    26. Hwang R, Varner JV. The role of integrins in tumor angiogenesis. Hematol OncolClin North Am,2004,18(5):991–1006.
    27. Cai W, Niu G, Chen X. Imaging of integrins as biomarkers for tumorangiogenesis. Curr Pharm Des,2008,14(28):2943–2973.
    28.Zitzmann S, Ehemann V, Schwab M. Arginine-glycine-aspartic acid(RGD)-peptide binds to both tumor and tumor endothelial cells in vivo. CancerRes,2002,62(18):5139–5143.
    29.Bo¨gler O, Mikkelsen T. Angiogenesis in glioma: molecular mechanisms androadblocks to translation. Cancer J,2003,9(3):205–213.
    30. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B,Kessler H, St cklin G, Schwaiger M. Radiolabeled alpha(v) beta3integrinantagonists: a new class of tracers for tumor targeting. J Nucl Med,1999,40(6):1061–1071.
    31. Shi J, Zhou Y, Chakraborty S, Kim YS, Jia B, Wang F, Liu S. Evaluation ofIn-Labeled Cyclic RGD Peptides: Effects of Peptide and Linker Multiplicity onTheir Tumor Uptake, Excretion Kinetics and Metabolic Stability. Theranostics,2011,1:322-340.
    32.Dijkgraaf I, Yim CB, Franssen GM, Schuit RC, Luurtsema G, Liu S, Oyen WJ,Boerman OC. PET imaging of αvβ integrin expression in tumours with68Ga-labelled mono-, di-and tetrameric RGD peptides. Eur J Nucl Med Imaging,2011,38(1):128-137.
    33. Li Z, Zhang G, Shen H, Zhang L, Wang Y.Synthesis and cell uptake of a noveldualmodality (188)Re-HGRGD (D) F-CdTe QDs probe.Talanta,2011,85(2):936-942.
    34.Liu Z, Shi J, Jia B, Yu Z, Liu Y, Zhao H, Li F, Tian J, Chen X, Liu S, Wang F. Two90Y-labeled multimeric RGD peptides RGD4and3PRGD2for integrin targetedradionuclide therapy. Mol Pharm,2011,8(2):591-599.
    35..Kim YH, Jeon J, Hong SH, et al. Tumor targeting and imaging usingcyclic RGD-PEGylated gold nanoparticle probes with directly conjugatediodine-125. Small,2011,7(14):2052-2060.
    36.Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3targetedradiotracers for tumor imaging. Mol Pharm,2006,3:472-87.
    37.Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. mi-croPET imaging ofglioma integrin αvβ3expression using64Cu-labeled tetrameric RGD peptide. JNucl Med,2005,46:1707-1718.
    38.Haubner R, Weber WA, Beer AJ, et al. Noninvasive visualization of the activatedavb3integrin in cancer patients by positron emission tomography and[18F]galacto-RGD. PLoS Med,2005,2:244–252.
    39.Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O,Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M. Positron emissiontomography using [18F]galacto-RGD identifies the level of integrin avb3expression in man. Clin Cancer Res,2006,12(13):3942–3949.
    40.Beer AJ, Grosu AL, Carlsen J, et al.[18F]galacto-RGD positron emissiontomography for imaging of avb3expression on the neovasculature in patients withsquamous cell carcinoma of the head and neck. Clin Cancer Res,2007,13:6610-6616.
    41.Beer AJ, Lorenzen S, Metz S, Herrmann K, Watzlowik P, Wester HJ, Peschel C,Lordick F, Schwaiger M.Comparison of integrin avb3expression and glucosemetabolism in primary and metastatic lesions in cancer patients: a PET study using18F-galacto-RGD and18F-FDG. J Nucl Med,2008,49(1):22–29.
    42.DeNardo GL, Shen S, DeNardo SJ, Liao SQ, Lamborn KR, DeNardo DA, YuanA.Quantification of iodine-131in tumors using a threshold based on imagecontrast. Eur J Nucl Med,1998,25(5):497-502
    43.Carlson SK, Classic KL, Hadac EM, Bender CE, Kemp BJ, Lowe VJ, Hoskin TL,Russell SJ. In Vivo Quantitation of Intratumoral Radioisotope Uptake UsingMicro-Single Photon Emission Computed Tomography/ComputedTomography,2006,8(6):324-32.
    44.Scarfone C, Jaszczak RJ, Gilland DR, Greer KL, Munley MT, Marks LB,Coleman RE. Quantitative pulmonary single photon emission computedtomography for radiotherapy applications. Med Phys,1999,26(8):1579-1588.
    45.Ljungberg M, Sj green K, Liu X, Frey E, Dewaraja Y, Strand SE.A3-dimensionalabsorbed dose calculation method based on quantitative SPECT for radionuclidetherapy: evaluation for131I using Monte Carlo simulation. J Nucl Med,2002,43(8):1101-1109.
    46.Dewaraja YK, Wilderman SJ, Ljungberg M, Koral KF, Zasadny K, KaminiskiMS.Accurate dosimetry in131I radionuclide therapy using patient-specific,3-dimensional methods for SPECT reconstruction and absorbed dose calculation.J Nucl Med,2005,46(5):840-849.
    47.Ljungberg M, Sj green K, Liu X, Frey E, Dewaraja Y, Strand SE.A3-dimensionalabsorbed dose calculation method based on quantitative SPECT for radionuclidetherapy: evaluation for131I using Monte Carlo simulation. J Nucl Med,2002,43(8):1101-1109.
    48.King MA, Farncombe T. An overview of attenuation and scatter correction ofplanar and SPECT data for dosimetry studies. Cancer BiotherRadiopharm,2003,18(2):181-190
    49.Euhus DM, Hudd C, LaRegina MC, Johnson FE.Tumor measurement in the nudemouse.J Surg Oncol,1986,31(4):229-234.
    50.Cheung AM, Brown AS, Hastie LA, Cucevic V, Roy M, Lacefield JC, Fenster A,Foster FS.Three-dimensional ultrasound biomicroscopy for xenograft growthanalysis. Ultrasound Med Biol,2005,31(6):865-870.
    51.Mazurchuk R, Glaves D, Raghavan D.Magnetic resonance imaging of response tochemotherapy in orthotopic xenografts of human bladder cancer. Clin CancerRes,1997,3(9):1635-1641
    52.Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK,DePinho RA.Malignant glioma: genetics and biology of a grave matter. GenesDev,2001,15(11):1311–1333.
    53.Steiner HH, Karcher S, Mueller MM, Nalbantis E, Kunze S, Herold-Mende C.Autocrine pathways of the vascular endothelial growth factor (VEGF) inglioblastoma multiforme: clinical relevance of radiation-induced increase ofVEGF levels. J Neurooncol,2004,66(1-2):129–38.
    54.Jensen RL. Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging,pseudoprogression, and as a therapeutic target. J Neurooncol,2009,92(3):317–335.
    55.Jain RK. Determinants of tumor blood flow: a review. Cancer Res,1988,48(10):2641–2658.
    56.Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. Cancer TreatRes,2004,117:249–262.
    57.Pierallini A, Bonamini M, Pantano P, Palmeggiani F, Raguso M, Osti MF, AnaveriG, Bozzao L.Radiological assessment of necrosis in glioblastoma: variability andprognostic value. Neuroradiology,1998,40(3):150–153.
    58.Hammoud MA, Sawaya R, Shi W, et al. Prognostic significance of preoperativeMRI scans in glioblastoma multiforme. J Neurooncol,1996,27():65–73.
    59.Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of416patientswith glioblastoma multiforme: prognosis, extent of resection, and survival. JNeurosurg,2001,95():190–198.
    60.Jain RK, di Tomaso E, Duda DG, et al. Angiogenesis in brain tumours. Nat RevNeurosci,2007,8():610–622.
    61.Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications andtherapeutic opportunities. Nat Rev Cancer,2010,10():9–22.
    62.Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, Strasser JF,Villani R, Cheresh DA, Black PM.αvβ3and αvβ5integrin expression in gliomaperiphery. Neurosurgery,2001,49(2):380–389.
    63.Smythe WR, LeBel E, Bavaria JE, et al. Integrin expression in non-small cellcarcinoma of the lung. Cancer Metastasis Rev,1995,14():229–239.
    64.Smythe WR, LeBel E, Bavaria JE, Kaiser LR, Albelda SM. Tumor angiogenesiscorrelates with metastatic disease, N-myc-amplification, and poor outcome inhuman neuroblastoma. J Clin Oncol,1996,14(3):405–414.
    65.Natali PG, Hamby CV, Felding-Habermann B, Liang B, Nicotra MR, Di Filippo F,Giannarelli D, Temponi M, Ferrone S. Clinical significance of αvβ3integrin andintercellular adhesion molecule-1expression in cutaneous malignant melanomalesions. Cancer Res,1997,57(8):1554–1560.
    66.Sengupta S, Chattopadhyay N, Mitra A, Ray S, Dasgupta S, Chatterjee A.Role ofαvβ3integrin receptors in breast tumor. J Exp Clin Cancer Res,2001,20(4):585–590.
    67.Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH,McLendon RE, Herndon JE2nd, Jones LW, Kirkpatrick JP, Friedman AH,Vredenburgh JJ, Bigner DD, Friedman HS.A review of VEGF/VEGFR-targetedtherapeutics for recurrent glioblastoma. J Natl Compr Canc Netw,2011,9(4):414–427.
    68.Paulus W, Baur I, Schuppan D, Roggendorf W.Characterization of integrinreceptors in normal and neoplastic human brain. Am J Pathol,1993,143(1):154–163.
    69.Liu S, Robinson SP, Edwards DS. Integrin αvβ3directed radiopharmaceuticals fortumor imaging. Drugs Future,2003,28:551–564.
    70.Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumor angiogenesisand evaluation of anti-angiogenic therapies. Curr Pharm Des,2004,10(13):1439–1455.
    71.D'Andrea LD, Del Gatto A, Pedone C, Benedetti E.Peptide-based molecules inangiogenesis. Chem Biol Drug Des,2006,67(2):115–126.
    72.Burke PA, DeNardo SJ. Antiangiogenic agents and their promising potential incombined therapy. Crit Rev Oncol Hematol,2001,39(1-2):155–171.
    73.Reardon DA, Nabors LB, Stupp R, Mikkelsen T.Cilengitide: an integrin-targetingarginine-glycine-aspartic acid peptide with promising activity for glioblastomamultiforme. Expert Opin Investig Drugs,2008,17(8):1225–1235.
    74.Haubner R, Gratias R, Diefenbach B, et al. Structural and functional aspect ofRGD containing cyclic pentapeptides as highly potent and selective integrin αvβ3antagonists. J Am Chem Soc,1996,118:7461–7472.
    75.Dechantsreiter MA, Planker E, Math B, Lohof E, H lzemann G, Jonczyk A,Goodman SL, Kessler H.N-Methylated cyclic RGD peptides as highly active andselective αvβ3integrin antagonists. J Med Chem,1999,42(16):3033–3040.
    76.Nisato RE, Tille JC, Jonczyk A, Goodman SL, Pepper MS.αvβ3and αvβ5integrinantagonists inhibit angiogenesis in vitro. Angiogenesis,2003,6(2):105–119.
    77.Yamada S, Bu XY, Khankaldyyan V, Gonzales-Gomez I, McComb JG, LaugWE.Effect of the angiogenesis inhibitor Cilengitide (EMD121974) onglioblastoma growth in nude mice. Neurosurgery,2006,59(6):1304–1312.
    78.Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL.Cilengitide targeting of αvβ3integrin receptor synergizes withradioimmunotherapy to increase efficacy and apoptosis in breast cancerxenografts Cancer Res,2002,62(15):4263–4272.
    79.Nabors LB, Mikkelsen T, Rosenfeld SS, Hochberg F, Akella NS, Fisher JD, CloudGA, Zhang Y, Carson K, Wittemer SM, Colevas AD, Grossman SA.Phase I andcorrelative biology study of cilengitide in patients with recurrent malignantglioma. J Clin Oncol,2007,25(13):1651–1657.
    80.O'Donnell PH, Undevia SD, Stadler WM, Karrison TM, Nicholas MK, Janisch L,Ratain MJ. A phase I study of continuous infusion cilengitide in patients with solidtumors. Invest New Drugs,2012,30(2):604-610.
    81.Reardon D, Fink K, Nabors B, et al. Phase IIa trial of cilengitide (EMD121974)single-agent therapy in patients (pts) with recurrent glioblastoma (GBM): EMD121974-009. J Clin Oncol,2007,25:2002.
    82.Reardon DA, Fink KL, Mikkelsen T, Cloughesy TF, O'Neill A, Plotkin S, GlantzM, Ravin P, Raizer JJ, Rich KM, Schiff D, Shapiro WR, Burdette-Radoux S,Dropcho EJ, Wittemer SM, Nippgen J, Picard M, Nabors LB. Randomized phaseII study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide,in recurrent glioblastoma multiforme. J Clin Oncol,2008,26(34):5610–5617.
    83.Stupp R, Goldbrunner R, Neyns B, et al. Phase I/IIa trial of cilengitide(EMD121974) and temozolomide with concomitant radiotherapy, followed bytemozolomide and cilengitide maintenance therapy in patients (pts) with newlydiagnosed glioblastoma (GBM). J Clin Oncol,2007,25:2000.
    84.Friess H, Langrehr JM, Oettle H, et al. A randomized multicenter phase II trial ofthe angiogenesis inhibitor Cilengitide (EMD121974) and gemcitabine comparedwith gemcitabine alone in advanced unresectable pancreatic cancer. BMC Cancer,2006,6:285.
    85.Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, Becker KF,Goebel M, Hein R, Wester HJ, Kessler H, Schwaiger M.Noninvasive visualizationof the activiated αvβ3integrin in cancer patients by positron emission tomographyand [18F]Galacto-RGD. PLoS Med,2005,2(3):e70.
    86.Beer AJ, Niemeyer M, Carlsen J, Sarbia M, N hrig J, Watzlowik P, Wester HJ,Harbeck N, Schwaiger M. Patterns of expression in primary and metastatic humanbreast cancer as shown by18F-Galacto-RGD PET. J NuclMed,2008,49(2):255–259.
    87.Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH, Wester HJ,Haubner R, P pperl G, Holtmannsp tter M, Kretzschmar HA, Kessler H, Tonn JC,Schwaiger M, Beer AJ. Imaging of integrin αvβ3expression in patients withmalignant glioma by [18F] Galacto-RGD positron emission tomography. NeuroOncol,2009,11(6):861–870.
    88.Wang L, Shi J, Kim YS, Zhai S, Jia B, Zhao H, Liu Z, Wang F, Chen X, Liu S.Improving tumor targeting capability and pharmacokinetics of99mTc-labeledcyclic RGD dimers with PEG4linkers. Mol Pharm,2009,6(1):231–245.
    89.Jia B, Liu Z, Zhu Z, Shi J, Jin X, Zhao H, Li F, Liu S, Wang F. Blood clearancekinetics, biodistribution and radiation dosimetry of a kit-formulated integrin αvβ3selective radiotracer99mTc-3PRGD2in non-human primates. Mol Imaging Biol2011,13(4):730–6.
    90.Liu S. Radiolabeled cyclic RGD peptides as integrin αvβ3targeted radiotracers:maximizing binding affinity via bivalency. Bioconjug Chem,2009,20(12):2199–2213.
    91.Ma Q, Ji B, Jia B, Gao S, Ji T, Wang X, Han Z, Zhao G.Differential diagnosis ofsolitary pulmonary nodules using99mTc-3P4-RGD2scintigraphy. Eur J Nucl MedMol Imaging,2011,38(12):2145–2152.
    92.Zhou Y, Kim YS, Chakraborty S, Shi J, Gao H, Liu S.99mTc-labeled cyclic RGDpeptides for noninvasive monitoring of tumor integrin αvβ3expression. MolImaging,2011,10(5):386–397.
    93.Vaneycken I, Govaert J, Vincke C, Caveliers V, Lahoutte T, De Baetselier P, RaesG, Bossuyt A, Muyldermans S, Devoogdt N.In vitro analysis and in vivo tumortargeting of a humanized, grafted nanobody in mice using pinholeSPECT/micro-CT. J Nucl Med,2010,51(7):1099-1106.
    94.DeAngelis LM. Brain tumors. N Engl J Med,2001,344(2):114–123.
    95.Schnell O, Krebs B, Wagner E, Romagna A, Beer AJ, Grau SJ, Thon N, Goetz C,Kretzschmar HA, Tonn JC, Goldbrunner RH.Expression of integrin αvβ3ingliomas correlates with tumor grade and is not restricted to tumor vasculature.Brain Pathol,2008,18(3):378–386.
    96.Jain, R. K. Transport of molecules in the tumor interstitium: a review. CancerRes.1987,47(12):3039-3051.
    97.Michalski MH, Chen X. Molecular imaging in cancer treatment. Eur J Nucl MedMol Imaging,2011,38(2):358–377.
    98.Wang J, Chen LT, Tsang YM, Liu TW, Shih TT.Dynamic contrast-enhanced MRIanalysis of perfusion changes in advanced hepatocellular carcinoma treated withan antiangiogenic agent: a preliminary study. AJR Am J Roentgenol,2004,183(3):713–719.
    99.Palmowski M, Schifferdecker I, Zwick S, Macher-Goeppinger S, Laue H,Haferkamp A, Kauczor HU, Kiessling F, Hallscheidt P. Tumor perfusion assessedby dynamic contrast-enhanced MRI correlates to the grading of renal cellcarcinoma: initial results. Eur J Radiol,2010,74(3):e176–180.
    100.Kaijzel EL, van der Pluijm G, L wik CW. Whole-body optical imaging inanimal models to assess cancer development and progression. Clin Cancer Res,2007,13(12):3490–3497.
    101.Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V,Gerald WL, Blasberg R, Massagué J. Distinct organ-specific metastatic potentialof individual breast cancer cells and primary tumors. J Clin Invest,2005,115(1):44–55.
    102.Zhao D, Richer E, Antich PP, Mason RP. Antivascular effects of combretastatinA4phosphate in breast cancer xenograft assessed using dynamicbioluminescence imaging and confirmed by MRI. FASEB J,2008,22(7):2445–2451.
    103.Raza SM, Lang FF, Aggarwal BB, Fuller GN, Wildrick DM, Sawaya R. Necrosisand glioblastoma: a friend or a foe? A review and a hypothesis. Neurosurgery,2002,51(1):2–12.
    104. Brewster AM, Hortobagyi GN, Broglio KR, Kau SW, Santa-Maria CA, Arun B,Buzdar AU, Booser DJ, Valero V, Bondy M, Esteva FJ.Residual risk of breastcancer recurrence5years after adjuvant therapy. J Natl Cancer Inst,2008,100(16):1179–1183.
    105. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics.CA Cancer JClin,2009,,59(4):225–249.
    106.Lu WL, Jansen L, Post WJ, Bonnema J, Van de Velde JC, De Bock GH.Impact onsurvival of early detection of isolated breast recurrences after the primarytreatment for breast cancer: a meta-analysis. Breast Cancer Res Treat,2009,114(3):403–412.
    107. Houssami N, Ciatto S, Martinelli F, Bonardi R, Duffy SW. Early detection ofsecond breast cancers improves prognosis in breast cancer survivors. Ann Oncol,2009,20(9):1505–1510.
    108. Ebeling FG, Stieber P, Untch M, Nagel D, Konecny GE, Schmitt UM,Fateh-Moghadam A, Seidel D.Serum CEA and CA15-3as prognostic factors inprimary breast cancer. Br J Cancer,2002,86(8):1217–1222.
    109.Gion M, Mione R, Leon AE, Dittadi R.Comparison of the diagnostic accuracy ofCA27.29and CA15.3in primary breast cancer. Clin Chem,1999,45(5):630–637.
    110.Harms JF, Welch DR, Samant RS, et al. A small molecule antagonist of thealpha(v)beta3integrin suppresses MDA-MB-435skeletal metastasis. Clin ExpMetastasis,2004,21(2):119-128.
    111.Cooper CR, Chay CH, Pienta KJ. The role of αvβ3in prostate cancer progression.Neoplasia,2002,4(3):191-194.
    112.Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat RevCancer,2002,2(2):91-100.
    113.Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin αvβ3forangiogenesis. Science,1994,264(5158):569-571.
    114.Sloan EK, Pouliot N, Stanley KL, Chia J, Moseley JM, Hards DK, Anderson RL.Tumor-specific expression of avβ3integrin promotes spontaneous metastasis ofbreast cancer to bone. Breast Cancer Res,2006,8(2):20.
    115.Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat RevCancer,2003,3(6):401-410.
    116. Takayama S, Ishii S, Ikeda T, Masamura S, Doi M, Kitajima M. The relationshipbetween bone metastasis from human breast cancer and integrin alpha(v)beta3expression. Anticancer Res,2005,25(1A):79–83.
    117.Coleman RE. Clinical features of metastatic bone disease and risk of skeletalmorbidity. Clin Cancer Res,2006,12(20Pt2):6243–6249.
    118.Roodman GD. Mechanisms of bone metastasis. N Engl J Med.,2004,350(16):1655–1664
    119.Sloan EK, Pouliot N, Stanley KL, Chia J, Moseley JM, Hards DK, AndersonRL.Tumor-specific expression of avh3integrin promotes spontaneous metastasisof breast cancer to bone. Breast Cancer Res,2006,8(2):R20.
    120.Waltregny D, Bellahcène A, de Leval X, Florkin B, Weidle U, CastronovoV.Increased expression of bone sialoprotein in bone metastases compared withvisceral metastases in human breast and prostate cancers. J Bone Miner Res,2000,15(5):834–843.
    121.Sprague JE, Kitaura H, Zou W, Ye Y, Achilefu S, Weilbaecher KN, TeitelbaumSL, Anderson CJ.Noninvasive imaging of osteoclasts in parathyroidhormone-induced osteolysis using a64culabeled rgd peptide. J Nucl Med,2007,48(2):311–318.
    122.Horton MA, Dorey EL, Nesbitt SA, Samanen J, Ali FE, Stadel JM, Nichols A,Greig R, Helfrich MH.Modulation of vitronectin receptor-mediated osteoclastadhesion by arg-gly-asp peptide analogs: a structure-function analysis. J BoneMiner Res,1993,8(2):239–247.
    123. Zheleznyak A, Wadas TJ, Sherman CD, Wilson JM, Kostenuik PJ, WeilbaecherKN, Anderson CJ.Integrin α(v)β (3) as a PET Imaging Biomarker for OsteoclastNumber in Mouse Models of Negative and Positive Osteoclast Regulation. MolImaging Biol,2011,19.[Epub ahead of print]
    124. Pécheur I, Peyruchaud O, Serre CM, Guglielmi J, Voland C, Bourre F, Margue C,Cohen-Solal M, Buffet A, Kieffer N, Clézardin P. Integrin avβ3expressionconfers on tumor cells a greater propensity to metastasize to bone. FASEBJ,2002,16(10):1266–1268.125. Sloan EK, Pouliot N, Stanley KL, Chia J,Moseley JM, Hards DK, Anderson RL.Tumor-specific expression of avβ3integrin promotes spontaneous metastasis of breast cancer to bone. BreastCancer Res,2006,8(2):20.
    126. Takayama S, Ishii S, Ikeda T, Masamura S, Doi M, Kitajima M. The relationshipbetween bone metastasis from human breast cancer and integrin alpha(v)beta3expression. Anticancer Res,2005,25(1A):79–83.
    127.Ramos OH, Kauskot A, Cominetti MR, et al. A novel alpha(v)beta (3)-blockingdisintegrin containing the RGD motive, DisBa-01, inhibits bFGF-inducedangiogenesis and melanoma metastasis. Clin Exp Metastasis,2008,25(1):53-64.
    128. Harms JF, Welch DR, Samant RS, et al. A small molecule antagonist of thealpha(v)beta3integrin suppresses MDA-MB-435skeletal metastasis. Clin ExpMetastasis,2004,21(2):119-28.
    129..Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications andtherapeutic opportunities. Nat Rev Cancer,2010,10:9–22.
    130.Kassmeyer S, Plendl J, Custodis P, Bahramsoltani M. New insights in vasculardevelopment: vasculogenesis and endothelial progenitor cells. Anat HistolEmbryol,2009,38:1–11.
    131.Weis SM. Evaluating integrin function in models of angiogenesis and vascularpermeability. Methods Enzymol,2007,426:505–528.
    132.Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. JNucl Med.,2008,49(suppl2):113S–128S.
    133.Liu Z, Li ZB, Cao Q, Liu S, Wang F, Chen X. Small-animal PET of tumorswith64Cu-labeled RGD-bombesin heterodimer. J NuclMed.,2009,50:1168–1177.
    134.Shi J, Zhou Y, Chakraborty S, et al. Evaluation of In-Labeled Cyclic RGDPeptides: Effects of Peptide and Linker Multiplicity on Their Tumor Uptake,Excretion Kinetics and Metabolic Stability. Theranostics.,2011,1:322-40.
    135. Dijkgraaf I, Yim CB, Franssen GM, et al. PET imaging of αvβ3integrinexpression in tumours with68Ga-labelled mono-, di-and tetrameric RGDpeptides. Eur J Nucl Med, Mol Imaging.2011,38(1):128-37.
    136.Chen X. Multimodality imaging of tumor integrin avb3expression. Mini RevMed Chem.,2006,6:227–234.
    137. Liu Z, Li ZB, Cao Q, Liu S, Wang F, Chen X. Small-animal PET of tumors with64Cu-labeled RGD-bombesin heterodimer. J Nucl Med.2009;50:1168–1177.
    138.Janssen. ML, Oyen WJ, Dijkgraaf I, et al. Tumor targeting with radiolabeledalpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res,2002,62:6146.
    139.Myers TA, Kaushal D, Philipp MT. Microglia are mediators of Borreliaburgdorferi-induced apoptosis in SH-SY5Y neuronal cells. PLoS Pathog,2009,5:e1000659.
    140.陈智伟,廖美琳,陈玉蓉,等. WHO标准和RECIST标准评价肺癌化疗疗效的比较[J].循证医学,2004,4(2):83-84.
    141.Prasad SR, Saini S, Sumner JE, et al. Radiological measurement of breast cancermetastases to lung and liver: comparison between WHO (bodimensional) andRECIST (unidimensional) guide-lines[J]. J Comput Assist Tomogr,2003,27(3):380-384
    142.Pachmann K, Clement JH, Schneider CP, et al. Standardized quantifi cati on ofci rcul ating peripheral tumor cells from1ung and breast cancer[J]. Clin ChemLab MP,2005,43(6):617-627.
    143.Bouvier CA, Gaynor E, Cintron J R, et al. Circulating endothelium as anindication of vascular injury[J]. Thromb Diath Haemorrh,1970,40:163.
    144.Fournier LS, Oudard S, Thiam R, et al. Metastati c renal carcinoma: evaluat ionof antiangiogenic therapy with dynamic contrast enhanced CT. Radiology,2010,256(2):511-518.
    145. Hahn OM, Yang C, Medved M, et al. Dynamic contrast enhanced magneticresonance imaging pharmacodynamic biomarker study of sorafenib inmetastatic renal carcinoma. J Clin On2col,2008,26(28):4572-4578.
    146.Avril N, Menzel M, Dose J, et al. Glucose metabolism of breast cancer assessedby18F-FDG PET: histologic and immunohistochemical tissue analysis. J NuclMed,2001,42:9–16.
    147.Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoraldistribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation inmacrophages and granulation tissues studied by microautoradiography. J NuclMed,1992,33:1972–1980.36,37
    148.Xilin Sun1,2, Yongjun Yan1, Shuanglong Liu,18F-FPPRGD2and18F-FDGPET of Response to Abraxane Therapy.,2011, JNM
    149. Hauber R, Beer AJ, Wang H, et al. Positron emission tomography tracers forimaging angiogenesis. Eur J nucl Med Mol Imaging,2010,37(suppll):S86-S103
    150.Miller JC, Pien HH, Sahani D, et al. Imaging angiogenesis: applications andpotential for drug development. J Natl Cancer Inst,2005,97:172–87.
    151. Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding upantiangiogenic drug development. Mol Cancer Ther,2006,5:2624–33.
    152.Niu G, Chen X. Has molecular and cellular imaging enhanced drug discoveryand drug development Drugs R D,2008,9:351–68.
    1. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol2002;29(6Suppl16):15-8
    2. Beer AJ, Haubner R, Sarbia M, Goebel, M.Luderschmidt, S.Grosu, A. L.Schnell,O.Niemeyer, M.Kessler, H.Wester, H. J.Weber, W. A.Schwaiger, M. Positronemission tomography using [18F]Galacto-RGD identifies the level of integrinalpha(v)beta3expression in man. Clin Cancer Res2006;12(13):3942-9.
    3. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. JBiol Chem2000;275(29):21785-8.
    4. Rosenow F, Ossig R, Thormeyer D, Gasmann, P.Schluter, K.Brunner, G.Haier,J.Eble, J. A. Integrins as antimetastatic targets of RGD-independent snake venomcomponents in liver metastasis [corrected]. Neoplasia2008;10(2):168-76.
    5. Hinton CV, Avraham S, Avraham HK. Contributions of integrin-linked kinase tobreast cancer metastasis and tumourigenesis[J]. J Cell Mol Med,2008,12(5A):1517-1526.
    6. Janik ME, Litynska A, Vereecken P. Cell migration-the role of integringlycosylation[J]. Biochim Biophys Acta,2010,1800(6):545-555.
    7. MizejeW, Gerald J. Role of integrins in cancer: survey of expression patterns. ProSoc Exp Biol Med,1999,222(2):124.
    8. Varner AJ, Cheresh DA. Integrins and cancer[J]. Curr Opin Cell Biol,1996,8(4):724.
    9.李林法,张敏鸣.肿瘤靶向分子影像[M].北京:科学出版社,2006:82-86
    10. Garanger E, Boturyn D, Dumy P. Tumor targeting with RGD peptideligands-design of new molecular conjugates for imaging and therapy of cancers.Anticancer Agents Med Chem,2007,7(5):552-558.
    11. Bergers, G.Brekken, R.McMahon, G.Vu, T. H.Itoh, T.Tamaki, K.Tanzawa,K.Thorpe, P.Itohara, S.Werb, Z.Hanahan, D. Matrix metalloproteinase-9triggersthe angiogenic switch during carcinogenesis. Nat Cell Biol2000;2(10):737-44.
    12. Napoleone Ferrara. Vascular endothelial growth factor: basic science and clinicalprogress[J]. Endocrine Reviews,2004,25(4):581.
    13. Bao W, Stromblad S. Integrin {alpha} v-mediat ed inact ivation of p53controls aMEK1-dependent melanoma cell survival pathway in three-dimensionalcollagen.This indicat es that integrin alphav-mediated inactivat ion of p53[J]. JCell Biol,2004,167(4):745.
    14. Humphries J D, Humphries M J.Integrin ligands at a glance. J CellSci,2006,119(19):390l-3903.
    15. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke, R.Diefenbach,B.Kessler, H.Stocklin, G.Schwaiger, M.. Radiolabeled alpha(v) beta3integrinantagonists: a new class of tracers for tumor targeting. J Nucl Med.1999,40:1061–1071.
    16. Shi J, Zhou Y, Chakraborty S, Kim, Y. S.Jia, B.Wang, F.Liu, S.. Evaluation ofIn-Labeled Cyclic RGD Peptides: Effects of Peptide and Linker Multiplicity onTheir Tumor Uptake, Excretion Kinetics and Metabolic Stability. Theranostics.2011,1:322-40.
    17. Zhou Y, Kim YS, Chakraborty S, Shi, J.Gao, H.Liu, S..99mTc-labeled cyclicRGD peptides for noninvasive monitoring of tumor integrin αVβ3expression.Mol Imaging.2011,10(5):386-97.
    18. Dijkgraaf I, Yim CB, Franssen GM, Schuit, R. C.Luurtsema, G.Liu, S.Oyen, W.J.Boerman, O. C.. PET imaging of αvβ integrin expression in tumours with68Ga-labelled mono-, di-and tetrameric RGD peptides. Eur J Nucl Med, MolImaging.2011,38(1):128-37.
    19. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger, L. F.Frielink, C.Edwards, D.S.Rajopadhye, M.Boonstra, H.Corstens, F. H.Boerman, O. C.. Tumor targetingwith radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mousemodel. Cancer Res.2002,62:6146.
    20. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke, R.Diefenbach,B.Kessler, H.Stocklin, G.Schwaiger, M.. Radiolabeled alpha(v)beta3integrinantagonists: a new class of tracers for tumor targeting [J]. J Nucl Med,1999,40(6):1061-1071.
    21. Haubner R, Kuhnast B, Mang C, Weber, W. A.Kessler, H.Wester, H. J.Schwaiger,M..[18F] Galacto-RGD: synthesis, radiolabeling, metabolic stability, andradiation dose estimates. Bioconjug Chem,2004,15(1):61-69.
    22. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia, M.Becker, K. F.Goebel, M.Hein, R.Wester, H. J.Kessler, H.Schwaiger, M.. Noninvasivevisualization of the activated alphavbeta3integrin in cancer patients by positronemission tomography and [18F]Galacto-RGD. PLoS Med2005;2:e70.
    23. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell,O.Niemeyer, M.Kessler, H.Wester, H. J.Weber, W. A.Schwaiger, M.. Positronemission tomography using [18F]Galacto-RGD identifies the level of integrinalpha(v)beta3expression in man.Clin Cancer Res2006;12:3942–9.
    24. Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M,Spinks TJ,McParland, B.Cohen, P. S.Hui, A. M.Palmieri, C.Osman, S.Glaser, M.Turton,D.Al-Nahhas, A.Aboagye, E. O.. Phase I trial of the positron-emittingArg-Gly-Asp (RGD) peptide radioligand18F-AH111585in breast cancer patients.J Nucl Med2008;49:879–86.
    25. Maecke HR, Hofmann M, Haberkorn U.(68)Ga-labeled peptides in tumorimaging. J Nucl Med2005;46(Suppl1):172S–8.
    26. Decristoforo C, Hernandez Gonzalez I, Carlsen J, Rupprich M, Huisman M,Virgolini I, Wester, H. J.Haubner, R..68Ga-and111In-labelled DOTARGDpeptides for imaging of alphavbeta3integrin expression. Eur J Nucl Med MolImaging2008;35:1507–15et al.
    27. Li ZB, Chen K, Chen X.(68)Ga-labeled multimeric RGD peptides for microPETimaging of integrin alpha(v)beta(3) expression. Eur J Nucl Med Mol Imaging2008;35:1100–8.
    28. Liu Z, Niu G, Shi J, Liu S, Wang F, Chen, X..(68)Ga-labeled cyclic RGD dimerswith Gly3and PEG4linkers: promising agents for tumor integrin alphavbeta3PET imaging. Eur J Nucl Med Mol Imaging2009;36:947–57.
    29. Ingrid Dijkgraaf, Cheng-Bin Yim, Gerben M. Franssen, Robert C. Schuit, GertLuurtsema, Shuang Liu, Wim J. G. Oyen, Otto C. Boerman. PET imaging of αvβ3integrin expression in tumours with68Ga-labelled mono-, di-and tetrameric RGDpeptides. Eur J Nucl Med Mol Imaging (2011)38:128–137.
    30. Lewis JS, Srinivasan A, Schmidt MA, Anderson CJ. In vitro and in vivoevaluation of64Cu-TETA-Tyr3-octreotate: a new somatostatin analog withimproved target tissue uptake. Nucl Med Biol.1999;26:267–273.
    31. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, CutlerCS, Anderson CJ, and Welch MJ (1997). Efficient production of high specificactivity64Cu using a biomedical cyclotron. Nucl Med Biol24,35–43.
    32. Cai H, Li Z, Huang CW, Park R, Conti PS.64Cu Labeled AmBaSar-RGD2formicro-PET Imaging of Integrin αvβ3Expression. Curr Radiopharm.2011Jan1;4(1):68-74.
    33. McCarthy DW, Shefer RE, Klinkowstein RE, et al. Efficient production of highspecific activity Cu-64using a biomedical cyclotron. Nucl Med Biol.1997;24:35–43.
    34. Boswell CA, Sun X, Niu W, et al. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J MedChem.2004;47:1465–1474.
    35. Sprague JE, Peng Y, Sun X, et al. Preparation and biological evaluation ofcopper-64-Tyr3-octreotate using a cross-bridged macrocyclic chelator. ClinCancer Res.2004;10:8674–8682.
    36. Liu Z, Jia B, Shi J, Jin X, Zha o H, Li F, Liu S, Wang F.Tumor Uptake of theRGD Dimeric Probe (99m)Tc-G(3)-2P(4)-RGD2is Correlated with Integrinalpha(v)beta(3) Expressed on both Tumor Cells and Neovasculature. BioconjugChem.2010,25.[Epub ahead of print]
    37. Shi J, Wang L, Kim YS, Zhai S, Jia B, Wang F, Liu S.99mTcO(MAG2-3G3-dimer): a new integrin alpha(v)beta(3)-targeted SPECTradiotracer with high tumor uptake and favorable pharmacokinetics. Eur J NuclMed Mol Imaging.2009;36(11):1874-84.
    38. Zhou Y, Kim YS, Chakraborty S, Shi J, Gao H, Liu S.99mTc-labeled cyclic RGDpeptides for noninvasive monitoring of tumor integrin αVβ3expression. MolImaging.2011Oct;10(5):386-97.
    39. Wang L, Shi J, Kim YS, Zhai S, Jia B, Zhao H, Liu Z, Wang F, Chen X, Liu S.Improving tumor-targeting capability and pharmacokinetics of (99m)Tc-labeledcyclic RGD dimers with PEG(4) linkers. Mol Pharm.2009Jan-Feb;6(1):231-45.
    40. Haubner R, Wester HJ, Reuning U, et al. Radiolabeled alpha(v)beta3integrinantagonists: a new class of tracers for tumor targeting [J]. J Nucl Med,1999,40(6):1061-1071.
    41. Haubner R, Bruchertseifer F, Bockl M, et al. Synthesis and biological evaluationof a99mTc lavelled cyclic RGD peptide for imaging the αvβ3expression. J MuclMed,2004,43(1):26-32.
    42. van Hagen PM, Breeman WA, Bernard HF, et al. Evaluation of a radiolabelledcyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy [J].Int J Cancer,2000,90(4):186-198.
    43.靳存敬,史继云,刘妍,靳晓娜,黄金铭,赵慧云,李方,王凡.99Tcm标记的PEG4/2PEG4修饰的环状RGD二聚体体内外性质的对比,核化学与放射化学,2010,32(5):287-292
    44. Wang L, Shi J, Kim Y S, et al. Impro ving Tumor Targeting Capability andPharmacokinetics of99m Tc-Labeled Cyclic RGD Dimers With PEG(4)Linkers[J].Mo l Pharm,2009,6(1):231-245.
    45. Ma Q, Ji B, Jia B, Gao S, Ji T, Wang X, Han Z, Zhao G. Differential diagnosis ofsolitary pulmonary nodules using mTc-3P-RGD scintigraphy. Eur J NuclMed Mol Imaging.2011;38(12):2145-52.
    46. Haubner R, Bruchertseifer F, Bockl M, et al. Synthesis and biological evaluationof a99mTc lavelled cyclic RGD peptide for imaging the αvβ3expression. J MuclMed,2004,43(1):26-32.
    47. Po ethko T, Thumshir n G, H ersel U, et a l. Improved Tumor Uptake, TumorRetention and Tumor/Background Ratios of Pegylated RGD Multimers[J]. JNucl Med,2003,44(Suppl):46.
    48. Thumshirn G, Her sel U, Go odman S L, et al.Multimeric Cyclic RGD Peptides asPotential Tools for Tumor Targeting: Solid Phase Peptide Synthesis andChemoselective OximeLigatio n[J]. Chem Eur J,2003,9(12):2717-2725.
    49. Janssen ML, Oyen WJ, Dijkgraaf I, et al. Tumor targeting withradiolabeledαvβ3integrin binding peptides in a nude mouse model. Cancer Res.2002;62:6146–6151.
    50. Dijkgraaf I, Yim CB, Franssen GM, et al. PET imaging of αvβ integrinexpression in tumours with68Ga-labelled mono-, di-and tetrameric RGD peptides.Eur J Nucl Med, Mol Imaging.2011,38(1):128-37.
    51. Janssen ML, Oyen WJ, Dijkgraaf I, et al. Tumor targeting with radiolabeledalpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res.2002,62:6146.21. Zhang X, Xiong Z, Wu Y, et al. Quantitative PET imaging oftumor integrin alphavbeta3expression with18F-FRGD2. J Nucl Med.2006,47:113.
    52. Ambros J. Beer, Markus Schwaiger, Imaging of integrin αvβ3expression, CancerMetastasis Rev (2008)27:631–644. Weibo Cai1, Xiaoyuan Chen,Multimodality Molecular Imaging of TumorAngiogenesis, J Nucl Med2008;49:113S–128S
    53. Hu, G., Lijowski, M., Zhang, H., et al. Imaging of Vx-2rabbit tumors with αvβ3-integrin-targeted nanoparticles.International Journal of Cancer,120,1951–1957.
    54. Liu, Z., Cai, W., He, L., et al. In vivo biodistribution and highly efficient tumourtargeting of carbon nanotubes in mice. Nature Nanotechnology,2007,2,47–52.
    55. Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X. PET/MRIdual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugatedradiolabeled iron oxide nanoparticles. J Nucl Med.2008Aug;49(8):1371-9. Epub2008Jul16.
    56. Jackson AB, Nanda PK, Rold TL, Sieckman GL, Szczodroski AF, Hoffman TJ,Chen X, Smith CJ.(64)Cu-NO2A-RGD-Glu-6-Ahx-BBN(7-14)NH(2): aheterodimeric targeting vector for positron emission tomography imaging ofprostate cancer.Nucl Med Biol.2012Apr;39(3):377-87.
    57. Ambros J. Beer1,, Roland Haubner et al, PET-Based Human Dosimetry of18F-Galacto-RGD,a New Radiotracer for Imaging avb3Expression, J Nucl Med2006;47:763–769
    58. Haubner R, Kuhnast B, Mang C, et al.[18F]Galacto-RGD: synthesis,radiolabelling, metabolic stability and radiation dose estimates. BioconjugateChem.2004;15:61–69.
    59. Ambros J. Beer, MD; Roland Haubner, PhD et al, Biodistribution andPharmacokinetics of the αvβ3-Selective Tracer18F-Galacto-RGD in CancerPatients, J Nucl Med2005;46:1333–1341.
    60. Ambros J. Beer,1Anca-Ligia Grosu et al,[18F]Galacto-RGDPositronEmissionTomography for Imaging of αvβ3Expression on the Neovasculature inPatients with Squamous Cell Carcinoma of the Head and Neck, Clin Cancer Res2007;13(22Pt1):6610-6.
    61. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al.Positron emission tomography using [18F]Galacto-RGD identifies the level ofintegrin alpha(v)beta3expression in man.Clin Cancer Res2006;12:3942–9.
    62. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, Becker KF,Goebel M, Hein R, Wester HJ, Kessler H, Schwaiger M.. Noninvasivevisualization of the activiatedαvβ integrin in cancer patients by positron emissiontomography and [18F]Galacto-RGD. PLoS Med,2005;2:e70.
    63. Beer AJ, Niemeyer M, Carlsen J, Sarbia M, et al. Patterns of αvβ expression inprimary and metastatic human breast cancer as shown by18F-Galacto-RGD PET.J Nucl Med2008;49:255–9.
    64. Hauber R, Beer AJ, Wang H, et al. Positron emission tomography tracers forimaging angiogenesis. Eur J nucl Med Mol Imaging,2010,37(suppll):S86-S103
    65. Comparison of Integrin avb3Expression and Glucose Metabolism in Primary andMetastatic Lesions in Cancer Patients: A PET Study Using18F-Galacto-RGD and18F-FD. J Nucl Med.2008Jan;49(1):22-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700